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Abstract

A major focus of research in recent years has been the development of algorithms for automated line

smoothing. However, combination of the algorithms with other generalization operators is a challenging

problem. In this research a key aim was to extend a snakes optimization approach, allowing displacement of

lines, to also be used for line smoothing. Furthermore, automated selection of control parameters is important

for fully automated solutions. An existing approach based on line segmentation was used to control the

selection of smoothing parameters dependent on object characteristics. Additionally a new typification routine

is presented, which uses the same preprocessed analysis for the segmentation of lines to find suitable candidates

from curve bends. The typification is realized by deleting undersized bends and emphasizing the remaining

curve bends. The main results of this research are two new algorithms for line generalization, where the

importance of the line smoothing algorithm lies in the usage of a optimization approach which can also be used

for line displacement.
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1. Introduction

Line generalization applies to different types of cartographic objects, such as angular

lines (e.g., canals, buildings), sinuous lines (e.g., hydrography), as well as the depiction

of 2.5-D continua (e.g., relief) by contours. Line generalization, just like any other

generalization operation, has to observe and preserve the particular characteristics of

cartographic objects in the generalization process. Hence, different operators are

available for the overall task of line simplification. Angular lines are dealt with by line

simplification operators that often rely on a procedure that reduces the number of original

points on the line. Line smoothing, on the other hand, is often used for one-dimensional

generalization of sinuous lines by Fironing_ away small crenulations [17].

The approach presented here focuses on the generalization of sinuous lines. As Figure 1

shows, an approach that was purely based on simplification (i.e., weeding) and

smoothing operators, respectively, would not be sufficient, for two major reasons. First,

the transitions between angular and sinuous parts of a line are often not distinct. For

instance, a border line might contain both angular and sinuous sections, depending on

whether it follows survey markers or the centerline of a river. Second, mere point

weeding or smoothing simply focuses on single vertices of a line, rather than identifying
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compound shapes on the line (e.g., bends) and generalizing these shapes [19]. Plazanet

et al. [22] have presented several algorithms to deal with shape-based generalization of

roads. In this article, a method is proposed that is based on an energy minimizing

optimization technique, called snakes, that allows to apply controlled line smoothing,

while at the same time taking into account the overall shape of the line as well as

allowing to integrate different generalization operations.

Because the generalization process follows as a combination of different basic gen-

eralization operations, it is always a compromise. In this sense the cartographic solution

is generally not unique, but satisfies the different cartographic requirements in a better

or worse way. As shown earlier, the use of optimization techniques seems to be suitable

for both the combination of different basic generalization operations as well as the

control of varying constraints of one generalization operation [7].

The use of optimization techniques in the field of automated generalization has been

proposed by a number of authors (e.g., [5]; Højholt 1998). Such techniques are primarily

applied to the displacement of line objects by means of different approachesVenergy

minimization methods such as snakes [4], [7] and beams [2] and least squares adjustment

[13], [27]. Sester shows also how to apply optimization techniques for other gen-

eralization operations, such as simplification of buildings.

Harrie [12] extended the least square adjustment approach by inclusion of additional

constraint types. The aim of his simultaneous graphic generalization was to have one

method for solving different generalization operations in a single optimization step. The

new constraint types were concerned with simplification, smoothing and exaggeration.

These constraints were based upon pre-computed point movements. For smoothing, he

used a Gaussian smoothing approach.

Even though different optimization techniques from several disciplines have been

adapted for tasks of cartographic generalization, the resulting linear vector equations

after variation or Taylor expansion are all quite similar. Following that, similar methods

are used for solving such equations and existing difficulties also are comparable. On the

one hand, there is the computational effort required for solving the large equation

Figure 1. Levels of detail for a line object at different scales, after Töpfer [29].
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systems. On the other hand, there are the difficulties to find suitable weights and para-

meters. Harrie [12] investigates different strategies (empiricism, machine learning,

constraint violation and variance component estimation) with one important restriction:

weights have to be determined independently of the shape of objects. This assumption is

acceptable only for certain types of constraints, for others, such as curvature constraints,

it is important to have different weights for objects of the same type, depending on their

shape.

