
Softw Syst Model (2013) 12:229–244
DOI 10.1007/s10270-010-0183-7

SPECIAL SECTION PAPER

Event-B patterns and their tool support

Thai Son Hoang · Andreas Fürst ·
Jean-Raymond Abrial

Received: 15 June 2010 / Revised: 11 November 2010 / Accepted: 17 November 2010 / Published online: 4 January 2011
© Springer-Verlag 2010

Abstract Event-B has given developers the opportunity
to construct models of complex systems that are correct-
by-construction. However, there is no systematic approach,
especially in terms of reuse, which could help with the con-
struction of these models. We introduce the notion of design
patterns within the framework of Event-B to shorten this
gap. Our approach preserves the correctness of the models,
which is critical in formal methods and also reduces the prov-
ing effort. Within our approach, an Event-B design pattern is
just another model devoted to the formalisation of a typical
sub-problem. As a result, we can use patterns to construct a
model which can subsequently be used as a pattern to con-
struct a larger model. We also present the interaction between
developers and the tool support within the associated RODIN
Platform of Event-B. The approach has been applied success-
fully to some medium-size industrial case studies.
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1 Introduction

The purpose of our investigation here is to study the
possibility of reusing models in formal modelling. Currently,
formal methods are applicable to various domains for con-
structing models of complex systems. However, often they
lack some systematic methodological approaches, in partic-
ular, in reusing existing models, for helping the development
process. The objective in introducing design patterns within
formal methods, in general, and in Event-B, in particular, is
to overcome this limitation.

The idea of design patterns in software engineering is to
have a general and reusable solution to commonly occur-
ring problems. In general, a design pattern is not necessarily
a finished product, but rather a template on how to solve
a problem which can be used in many different situations.
Design patterns are further populated in object-oriented
programming [14]. The idea is to have some predefined
solutions, and incorporate them into the development with
some modification and/or instantiation. We want to bring
this idea into formal methods and, in particular, to Event-
B. Moreover, the typical elements that we want to reuse
are not only the models themselves, but also (more impor-
tantly) their correctness in terms of proofs associated with
the models. In our earlier investigations [5,11,16] and [10,
Sect. 5.4.1], we have already worked on several exam-
ples to understand the usefulness and applicability of the
approach. We summarise this work and its formalisation in
this article.

Our contribution here is the methodology for reusing
existing models in Event-B. Our approach allows developers
to reuse any existing models (which we call “design pat-
terns”) in a way that preserves the correctness of models,
hence we can save effort on not only modelling but also on
proving these models correct.
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230 T. S. Hoang et al.

The examples that we used in this article are models
for communication protocols [23]. Note that, however, the
approach is general and its applicability is not limited to this
domain.

The structure of the article is as follows. Section 2 gives
a short introduction to Event-B. Section 3 presents a case
study to illustrate the motivation for our approach. Section 4
gives an overview of the formalisation of the approach in
Event-B. The list of patterns which are used in our industrial
case studies is presented in Sect. 5. Section 6 describes our
prototype tool supporting the approach. Finally, in Sect. 7 we
review related work and point out future directions.

2 The Event-B modelling method

Event-B [2] represents a further evolution of the B-method
[1], which has been simplified and is now centered around
the general notion of events, also found in Action Systems
[6] and TLA [17].

An Event-B [2] model is a collection of modelling ele-
ments that are stored in a repository. When presenting our
models, we will do so in a pretty-print form, e.g. adding
keywords and following a certain layout convention to aid
parsing. We proceed like this to improve legibility and help
the reader to remember the different constructs of Event-B.
The syntax should be understood as a convention for pre-
senting Event-B models in textual form rather than defining
a language.

Event-B models are described in terms of the two basic
constructs: contexts and machines. Contexts contain the static
part of a model whereas machines contain the dynamic part.
Contexts may contain carrier sets, constants and axioms,
where carrier sets are similar to types [4]. In this article, we
simply assume that there is some context and do not men-
tion it explicitly. Machines are presented in Sect. 2.1, and
machine refinement in Sect. 2.2.

2.1 Machines

Machines provide behavioural properties of Event-B mod-
els. Machines may contain variables, invariants, and events.1

Variables v define the state of a machine. They are con-
strained by invariants I (v). Possible state changes are
described by means of events. Each event is composed of
a guard G(v) and an action S(v).2 The guard states the nec-
essary condition under which an event may occur, and the
action describes how the state variables evolve when the event

1 Machine can also contain a variant for proving convergence proper-
ties, but it is not of our interests in this article.
2 For simplicity, we do not treat events with parameters.

occurs. An event can be represented by the following form

evt =̂ when G(v) then S(v) end (1)

The short form

evt =̂ begin S(v) end (2)

is used if the guard always holds. A dedicated event of the
form (2) is used for initialisation.