In this paper, a line smoothing approach that is fully integrated with the energy

minimization method is first presented. Following that, it is shown how the analysis of

shape can help in selecting suitable parameter values for smoothing. An automated

controlled line smoothing algorithm is then derived. The same preprocessed analysis is

also used to find suitable candidates for typification of curve bends. To improve the

recognition of generalized lines a typification procedure with a geometrical basis is

suggested.

2. Energy minimization for smoothing of line objects

The snakes optimization technique used here allows the consideration of different, partly

contradictory, generalization constraints. In automated displacement such constraints are

the maintenance of minimal distances between objects with correctly represented relative

positions and the preservation of typical shapes. Snakes can model these constraints with

the help of an energy function consisting of internal and external energies. The internal

energy is used to describe the cartographic object’s shape and structure. Conflicts, such

as distances to other objects that are too small, are calculated by the external energy. In

this paper, the snakes model is extended from that originally developed for cartographic

object displacement by Burghardt and Meier [7] by smoothing the shape of line objects,

in addition to the internal energy. In this case energy correlates to the degree of detail of

the line: the smoother the line the less energy it contains. In combination with automated

displacement it would be possible to have one common solution for the generalization of

line objects their selection and symbolization. The control of optimization is intuitive,

because the external energy refers to other objects, whereas the internal energy describes

the line itself.

In this paper the snakes approach will be used in the original form, proposed by Kass

et al. [15]. Snakes are energy minimizing splines which adapt their shape and position

under the influence of an energy functional. Representing the position of snake param-

etrically by d(s) = (x(s), y(s))T with arc length s, s 2 ½0,l �, the energy functional can be

written as

E dð Þ :¼
Z

Eint þ Eext
� � : ds

¼
Z

1

2
� sð Þ : d0 sð Þj j2 þ � sð Þ : d00 sð Þj j2
� �

þ Eext

� �
: ds

ð1Þ
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The snake represents a line l which has to be generalized and the energies are used to

model the constraints for generalization. While internal energy Eint has an influence on

the shape of the line, the Eext describes conflicts with objects of the neighborhood. Such

conflicts could arise as a result of symbolization, when distances between signatures fall

below a minimal distance threshold or overlap each other. There are different require-

ments for line shape preservation during generalization operations. While displacement

should not change too much the shape of the line, smoothing operations may intentionally

modify the shape of lines for better visualization quality. With internal energy these

different aspects can both be taken into consideration.

For displacement internal energy calculates differences in shape between the original

and the displaced line, so minimal internal energy implies minimal deformation of the

line. The shape modification is measured by changes of the differences of the first and

second derivatives of the original and the displaced line. In case of smoothing internal

energy is used to simplify the line. Therefore, first and second derivatives of the line are

minimized, resulting in shorter distances between points of vector d and minimized

curvature of the spline curve. The internal energy terms used for displacement and

smoothing, respectively, are formally equal. The differences depend on the definition of

vector d, which contains the coordinates of the altered line in the case of smoothing

(2a). For displacement (2b), the differences between the initial and the derived line are

used.

dsmooth sð Þ ¼ x sð Þ; y sð Þð ÞT ð2aÞ

ddispl sð Þ ¼ x sð Þ � x0 sð Þ; y sð Þ � y0 sð Þ
� �T ð2bÞ

To find the stable state of the snake the functional E(d) has to be minimized (see

Appendix). The variation of E(d) with constant user-definable parameters � and � leads

to the Eulerian equations, which are solved by discretization in time [2], [6]. The

differences in the final formulae between displacement (3a,b) and smoothing (4a,b) are

straightforward. For smoothing of line objects no external forces are modeled, so the

derivatives of external energy (Eext ) in x- and y-direction are zero.

Aþ �Ið Þ : xt � x0
� �

¼ � xt� 1 � x0
� �

� Eext
x xt� 1; yt� 1
� �

ð3aÞ

Aþ �Ið Þ : yt � y0
� �

¼ � yt� 1 � y0
� �

� Eext
y xt� 1; yt� 1
� �

ð3bÞ

Aþ �Ið Þ : xt ¼ �xt� 1 ð4aÞ

Aþ �Ið Þ : yt ¼ �yt� 1 ð4bÞ

A ¼

"
2�þ 6� ��� 4� � 0 0 0

��� 4� 2�þ 6� ��� 4� � 0 0

� ��� 4� 2�þ 6� ��� 4� � 0

0 � ��� 4� 2�þ 6� ��� 4� �
0 0 � ��� 4� 2�þ 6� ��� 4�
0 0 0 � ��� 4� 2�� 6�

#
ð5Þ
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3. Automated control of parameter selection

Depending on the degree of smoothing and the distance between points, the end points of

the lines are shifted away from their initial position (see Figure 2). Higher values of �
produce a stronger minimization of the first term of the internal energy and hence a

stronger smoothing and end point shifting (cf. Equation 1).