The action of an event is composed of several assignments
of the form

x := E(v) (3)

x :∈ E(v) (4)

x :| Q(v, x ′), (5)

where x are some variables, E(v) expressions, and Q(v, x ′)
a predicate. Assignment form (3) is deterministic, the other
two forms are non-deterministic. Form (4) assigns x to an
element of a set, and form (5) assigns to x a value x ′ satis-
fying a predicate. The effect of each assignment can also be
described by a before–after predicate BAP:

BAP (x := E(v))
∧= x ′ = E(v) (6)

BAP (x :∈ E(v))
∧= x ′ ∈ E(v) (7)

BAP
(

x :| Q(v, x ′)
) ∧= Q(v, x ′). (8)

A before–after predicate describes the relationship between
the state just before an assignment has occurred (represented
by unprimed variable names x) and the state just after the
assignment has occurred (represented by primed variable
names x ′). All assignments of an action S(v) occur simulta-
neously which is expressed by conjoining their before–after
predicates, yielding a predicate A(v, x ′). Variables y that do
not appear on the left-hand side of an assignment of an action
are not changed by the action. Formally, this is achieved by
conjoining A(v, x ′) with y′ = y, yielding the before–after
predicate of the action:

BAP (S(v))
∧= A(v, x ′) ∧ y′ = y. (9)

Later, in proof obligations, we represent the before–after
predicate BAP(S(v)) of an action S(v) directly by the pred-
icate S(v, v′).

Proof obligations serve to verify certain properties of a
machine. Here, a proof obligation is presented in the form of
a sequent: “hypotheses” � “goal”. The intuitive meaning of
this sequent is that under the assumption of the hypotheses,
the goal holds.

For each event of a machine, the following proof obligation
which guarantees feasibility must be proved.
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I (v)

G(v)�
∃v′ · S(v, v′)

FIS

By proving feasibility, we achieve that S(v, v′) provides
an after state whenever G(v) holds. This means that the guard
indeed represents the enabling condition of the event.

Invariants are supposed to hold whenever variable values
change. Obviously, this does not hold a priori for any
combination of events and invariants and, thus, needs to
be proved. The corresponding proof obligation is called
invariant preservation:

I (v)

G(v)

S(v, v′)�
I (v′)

INV

Similar proof obligations are associated with the initialisation
event of a machine. The only difference is that the invari-
ant and guard do not appear in the antecedent of the proof
obligations (FIS) and (INV).

2.2 Machine refinement

Machine refinement provides a mean to introduce more
details about the dynamic properties of a model [4]. For
more on the well-known theory of refinement, we refer
to the Action System formalism [6] that has inspired the
development of Event-B. We present some important proof
obligations for machine refinement.

A machine C M can refine at most one other machine
AM . We call AM the abstract machine and C M the con-
crete machine. The state of the abstract machine is related
to the state of the concrete machine by a gluing invariant
J (v,w), where v are the variables of the abstract machine
and w the variables of the concrete machine.

Each event ea of the abstract machine is refined by one or
more concrete events ec. Let abstract event ea and concrete
event ec be:

ea =̂ when G(v) then S(v) end

ec =̂ when H(w) then T (w) end

Somewhat simplified, we can say that ec refines ea if the
following conditions hold.

1. The concrete event is feasible. This is formalised by the
following proof obligation.

I (v)

J (v,w)

H(w)

�
∃w′ ·T(w,w′)

FIS_REF

2. The guard of ec is stronger than the guard of ea. This is
formalised by the following proof obligation.

I (v)

J (v,w)

H(w)

�
G(v)

GRD

3. The abstract event can always “simulate” the concrete
event and preserve the gluing (concrete) invariant. This
is formalised by the following proof obligation.

I (v)

J (v,w)

H(w)

T(w,w′)�
∃v′ · S(v, v′) ∧ J (v′, w′)

SIM

For the initialisation, the corresponding proof obligations
are analogue. The proofs of these above obligations ensure
the correctness of the refinement model with respect to the
abstract model and the gluing invariant between them.

In the course of refinement, often new events ec are
introduced into a model. New events must be proved to refine
the implicit abstract event skip that does nothing.

skip =̂ begin skip end

Moreover, it may be proved that new events do not collec-
tively diverge, but this is not relevant here. The new events
allow us to observe the system with a finer time grain. This
is an analogue of the stuttering principle in TLA [17]: a step
that leaves the abstract variables unchanged.

3 Question/Response protocol

In this section, we look at the development of a protocol,
namely Question/Response in order to understand what we
mean by design patterns and how to apply them in system
development. Section 3.1 first gives an informal descrip-
tion of the protocol together with its formal specification
in Event-B, then identifies similar fragments of the formal
model that leads to the idea of using patterns. In Sect. 3.2
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we formally present a pattern, namely synchronous multi-
ple message communication, including its specification and
refinement. Finally, we illustrate how the pattern is reused
(twice) in our development of the actual Question/Response
protocol in Sect. 3.3.

3.1 Description and formal specification

There are two parties participating in this protocol namely
the Questioner and the Responder. The protocol consists of
an unbounded number of rounds. For each round, there are
two steps as follows.

1. The Questioner sends a question to the Responder.
2. After receiving this question, the Responder sends a

response back to the Questioner.

Formally, we can use two variables to represent the state
of the protocol: quest to denote the number of questions that
have been asked, and resp to indicate the number of responses
that have been given. The first invariant QuestResp_0_1
specifies that the number of responses is a natural number and
the second invariant, i.e. QuestResp_0_2 specifies that the
communication is synchronous: either the number of ques-
tions is the same as the number of responses or it is greater
than the number of responses by 1— in the case where a
response is expected before another question can be created.

variables: quest, resp

invariants:
QuestResp_0_1: resp ∈ N

QuestResp_0_2: quest = resp ∨ quest = resp + 1

Initially, there are no questions or responses hence both vari-
ables are initialised to 0.

init
begin

quest, resp := 0, 0
end

The dynamic system can be seen in Fig. 1. For each round,
the “questioning” phase starts when the number of questions
and the number of responses are identical and increases the
number of questions by 1. The “responding” phase starts after
the “questioning” phase of the same round (when the number
of questions and responses are different) and increases the
number of responses by 1. This is formalised by the following
two events, namely questions and responds, representing
the two phases accordingly.