To overcome the problem of end point shift there are several counter-measures. One

possibility is to include the first and last point of the line multiple times in vector d. The

points which are added before will be deleted after smoothing. This procedure results in

forcing the smoothed line through the end points (see Figure 3). As a result of internal

energy also the curvature at both ends of line are influced. The line becomes quite

straight at their ends because of multiple adding of the same point.

That’s why a second version of extending the original line was investigated. The idea

is to duplicate the segments at either end of the line rotated by 180-. Instead of using the

Figure 2. Excessive shifting of end points of line objects depending on the degree of smoothing.

Figure 3. Forced fixed boundary points as a result of introducing multiple end points.
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last point multiple times, now some more points at the line end used twice. Thus, the char-

acter of the lines is better represented (Figure 4).

An important question for any automated solution is the number of additional

duplicated points required for bounding the solution. One possible approach which was

used here consists in smoothing the line without additional end points and subsequently

analyzing the shifted points. After counting the points for which the distance between the

original and smoothed line falls below a threshold value the remaining points up to

the end of the line then determine the number of additional end points. Figure 5 shows

the distance between the original and the smoothed line for every point on a sample line.

Figure 4. Forced fixed boundary points as a result of using a number of duplicated points at the line end

rotated by 180- around the crossroads (left). Resulting lines after smoothing (right).

Figure 5. Calculation of number of duplicated points depending on distances between original and smoothed

line to achieve fixed boundaries.
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In the diagram the distance for the point with Id 24 falls below the threshold value 1.0.

That means 23 vertices up to the end of the line were shifted too far. This value will then

be increased by 20%, to make sure that the shift affects only the additional points. So, it

is recomputed with 23 plus 5 additional end point coordinates. Note that only a fraction

of the original line is displayed in the diagram of Figure 5; most of the points stay within

the threshold distance, as can be seen from the buffer display in the top part of Figure 5.

Before smoothing the line objects a segmentation is necessary to determine the

smoothing parameters � and � of Eint. With the help of the segmentation the lines can be

subdivided into smaller segments of different sinuosity. One possibility for segmentation

is to smooth the original lines twice, first to determine the characteristics and second

with adapted parameter values. The intersection points between the original and the

smoothed line correlate with the degree of sinuosity of the original curve. In Figure

6(left) the arrows show the intersection points between original and smoothed line. A

measure is obtained by counting the intersection points with reference to segment length

(Figure 6(right)). In case the distance between two points of intersection is less than a

given threshold value the segment is defined as being sinuous. Note that Plazanet et al.

[22] proposed a similar approach based on the detection of vertices and the subsequent

analysis of the distances between these points to segment the original line. The advantage

of the snakes smoothing approach is that it can stay within the same methodological

context of energy minimizing optimization techniques. Hence, it does not have to Fpiece

together_ different methodological approaches into one framework (see also [28]).

Because the sinuousity attribute can change quite often between segments, the next

step is to concatenate segments until a user-defined minimal length of line parts is

reached. It is necessary to start the procedure with the shortest segments (Figure 7b). If

there are adjacent segments with different sinuosity, the longer one determines the value

of the sinuosity attribute (Figure 7c). At the last step in Figure 7d the scattered line part

keeps the attribute Bnot sinuous^ if the length is longer then the minimal length of line

Figure 6. Segmentation based on intersection points between original and smoothed line, arrows show the

intersection points (left). The number of intersection points related to segment length is used as measure of

sinuosity (right).
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parts defined by the user. In cases where the minimal length is not reached, the scattered

line parts take the attribute Bsinuous,^ because the concatenated segments with attribute

Bsinuous^ are longer.

After segmentation detection the lines are subdivided into the segments and each of

them is smoothed with different parameter values for � and � of the internal energy.

Figure 8 shows an example in which different parameter values were applied to the

segmented lines. Hence, lines which are sinuous were smoothed more to eliminate the

high frequency bends. The less sinuous lines, on the other hand, were less strongly

smoothed and the large bends were preserved. However, from a cartographic point of

view, this approach can be improved. In order to maintain the more sinuous parts it is

necessary to apply typification rules which are described in the next section.

The presented algorithm is integrated in a cartographic production system. The system

is used by cartographic experts to create high quality topographic maps. Through the

Figure 7. Concatenation of segments with different sinuousity attribute. a Determination of intersection points

between the original and the smoothed line. b Identification of the shortest segment. c Concatenation of

segments until a user-defined minimal length of line parts is reached. d Final result of a segmented line in

sinuous and not sinuous line parts.

Figure 8. An example of the use of snakes for line smoothing. Smoothing was applied after line segmentation.
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extension of automated parameterization the line smoothing could be carried out also by

non-experts, nevertheless the operator would need to decide which classes the smoothing

should be applied to and which other generalization operators were needed. Runtime

for line smoothing with snakes is much faster than the line displacement, particularly

after subdividing the line in several segments. A disadvantage of the presented approach

might be the effort required to implement the matrix equations (2a,b), which can be

justified, if a line displacement is also carried out, with the same optimization approach.

The differences between snakes smoothing and other smoothing approaches can be

shown on a methodical level (Table 1). One classification is made by the filter theory,

which uses transformations between spatial and frequency domain. Smoothing after

transforming into the frequency domain is realized by frequency filters, e.g., low-pass

filters which allows low frequencies to pass. Smoothing within the spatial domain can

also be interpreted as filter operations, applied on coordinates instead of frequencies.

Detailed analyses of filter characterization for snakes is published by Meier [18]. A

second way of classification is by distinguishing between local and global effects of the

smoothing algorithms. In the frequency domain algorithms using a Fourier series ap-

proach influence the whole line, while Wavelets have a localising component based on

their restricted basis functions. Fritsch and Lagrange [11] have shown that wavelet

coefficients are appropriate to characterise the local shape of a curve.

In the spatial domain several smoothing algorithms suggested, which have a local

focus. For instance the smoothing approach suggested by McMaster [16] considers two

or four surrounding points and calculates a straight arithmetic average. In a second step,

the actual point is displaced towards the calculated coordinates. Until now smoothing

algorithm in the spatial domain with a global focus have only been available for raster

data, e.g. the morphological operations [26]. Snakes smoothing fills this gap with their

global matrix calculation. The advantage of a global approach is it better preserves the

main characteristic of a line, while local adjustment is missing. To obtain a compromise

between global and local approaches the automated line segmentation was suggested for

controlling the selection of smoothing parameters dependent on object characteristics.

While the lines are subdivided into segments of comparable characteristics the approach

shifts its focus from a global to a local perspective.

Table 1. Methodical overview of smoothing approaches.

Spatial domain Frequency domain

Local & Epsilon filteringVPerkal [20] Wavelets
& Gaussian smoothingVBadaud et al. [1] & Fritsch and Lagrange [11]
& Sliding averageVMcMaster [16] & Balboa and Lopez [3]
& PlasterVFritsch [10] & Saux [24]

Global Raster: Fourier series
& Morphological operationsVSchweinfurth [26] & Clarke et al. [8]

Vector: & Schwarzbach [25]
& Snakes (as presented in this paper) & Fritsch and Lagrange [11]
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4. Typification

The aim of typification is to visualize line characteristics even though there are

limitations on resolution. For strong sinuous parts this could be achieved by deleting

undersized bends and emphasizing the retained or reconstructed ones. To find small

bends smoothing is applied the same way as in the first step for segmentation (cf. pre-

ceding section). Short segments between intersection points of original and smoothed line

indicate undersized bends. For typification the intersection points and vertices of the

original line have to be calculated. There is one vertex (white) for every bend and every

bend is delimited by two intersection points (gray), see Figure 9. The vertex of one bend is

the point with the maximal distance between the original (black) and the smoothed line

(dashed).

Starting with the vertex (i) of the undersized bend, all line vertices between the

previous (i j 1) and following vertex (i + 1) of the original line are deleted (Figure 10a).