Fig. 1 Question/Response protocol with two rounds

questions
when

quest = resp
then

quest := quest + 1
end

responds
when

quest �= resp
then

resp = resp + 1
end

The specification of the above two events are very similar,
except for their guards. The two events both correspond to
transferring some information from one side to another and
can be repeated; however, the communication is synchro-
nous: a new message can be sent only when the last mes-
sage has been received. We call this kind of communication
synchronous multiple message communication. Hence, if we
have a development for this type of communication (to be for-
malised in the next section), we can instantiate it twice: once
for the “questioning” phase and once for the “responding”
phase.

3.2 Synchronous multiple message communication

This section presents the development of a communication
between two parties A and B for transferring some informa-
tion repeatedly and synchronously from A to B.

The specification of this protocol contains only one natu-
ral number variable trans to denote the number of messages
that have been transferred.

variables: trans

invariants:
SynchMultiCom_0_1: trans ∈ N

There is only one event in this model to increase the value
of variable trans denoting the fact that a message has been
transferred from A to B.
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Event-B patterns and their tool support 233

transfers
begin

trans := trans + 1
end

This synchronous multiple message communication is illus-
trated in Fig. 2.

However, this is only the abstraction of this protocol (it
might be even too abstract in the sense that it does not spec-
ify how communication happens, e.g. synchronous vs. asyn-
chronous). In reality, the message needs to be sent via some
channel between the two parties. This is illustrated in Fig. 3.
Here, the diagram is about different parties (not states) and
messages sent between them.

We use three variables to represent the state of the refine-
ment.

– snds: the number of messages having been sent by A.
– rcvs: the number of messages having been received by B.
– chan: since there is at most one message on the chan-

nel, we use a Boolean value to denote the existence of a
message on the channel.

At this point, we have a decision to make about refine-
ment of the abstract event transfers. It could be refined by
the event corresponding to “sends” or it could be refined by
the event corresponding to “receives”. We presented here the
refinement of event transfers when sending, but the other
alternative is also possible. As a result of this choice, we
have the following gluing invariant.

invariants:
SynchMultiCom_1_1: trans = snds

We also have additional technical invariants about the prop-
erties of the protocol. First, if there is no message on the chan-
nel, the number of sent and received messages are the same.
Second, if there is a message on the channel, then the number
of sent messages is greater than the number of received mes-
sages by exactly 1. These two invariants correspond to the

Fig. 2 Synchronous multiple message communication

Fig. 3 Communication via a channel

“synchronous” communication behaviour. Finally, the num-
ber of received messages must be a natural number.

invariants:
SynchMultiCom_1_2: chan = F ⇒ snds = rcvs
SynchMultiCom_1_3: chan = T ⇒ snds = rcvs + 1
SynchMultiCom_1_4: rcvs ∈ N

Initially, there are no messages that have been sent,
received or are in the channel.

init
begin

snds := 0
rcvs := 0
chan := F

end

Events sends and receives are straightforward as follows.

sends
refines transfers
when

chan = F
then

chan := T
snds := snds + 1

end

receives
when

chan = T
then

chan := F
rcvs := rcvs + 1

end

Event sends is enabled if there is no message in the channel.
The action of the event specifies that A now sent one more
message and the message is in the channel. Event receives
is enabled when there is a message in the channel. The action
of the event removes the message from the channel and indi-
cates that B has received one more message. Note that event
receives here is a new event (i.e. it refines skip).

3.3 Using the pattern for the protocol

In this section, we see how the pattern developed in Sect. 3.2
is used for developing the Question/Response protocol of
Sect. 3.1. There are four steps as follows.

1. We need to “match” the specification of the pattern with
the problem.

2. We need to “syntactically check” the matching to see if
the pattern is applicable.

3. We have to “rename” those variables and events in the
pattern refinement that would lead to a name clash (since
we can instantiate the same pattern many times). We can
also “rename” non-conflicting variables and events if we
like to.

4. Lastly, we “incorporate” the renamed refinement of the
pattern to create a refinement of the problem.
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As mentioned before, we can instantiate the synchro-
nous multiple message communication pattern twice for
the Question/Response protocol: once for the “questioning”
phase and a second time for the “responding” phase.

3.3.1 Pattern for “questioning” phase

We follow the different steps to incorporate a synchronous
multiple message communication pattern for the “question-
ing” phase as follows.

1. As a first step we need to identify the “matching” between
the specification of the pattern and the problem. The
matching here is straightforward with variable trans and
event transfers of the pattern matched with variable
quest and event questions of the problem accordingly.

pattern � problem

trans � quest
transfers � questions

2. The second step is to syntactically check the validity of
the pattern. For example, we need to check that given
the variable matching trans � quest, the action of event
transfers is “matched” with the action of questions.
This should be done automatically by a tool. At the
moment, we can assure ourselves that this step is valid.
More information about this step can be seen in Sect. 6.2
when we discuss about tool support.