The vertices of the adjacent bend sides, between vertex i j 1 and i j 2 as well as i + 1

and i + 2, respectively, are moved for the construction of the new, typified bend. Its

direction and length are calculated from the connection of intersection points between the

original and the smoothed line. The translation leads in the direction of the deleted bend

with a value of half the intersection point distance. The dotted gray lines in Figure 10b

show the intermediate step.

An exaggeration of the newly constructed bends is also possible with a distance de-

pendent stretching of line vertices perpendicular to the connecting segment between

intersection points. The solid black lines in Figure 10b show the exaggerated bends. Fi-

nally, the original line with its constructed new bends is smoothed by energy minimization.

The second term of the internal energy guarantees the continuity of the smoothed line.

Also, the distance between vertices of the line becomes approximately equidistant as a

result of the first term of internal energy.

Figure 9. Calculation of vertices (white) and intersection points (gray).

Figure 10. Construction of new curve bends through translation and exaggeration.
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Figure 11 shows two examples of typification of line objects from VECTOR251 road

network. The road network of VECTOR25 was digitized on the basis of topographic

maps with scale 1:25,000. The aim for this example was to generalize the road network

for a smaller scale 1:500,000. In the background of road objects the corresponding

manual generlized topographic map with scale 1:500,000 is shown. On the left side you

can see the situation before on the ride side after typification.

The circles bring out the results of typification of object class BMain road,^ which are

in the second example very similar to the manual solution. More examples are shown in

Figure 12 for another object class BRoad open to traffic^ of road network. It can be seen

that not all sinuous line segments would be typified (double encircled curve sequence).

The main reason is that calculation of vertices and intersection points is dependent on

preprocessed smoothing. In this example the preprocessed smoothing was stronger, so in

the double encircled area no intersection points are calculated between original and

smoothed line.

To overcome this problem a strategy could be used which implies a frequency

dependent typification. If preprocessed smoothing is not so strong, only smaller bend

sequences are typified (Figure 13b), if a stronger preprocessed smoothing is used the

Figure 11. Typification examples of roads (to compare the manual generalized topographic maps are shown in

the backgroundV* 2004 swisstopo (BA046257)).
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longer bends (relating to long wavelength) will be typified (Figure 13c). In general an

iterative typification with different amounts of preprocessed smoothing could be applied.

An alternative to this typification approach is the Accordion algorithm suggested by

Plazanet [21]. This algorithm aims to enlarge a bend or bend series to remove the bends

that coalesce. The central inflexion point of the line has to be fixed and all the others

points are moved away from it, specific to every bend, in the orthogonal direction of each

bend axis. The main difficulty of this approach is to avoid creating new conflicts when

solving the initial ones. Further research [9], [23] has been introduced micro and meso

Agents to overcome this side effects.

Compared with the Accordion algorithm, the typification presented her approach has

the advantage that no side effects were produced, because bends will be removed instead

Figure 12. Typification and smoothing of road network.

Figure 13. Frequency dependent typification with different amounts of preprocessed smoothing.
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of displaced. A negative consequence is that less information will be visualized in the

map. In this sense the typification approach suggested here can be used as a

complementary procedure to the Accordion algorithm. If the local situation allows

visualizing of all curve bends, the Accordion algorithm makes sure that the bends do not

overlap and if to much side effect occurs then our typification approach can be used to

reduce the number of curve bends.

5. Conclusions

The results of the research presented here are two new algorithms for line smoothing

and typification. Advantages of line smoothing with snakes are discussed from a

methodical and a practical point of view. Snakes smoothing fills the gap of smoothing

operators with global focus in the spatial domain. The advantage of a global approach

is the better preservation of the main characteristic of a line. From a practical point

of view the snakes approach uses an optimization approach which can also be used for

line displacement. The advantage of the snakes model is the simple combination of

several constraints with the help of different energies. External energy describes conflicts

with other map objects, while internal energy models the shape constraints of car-

tographic lines. The main difference of using snakes for displacement or smoothing,

respectively, depends on the definition of the internal energy. While the shapes of lines

should be preserved during displacement, smoothing implies more considerable

deformations.