3. The third step is to rename the variables and events of
the pattern refinement according to the following rules.

original � renamed as

snds � QQuestSnds
chan � Q2RQuestChan
recv � RQuestRcvs

sends � Q_sends_question
receives � R_receives_question

4. In the last step, we incorporate the renamed refinement
of the pattern to create a refinement of the problem. The
result is the following model.

variables: resp,

QQuestSnds,
RQuestRcvs,
Q2RQuestChan

invariants:
QuestResp_1_1: quest = QQuestSnds
QuestResp_1_2: Q2RQuestChan = F ⇒

QQuestSnds = RQuestRcvs

QuestResp_1_3: Q2RQuestChan = T ⇒
QQuestSnds = RQuestRcvs + 1

QuestResp_1_4: RQuestRcvs ∈ N

init
begin

resp := 0
Q2RQuestChan := F
RQuestRcvs := 0
QQuestSnds := 0

end

Q_sends_question
refines questions
when

QQuestSnds = resp
Q2RQuestChan = F

then
Q2RQuestChan := T
QQuestSnds = QQuestSnds + 1

end

R_receives_question
when

Q2RQuestChan = T
then

Q2RQuestChan := F
RQuestRcvs := RQuestRcvs + 1

end

responds
refines responds
when

QQuestSnds �= resp
then

resp := resp + 1
end

There are a number of important aspects of the pattern
which we want to draw the readers’ attention.

– The matching between event transfers and event
questions is not exact.

transfers
begin

trans := trans + 1
end

questions
when

quest = resp
then

quest := quest + 1
end
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Taking into account the matching of the variables, i.e.
trans becomes quest, only the actions of those events are
matched. The guard of event questions does not corre-
spond to any guard of event transfers.

– The additional guard of event questions, i.e. quest =
resp is transformed into the guard QQuestSnds = resp
of event Q_sends_question in the resulting refinement,
because variable quest is matched with variable trans of
the pattern and this variable is subsequently refined to
QQuestSnds, according to the invariant QuestResp_1_1.

QuestResp_1_1: quest = QQuestSnds

– Similarly, the guard of event responds, i.e. quest �= resp,
needs to take into account the fact that variable quest now
becomes QQuestSnds.

– The rewriting of these additional guards is done automat-
ically by the tool support.

3.3.2 Pattern for “responding” phase

We now follow similar steps to use the synchronous multiple
message communication pattern for the “responding” phase.

1. The matching is as follows

pattern � problem

trans � resp
transfers � responds

2. Similarly, we assure that the syntax checking for the
given matching is successful.

3. We rename the refinement of the pattern according to the
following rules.

original � renamed as

snds � RRespSnds
chan � R2QRespChan
rcvs � QRespRcvs

sends � R_sends_response
receives � Q_receives_response

4. We incorporate the renamed pattern refinement with the
problem to obtain the following model.

variables: QQuestSnds,
RQuestRcvs,
Q2RQuestChan,

RRespSnds,
QRespRcvs,
R2QRespChan

invariants:
QuestResp_2_1: resp = RRespSnds
QuestResp_2_2: R2QRespChan = F ⇒

RRespSnds = QRespRcvs

QuestResp_2_3: R2QRespChan = T ⇒
RRespSnds = QRespRcvs + 1

QuestResp_2_4: QRespRcvs ∈ N

init
begin

Q2RQuestChan := F
RQuestRcvs := 0
QQuestSnds := 0
R2QRespChan := F
QRespRcvs := 0
RRespSnds := 0

end

Q_sends_question
refines Q_sends_question
when

QQuestSnds = RRespSnds
Q2RQuestChan = F

then
Q2RQuestChan := T
QQuestSnds = QQuestSnds + 1

end

R_receives_question
refines R_receives_question
when

Q2RQuestChan = T
then

Q2RQuestChan := F
RQuestRcvs := RQuestRcvs + 1

end

R_sends_response
refines responds
when

QQuestSnds �= RRespSnds
R2QRespChan = F

then
R2QRespChan := T
RRespSnds := RRespSnds + 1

end

Q_receives_response
when

R2QRespChan = T
then

R2QRespChan := F
QRespRcvs := QRespRcvs + 1

end

Again, we highlight some important aspects of our pattern
application at this step.
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– Similar to the previous pattern application in Sect. 3.3.1,
the matching between event transfers and event
responds are not exact: there is an additional guard in
event responds.

– This guard of event responds, i.e. QQuestSnds �= resp
needs to take into account the fact that variable resp is
matched with variable trans of the pattern specification
and this variable is later refined to RRespSnds. This guard
is transformed into the guard QQuestSnds �= RRespSnds
of the resulting event R_sends_response. Similarly, for
the guard of Q_sends_question.

– These guards are in fact “cheats” in the model. Event
Q_sends_question supposes to be an event of the Ques-
tioner; however, its guard refers to variable RRespSnds
of the Responder. The same analysis applies for event
R_sends_response and variable QQuestSnds. This
problem will be handled by a standard refinement step
in the next section.

3.3.3 Removing the “cheating” guards

The problem that we mentioned earlier about the “cheating”
guards is better known as local enforceability [9]. Roughly
speaking, on the abstraction level, the global interactions
between partners are specified in a way that it might not
be enforced during real local implementation without having
more additional interactions between the different partners.
In our case, it is not possible for the Questioner to have access
to the information belonging to the Responder: currently,
event Q_sends_question has access to variable RRespSnds
of the Responder. In this section, we fix this problem by add-
ing more information on how the two partners interact with
each other.
The cheating guards, i.e.

QQuestSnds �= RRespSnds

for event R_sends_response can be replaced by the fol-
lowing guard which uses only variables of the Responder:

RQuestRcvs �= RRespSnds.

The proof for the guard strengthening obligation (GRD) is
based on the following invariant QuestResp_3_1 (which we
need to add to the model).

invariants:
QuestResp_3_1: RQuestRcvs ≥ RRespSnds

The reasoning is as follows:

– From the new guard RQuestRcvs �= RRespSnds and the
new invariant RQuestRcvs ≥ RRespSnds, we have

RQuestRcvs > RRespSnds. (10)

– We conclude from the existing invariants QuestResp_1_2
and QuestResp_1_3 that

QQuestSnds ≥ RQuestRcvs. (11)

– From (10) and (11), we conclude that QQuestSnds >

RRespSnds, which ensures QQuestSnds �= RRespSnds,
as required.

This step is a standard refinement in Event-B. Intuitively,
the new invariant links the questioning and responding phases
together and is the core of the Question/Response protocol.

Similarly, the guard QQuestSnds = RRespSnds of
event Q_sends_question is replaced by QQuestSnds =
QRespRcvs. The refined events Q_sends_question and
R_sends_response at their final form are as follows.

Q_sends_question
refines Q_sends_question
when

QQuestSnds = QRespRcvs
Q2RQuestChan = F

then
Q2RQuestChan := T
QQuestSnds = QQuestSnds + 1

end

R_sends_response
refines R_sends_response
when

RQuestRcvs �= RRespSnds
R2QRespChan = F

then
R2QRespChan := T
RRespSnds := RRespSnds + 1

end

Note that we can consider also the guard referring to the
channels, i.e. R2QRespChan = F and Q2RQuestChan = F
as not locally enforceable, hence should be removed. How-
ever, this is not of our interest here.

Overall, this (standard) refinement step where we impose
the policy for local enforceability cannot be done automati-
cally by a tool: this corresponds to how the protocol is con-
structed and is usually protocol dependent.

4 Pattern incorporation in Event-B

In this section, we summarise the idea of incorporating pat-
terns into Event-B developments. The process can be seen in
Fig. 4.

First of all, in our notion, a pattern is just a development
in Event-B including specification p0 and a refinement p1.3

3 In general, this can be extended to multiple refinement level.
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Fig. 4 Using patterns in Event-B

During a normal development in Event-B, at refinement mn ,
developers can match part of the model with the pattern spec-
ification p0. As a result of this matching, the refinement p1

can be incorporated to create the refinement mn+1 of mn

(with possible “renaming” to avoid name clashes).
Moreover, we have presented here the incorporation of

each synchronous multiple message communication pattern
separately. However, it is possible that they could be incor-
porated at the same time. In other words, there can be more
than one pattern that can be matched at the same time with
the problem at hand. There are side conditions to guarantee
that the patterns do not interfere with each other, e.g. there
should be no matching to the same variable.

4.1 Formalisation of the approach

We assume that we have the following patterns containing
a specification p0 and its refinement p1. We further assume
that the pattern specification p0 has some variables v with
invariant J (v). We consider a particular event p with guard
L(v) and some actions v :| T (v, v′).

variables: v
invariants:

J (v)

p =̂ when L(v) then v :| T (v, v′) end

In the refinement p1 of p0, variable v is data refined by
variable w with gluing invariant separated into v = X (w)

and K (v,w). Here, we make the assumption that the gluing
invariant can be functionally expressed as v = X (w) with
some other extra invariants K (v,w). This assumption is valid
for all our examples so far and could be relaxed later. Event

p is refined by event q with concrete guard M(w) and some
actions w :| U (w,w′).

variables: w

invariants:
v = X (w)

K (v,w)

q =̂ when M(w) then w :| U (w,w′) end

We assume that we have arrived at a refinement level in a
particular development which we call problem specification
mn . The machine has some variables b which we intend to
match with the above pattern. Moreover, this problem speci-
fication could have some other variables c which we have to
keep when incorporating the pattern into the development.
We do not need to consider the invariant for this machine
hence this is left out.

variables: b, c

e
when

H(b)

N (b, c)
then

b :| R(b, b′)
c :| S(b, c, c′)

end

f
when

G(b, c)
then

c :| P(b, c, c′)
end

Without loss of generality, we consider two events of the
problem specification: event e which is going to be matched
with event p of the pattern specification, and event f which
is not going to be matched. Event e is separated into the
parts which are matched with event p of the pattern spec-
ification, taken into account the decision that variable b is
matched with variable v of the pattern specification. Here, we
say that every variable in the pattern need to be matched with
some variable in the problem. However, this condition can be
relaxed to make the approach more flexible (see future work
in Sect. 7.3). Hence, the guard of the event is separated into
H(b) and N (b, c), where H(b) is matched with guard L(v)of
event p. Similarly, the action is separated into b :| R(b, b′)—
which is a match of v :| T (v, v′)— and c :| S(b, c, c′). The
validity of this matching can be syntactically checked and/or
even be “discovered” by a tool. For the unmatched event f,
we require that it must not change variable b, hence its action
is of the form c :| P(b, c, c′). However, it can refer to b in
the guard and in the action (only as reference to the before
state). The preservation of this restriction will be checked
by the supporting tool (more information in Sect. 6.2). The
matching and the extraction from the gluing invariant can be
summarised as follows.
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pattern � problem

v � b
p � e

L(v) � H(b)

v :| T (v, v′) � b :| R(b, b′)