To improve the results of smoothing, the lines can be smoothed twice. A first pass is

executed with default parameters for � and �, independently of line characteristics. The

resulting line crosses the original line and the density of intersection points between the

two lines provides a measure of sinuosity. A subsequent segmentation helps to determine

parts of the line with similar characteristics. For the second smoothing pass the

parameters � and � can then be selected in relation to the line shape established

previously. For instance, lines which are more sinuous can be smoothed more strongly to

eliminate high frequency bends. The reason for using one common approach for

smoothing and displacement is the easier control of the interaction between displacement

and smoothing. Additionally, it is faster to apply smoothing and displacement together

then one after another. Further work should investigate smoothing with position

dependent parameter � = �(s) and � = �(s), to achieve a more local control of

smoothing.

Additionally, a typification routine with a geometrical basis is suggested. Comparing

with other algorithm the approach has the advantage that no side effects were produced.

It is well suited for greater scale transitions and can be used as supplementation for

Accordion algorithm. In general the algorithm works well, but depending on the degree

of the preprocessed smoothing different curve bends for typification are selected. The

consequence is that not all curve bends are typified in one step and an iterative process

has to be applied, which leads to a frequency dependent typification.
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Appendix

To find a minimum of the following energy integral

I x sð Þ; y sð Þ½ � ¼
Z 1

0

Eges x; xs; xss; y; ys; yssð Þds ¼
Z 1

0

Eext þ Eint
� �

ds ð6Þ

the variation in x- and y-direction should be zero

�I xþ �x; y½ � ¼ 0 ð7aÞ

�I x; yþ �y½ � ¼ 0: ð7bÞ

The variation in x-direction

�I xþ �x; y½ � ¼
Z 1

0

ds : �E x; xs; xss; y; ys; yssð Þ ð8aÞ

¼
Z 1

0

ds : @E

@x
�xþ @E

@xs

�xs þ
@E

@xss

�xss

� �
ð8bÞ

¼
Z 1

0

ds : Ex�xþ Exs
�xs þ Exss

�xssð Þ ð8cÞ

¼
Z 1

0

ds : Ex�xþ Exs

d

ds
�xþ Exss

d2

ds2
�x

� �
ð8dÞ

¼
Z 1

0

ds : Ex �
dExs

ds
þ d2Exss

ds2

� �
�x ¼ 0 ð8eÞ

leads to two independent Eulerian equations

@Eext

@x
� � xss þ � xssss ¼ 0 ð9aÞ

@Eext

@y
� � yss þ � yssss ¼ 0: ð9bÞ

Approximating the derivatives with finite differences

@Eext

@xi

� � xi� 1 � xið Þ � xi � xiþ 1ð Þf g

þ �f xi� 2 � 2xi� 1 þ xið Þ � 2 xi� 1 � 2xi þ xiþ 1ð Þ

þ xi � 2xiþ 1 þ xiþ 2ð Þg ¼ 0 ð10Þ

250 BURGHARDT



and converting to matrix notation

� � � � � �� 4� 2�þ 6�

..

.

..

.
� �� 4� � � � �

0
BBB@

1
CCCA

:
xi� 2
xi� 1
xi
xiþ 1
xiþ 2

:

0
BBBB@

1
CCCCAþ

@Eext

@xi

¼ 0 ð11Þ

gives final equations, which can be solved iteratively.

Note

1. VECTOR25 defines the digital landscape model by Swiss Federal Office of Topography
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9. C. Duchêne. BRoad generalisation using agents,’’ Proceedings of the GIS Research UK, 9th Annual

Conference, University of Glamorgan Wales, pp. 325Y328, 2001.

10. E. Fritsch. BUtilisation de la coubure pour la généralisation du linéaire routier,’’ Bulletin d’Information
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29. F. Töpfer. Kartographische Generalisierung, Ergänzungsheft Nr. 276 zu Geographische Mitteilungen. VEB

Hermann Haack, Geographisch-Kartographische Anstalt Gotha/Leipzig, 1974.

Dirk Burghardt received his Ph.D. in geoscience from Dresden University in 2000, on the topic of

automated generalization. Later he worked as a developer and product manager for a cartographic production

company. Currently he is research associate at the Department of Geography at the University of Zurich. His

research interests include cartographic visualization, mobile information systems and automated cartographic

generalization.

252 BURGHARDT



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