The refinement mn+1 of mn is generated by combining the
problem specification and the pattern refinement as follows.

variables: w, c

invariants:
b = X (w)

K (b, w)

J (b)

e
when

M(w)

N (X (w), c)
then

w :| U (w,w′)
c :| S(X (w), c, c′)

end

f
when

G(X (w), c)
then

c :| P(X (w), c, c′)
end

We must guarantee that the constructed machine mn+1

is indeed a refinement of the specification mn . The detailed
proofs are in [11, Sect. 4.5]. Intuitively, the proofs assume
the correctness of the problem specification mn , the pattern
specification p0 and the pattern refinement p1 in order to
prove the correctness of the problem refinement mn+1. The
obligation list includes feasibility, guard strengthening and
simulation for both events e and f.

As an example, we sketch the proof for guard strengthen-
ing obligation of event e which is stated as follows.

b = X (w)

K (b, w)

J (b)

M(w)

N (X (w), c)
�

H(b) ∧ N (b, c)

The proof of the above sequent can be split into two parts
since the goal is a conjunction.

b = X (w)

K (b, w)

J (b)

M(w)

N (X (w), c)
�

H(b)

(12)

b = X (w)

K (b, w)

J (b)

M(w)

N (X (w), c)
�

N (b, c)

(13)

The second part of the proof (13) for proving N (b, c) fol-
lows from the assumptions b = X (w) and N (X (w), c). The
first part (12) of the proof relies on the fact that event q is a

refinement of event p in the pattern, hence we have proved
the guard strengthening obligation for q, namely.

J (v)

v = X (w)

K (v,w)

M(w)

�
L(v)

Moreover, from the matching information v is matched with
b and guard H(b) is matched with L(v) (i.e. H and L are syn-
tactically the same), we can derive (with renaming variable
from v to b) the following.

J (b)

b = X (w)

K (b, w)

M(w)

�
H(b)

and from there we can conclude the proof for (12).

4.2 What we gain with the pattern approach

So far, it seems that we have to do more work in order to
apply patterns: we have to develop the pattern separately and
incorporate it into the main development. But we do have the
following advantages.

– We do not need to prove that mn+1 is a refinement of mn .
This is because we have already done this proof when
developing patterns.

– Moreover, we can reuse the pattern more than once. For
example, in the development of the Question/Response
protocol, we use the synchronous multiple message com-
munication pattern twice, so we save doing proofs for one
pattern.

– Since the pattern is just a normal Event-B development,
the meaning of the pattern is also intuitive. Moreover, we
can use any development as pattern in our approach.

The proof statistics related to the synchronous multiple
message communication and Question/Response protocol is
given in Table 1. As we can see, by developing the syn-
chronous multiple message communication pattern sepa-
rately, we have to prove 15 obligations. However, we do not
need to prove the model “Question/Response 1” and “Ques-
tion/Response 2” (which has a total of 32 obligations) since it
is correct by construction. Hence, in total, we save 32−15, i.e.
17 proofs. Note that the number of proof obligations for each
model “Question/Response 1” and “Question/Response 2” is
roughly the same as that of “Synch. Multi. Com. 1”, since in
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Table 1 Proof statistics

Models Total Auto. (%) Man. (%)

Synch. Multi. Com. 0 2 2 (100) 0 (0)

Synch. Multi. Com. 1 13 12 (92) 1 (8)

Question/Response 0 6 5 (83) 1 (17)

Question/Response 1 16 15 (94) 1 (6)

Question/Response 2 16 15 (94) 1 (6)

Question/Response 3 5 4 (80) 1 (20)

each model we apply the pattern once. The development of
the two protocols is available on-line [13].

5 Patterns used in industrial case studies

Our approach has been applied to formalise communication
protocols from SAP. The examples are Buyer/Seller B2B as
described in [23] and Ordering/Supply Chain A2A Communi-
cations as described in [10, Section 5.3.3]. Table 2 shows the
proof statistics comparing the developments without patterns
and with patterns for the two case studies. More importantly,
our approach save on average of the two case studies 33%
of the manual proofs (those that need interactive efforts to
discharge).

In this section, we give the description of other patterns
that have been used in these protocols.

– Section 5.1 presents the Single Message Communication
pattern.

– Section 5.2 presents the Request/Confirm pattern.
– Section 5.3 presents the Request/Confirm/Reject pattern.
– Section 5.4 presents the Asynchronous Multiple Message

Communication pattern.
– Section 5.5 presents the Asynchronous Multiple Message

Communication with Repetition pattern.

Table 2 Case studies’ proof statistics (with vs. without pattern)

Models/savings Total Auto. (%) Man. (%)

A2A (without pattern) 281 249 (89%) 32 (11%)

A2A (with pattern) 184 164 (89%) 20 (11%)

Savings 97 85 (88%) 12 (12%)

Savings percentage 35% 34% 38%

B2B (without pattern) 498 427 (86%) 71 (14%)

B2B (with pattern) 342 291 (85%) 51 (15%)

Savings 156 136 (87%) 20 (13%)

Savings percentage 31% 32% 28%

Fig. 5 Single Message Communication pattern

5.1 Single Message Communication pattern

The description of the pattern is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.
There is a message sent from the Sender to the Receiver. If
we denote the status of the protocol by a single variable trans,
the (abstract) protocol can be seen in Fig. 5. In the refinement,
the message is transferred via a channel between the Sender
and the Receiver.

5.2 Request/Confirm pattern

The description of the protocol is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.
The protocol contains two phases:

1. In the first phase, the Sender sends a request to the
Receiver.

2. In the second phase, upon receiving the request, the
Receiver sends a confirmation back to the Sender.

Using two Boolean variables req and conf to represent the
state, the protocol can be illustrated as in Fig. 6. The develop-
ment of this pattern used the single message communication
pattern (described in Sect. 5.1) twice. These two patterns are
used as illustrative examples in our earlier report [16].

5.3 Request/Confirm/Reject pattern

The description of the protocol is as follows. There are two
parties involved in the protocol, namely Sender and Receiver.
The protocol also contains two phases:

1. In the first phase, the Sender sends a request to the
Receiver.

2. In the second phase, after receiving this request, the
Receiver can either send a “confirmation” back to the

Fig. 6 Request/Confirm pattern
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Sender if he agrees; or the Receiver sends a “rejection”
back to the Sender if he does not agree.

Using three Boolean variables req, conf and rej to repre-
sent the state, the protocol can be seen in Fig. 7.

The development of this pattern used the single message
communication pattern (described in Sect. 5.1) three times.

5.4 Asynchronous Multiple Message Communication
pattern

The description of the protocol is as follows. There are
two parties involved in this protocol, namely Sender and
Receiver.

1. The Sender can send many messages (multiple message)
to the Receiver.

2. The messages are different, in other words, there is no
resend.

3. To distinguish the freshness of the message, each mes-
sage is stamped with a sequence number.

4. The Receiver can only receive new messages.
5. The Receiver can discard any message.

5.5 Asynchronous Multiple Message with Repetition
Communication pattern

The description of the protocol is as follows. There are
two parties involved in this protocol, namely Sender and
Receiver.

1. The Sender can send many messages (multiple message)
to the Receiver.

2. The messages can be the same, in other words, messages
could be resent.

3. To distinguish the freshness of the message, each mes-
sage is stamped with a sequence number.

4. The Receiver can receive any message which is not old.

Fig. 7 Request/Confirm/Reject pattern

5. The Receiver can discard any message.

The only difference compared to the asynchronous mul-
tiple message communication (no repetition) pattern is that
here messages can be resent.

6 Tool support

We have implemented our prototype for supporting our
approach as a plug-in for the RODIN Platform [3] which is
an open source platform based on Eclipse. The plug-in pro-
vides a wizard taking users through different steps of apply-
ing patterns, namely, matching, syntax checking, renaming
and incorporating.

6.1 Matching

The tool assists developers in inputting the matching between
the problem and the specification. This includes a dialog for
the developers to choose the matching between variables and
events. Moreover, in some cases, we need to also match the
context information, i.e. carrier sets and constants which can
also be chosen through the wizard page (in fact, this “match-
ing context” is better known as generic instantiation in Event-
B [4]). Information about this matching can be persistently
saved for reuse later. A screen-shot of the wizard page for
this step is in Fig. 8.

6.2 Syntax checking

In this step, the tool needs to check the consistency of the
matching provided by the user in the previous steps. The
consistency checking at this step includes:

– For events matched with some events in the pattern, we
need to check the signature of these events against the
corresponding pattern events.

– For remaining (unmatched) events, we need to check that
they do not modify the matched variables (as mentioned
earlier in Sect. 4.1).

A screen-shot of the relevant wizard page is in Fig. 9.

6.3 Renaming

The tool assists developers in inputting renaming patterns.
This includes a dialog for the developers to give renaming
pattern of variables and events. Consistency (e.g. name clash)
for this renaming is verified at this step. A screen-shot of the
renaming wizard page is in Fig. 10.
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Fig. 8 First step. Matching

Fig. 9 Second step. Syntax checking

6.4 Incorporating

Finally, the tool generates the refinement of the problem
according to the input in the previous steps. In order to incor-
porate the refinement of the pattern into the development, the
tool needs to extract information from the gluing invariant
on how the abstract variables v in the pattern are refined.

Fig. 10 Third step. Renaming

Fig. 11 Fifth step. Incorporating

Usually, the information is of the form v = X (w). At the
moment this information is also entered manually by the user
in the wizard. A screen-shot of the wizard page for the incor-
porating step is in Fig. 11.

7 Conclusion

We have presented an approach for reusing formal models
as patterns in Event-B. During a development, patterns can
be discovered by either identifying the part of the model
matched by existing patterns, or by recognising similar
elements of the model which could be developed separately
as a new pattern themselves.
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Even though we presented in Sect. 4.1 a formalisation
of our approach when there is only a single refinement step
in the pattern development, the approach is also valid when
there are multiple refinement steps. This is the same as apply-
ing patterns step by step for each level of refinement. Since
refinement is monotonic, the final resulting model will be a
refinement of the original model. Practically, only the last
refinement model of the pattern’s refinement-chain is incor-
porated in the development. This is already supported by our
tool presented in Sect. 6. This feature allows us to reuse
our formal models more flexibly, for example, using the
question/response protocol in the development of the A2A
Communications [10, Section 5.3.3].

7.1 Scalability

We have applied our approach to two medium-size case
studies from SAP, namely the Buyer/Seller B2B [23] and
Ordering/Supply Chain A2A Communications [10, Section
5.3.3]. However, our approach is general and is not restricted
to this specific domain. The efforts on modelling and proving
are replaced by specifying how patterns are identified and
incorporated into the development. Our experiments show
that this process is scalable. In particular, the patterns can be
nested, i.e., a pattern can be used to develop another pattern,
which then can be reused in a larger development.

So far, our patterns are quite specific since they arose from
some domain-specific problems that we are trying to solve.
More general patterns can be “parameterised” by some car-
rier sets and constants, which can be “instantiated” upon
application to a problem (see our discussion on future work in
Sect. 7.3). This makes the patterns more reusable in distinct
problems within different contexts.

Finally, tool support is important for making our approach
scalable. Our aim is to have as less interaction from the user
as possible by providing different assistances for users when
using the tool. Our initial experiments with the implemented
tool support is encouraging.

7.2 Related work

Design patterns are well-known concepts in object-oriented
programming, in particular, in the work of the Gang-of-Four
(GoF) [14]. In their work, each pattern is usually represented
by some informal description and some diagram in UML.
There is no formal semantics associated with patterns, hence
the meanings of these patterns are imprecise. There is some
work on formalising these classic software design patterns
in different formal notations, e.g., using predicate logic [7],
using TLA+ [22], using DisCo [18]. In these papers, the first
step is to give some formal meaning to the pattern before the
verification of its correctness can take place. This also needs
to be done for any newly defined pattern. To overcome this

problem, one needs to give some formal semantics to the
diagrams used to define patterns. LePUS3 [15] is designed
precisely for this purpose. However, verification in LePUS3
emphasises on the consistency between a specification (dia-
gram) and a program. In our opinion, this is quite different
from using patterns consistently to design the future system.

Our approach is related to decomposition [8,4] where
developers can separate a model into sub-models and can
subsequently refine these sub-models independently. The
similarity with our approach is when some of the sub-models
already exist as some off-the-shelve components (patterns).
In this case the advantage of reusing is similar; however,
decomposition is not intended for reusing.

Another related work to ours is the “automatic refinement
tool” [19]. Our patterns are just formal models which encode
some design decisions about refining some abstract models.
However, the automatic refinement tool still requires proofs
in order to make sure that the proposed refinement is correct.
This approach does not necessarily preserve correctness.

Comparing with classical B [1], reusing of components is
facilitated by the INCLUDES clause in the specification level
and IMPORTS clause at the implementation level to compose
different components. In order to reuse the same components
several times, classical B supports a renaming mechanism
by prefixing the name of the included/imported components
with some certain identifier. In our approach, we allow the
user to specify the renaming of the pattern, but it could also be
done systematically with a prefixing mechanism. The main
difference between our approach and the including/import-
ing mechanism is that the including/importing mechanism
does not support incorporation refinement, i.e. only reuse of
the specification of the pattern is possible.

In Z [21], schemas can be reused conveniently by
combining together using operators of the schema calculus.
Moreover, instances of schema can be created by schema ref-
erencing mechanisms which include both generic construc-
tions and renaming. Similar to classical B, this technique
allows reusing of a single specification component only.

7.3 Future work

As for future work, we intend to implement the missing
features from the current prototype plug-in for the RODIN
Platform, e.g. syntax checking and support for extract-
ing information from the pattern refinement. The current
documentation for tool support is at the Event-B wiki doc-
umentation system [12]. At the same time, we are going to
investigate more examples in other domains that could benefit
from our approach.

Furthermore, we also need to “instantiate” the context of
the pattern development. In our examples so far, the contexts
of the pattern and the problem are the same. However, we
would like to use the patterns in a more general context. For
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example, the model of the communication for transferring a
certain (abstract) message should be instantiated for any kind
of (concrete) message, e.g., if the message is just a Boolean
value, or if the message contains some numbers or some
complicated data structure. This requires the context of the
pattern to be instantiated accordingly. Generic instantiation
[4] is a more general concept and could be used in associa-
tion with other applications, for example with shared-event
composition as shown in [20].

As mentioned before, it is not necessarily the case that all
the variables of the pattern need to be matched with some
variables in the problem. It could be the case that only a part
of the variables needs to be matched or even none of them,
which corresponds to the case where we do superposition
refinement [4]. This makes the approach more flexible.

Moreover, we have specifically chosen to have the
“syntax checking” rather than raising proof obligations when
applying patterns. In the future, if this turns out to be too
restrictive, we can choose to generate the corresponding
proof obligations, again for more flexibility. Note that if a pat-
tern matching can be syntactically checked successfully, the
proof obligations generated should be trivial to be discharged.
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