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Abstract We compare two estimates of the cumulant generating function of a
stationary linear process. The first estimate is based on the empirical moment
generating function. The second estimate uses the linear representation of the pro-
cess and the empirical moment generating function of the innovations. Asymptotic
expressions for the mean square errors are derived under short- and long-range
dependence. For long-memory processes, the estimate based on the linear repre-
sentation turns out to have a better rate of convergence. Thus, exploiting the linear
structure of the process leads to an infinite gain in asymptotic efficiency.

Keywords Empirical moment generating function · Long-range dependence ·
Short-range dependence.

1 Introduction

Consider the problem of estimating the marginal distribution function FX(x) =
P(Xi ≤ x) of a stationary linear stochastic process

Xi =
∞∑

j=0

ajεi−j (1)
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where
∑
a2
j < ∞, εi are iid with distribution Fε, E(εi) = 0, σ 2

ε = var(εi) < ∞
and such that all cumulants of εi exist. Suppose moreover that the cumulant gen-
erating function

�X(t) = log mX(t) (2)

is finite for t ∈ (−T , T ) where T > 0 is some constant and mX(t) = E(etX) is
the moment generating function. Then FX is fully specified by �X. The standard
estimates of mX(t) and �X(t) are

mX,n(t) = 1

n

n∑

i=1

etXi (3)

and

�X,n(t) = log mX,n(t), (4)

respectively (see e.g. Csörgő, 1982; Ghosh, 1996, 1999; Ghosh and Beran, 2000
and references therein). On the other hand, if Xi is a linear process, then

mX(t) =
∞∏

j=0

mε(aj t) (5)

and

�X(t) =
∞∑

j=0

log mε(aj t) =
∞∑

j=0

�ε(aj t). (6)

Thus, denoting by

mε,n(t) = 1

n

n∑

i=1

etεi (7)

the empirical moment generating function of εi , alternative estimates ofmX(t) and
�X(t) can be defined by

m̂X(t) =
Nn∏

j=0

mε,n(aj t) (8)

and

�̂X(t) =
Nn∑

j=0

logmε,n(aj t) =
Nn∑

j=0

�ε,n(aj t), (9)

respectively. Here, Nn is a sequence of integers such that 1 ≤ Nn ≤ ∞ and
Nn → ∞ as n → ∞. Note that an analogous approach can also be based on
the characteristic function (see e.g. Feuerverger and Mureika, 1977; Csörgő, 1981,
1986; Murota and Takeuchi, 1981; Ghosh and Ruymgaart, 1992 for asymptotic
results and ideas based on the empirical characteristic function).
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Note that in practice, observations consist ofX1, . . . , Xn whereas the sequence
εi is not known directly. Thus, to make �̂X(t) applicable, it must be possible to esti-
mate the εi’s from X1, . . . , Xn with sufficient accuracy. In particular, invertibility
conditions on the coefficients aj need to be imposed to obtain an autoregressive
representation εi = ∑∞

j=0 bjXi−j . Estimated residuals may then be defined, for

instance, by ε̂i = ∑i−1
j=0 bjXi−j (i = 1, . . . , n− 1).

For more sophisticated residual estimates based on finite past predictions see
e.g. Haslett and Raftery, 1989; Brockwell and Davis, 1987. In this paper, the inno-
vations εi (i = 1, . . . , n) are assumed to be known or estimated with sufficient
accuracy. The case where innovations are estimated is discussed briefly in Sect. 5.
A detailed study of the effect of different estimation techniques on �X(t) would be
beyond the scope of this paper and will be discussed elsewhere.

The main focus here is on the comparison of the two estimates �X,n(t) and
�̂X(t) with respect to the mean squared error. In contrast to �X,n(t), the alternative
estimate �̂X(t) exploits the additional information of linearity. It may therefore
be conjectured that �̂X(t) could be more efficient than �X,n(t) for an appropriate
choice of Nn. This question is investigated as follows: In Sect. 2, expressions for
the asymptotic bias, variance and mean squared error of �X,n are given. Analo-
gous results for �̂X(t) are derived in Sect. 3. These results lead, in Sect. 4, to an
asymptotically optimal choice of Nn and a comparison of the mean squared errors
(MSEs)

MSE(�X,n(t)) = E[(�X,n(t)− �X(t))
2] (10)

and

MSE(�̂X(t)) = E[(�̂X(t)− �X(t))
2]. (11)

In particular, we focus on the case of long-memory processes, since there the
difference between the two estimates becomes most pronounced. As it turns out,
for long-memory processes with

lim
j→∞

aj

Cjd−1
= 1 (12)

for some C > 0 and 0 < d < 1
2 , exploiting the linear structure of the process leads

asymptotically to an infinite increase in efficiency. In other words, if Nn tends to
infinity at a rate that is neither too fast nor too slow, then MSE(�X,n(t))/MSE(�̂X(t))
tends to infinity as n → ∞. The optimal rate ofNn is obtained by balancing the bias
of �̂X(t), which is due to truncation of the sum in Eq. (6) at Nn and the variance,
which is due to summing up an increasing number Nn of random variables.

Nonparametric kernel estimation of the marginal density functions of a long-
memory process is considered in recent papers by Wu and Mielniczuk (2002),
Honda (2000), Csörgő and Mielniczuk (1995) and Hall and Hart (1990). Also see
Dehling and Taqqu (1989) and Giraitis and Surgailis (1999) for related results on
the empirical distribution function. For kernel estimates, the optimal bandwidth
depends on the unknown long-memory parameter and the density function in a
complex manner. The significance of the results presented here is that alternative
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and more efficient estimates may be obtained by estimating the cumulant generat-
ing function of the innovation process and subsequent back-transformation. This
may open up the possibility of applying kernel density estimation to the innova-
tions εi using well-known bandwidth selection procedures for independent data,
(see e.g. Silverman, 1986 and references therein; Hall, 1993; Engel et al. 1994),
and plugging the corresponding estimate of mε(t) into Eq. (6). From this, an esti-
mated density of the observed process Xi may be calculated by inverse Laplace
transformation. This is of particular interest for long-memory data where it is not
known at present how to obtain an optimal bandwidth for a direct kernel density
estimate.

2 Asymptotic results for �X,n(t)

2.1 Asymptotic bias

Throughout the paper, mX(t) will be assumed to be twice continuously differen-
tiable and Xi is a linear process defined by Eq. (1). By definition, the empirical
moment generating functionmX,n is unbiased. The asymptotic bias of �X,n follows
directly by Taylor expansion under fairly general conditions:

Lemma 1 Suppose that mX,n(t) converges in the L2-norm to mX(t). Then

�X,n(t) = �(t)+ mX,n(t)−mX(t)

mX(t)
− 1

2
m−2
X (t){mX,n(t)−mX(t)}2 + r1 (13)

with r1 = op{(mX,n(t)−mX(t))
2}, and

Bias(�X,n(t)) = E[�X,n(t)] − �X(t) = 1

2
m−2
X (t)var(mX,n(t))+ r2 (14)

with r2 = o{var(mX,n(t))}.
The proof is obvious and is therefore omitted.

2.2 Asymptotic variance and MSE

To evaluate the asymptotic variance of mX,n and �X,n(t), two different situtations
are characterized by the following assumptions:

A1 (short memory): There exist constants 0 < C < ∞, 0 < ϕ < 1 such that

|aj | ≤ Cϕj (15)
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A2 (long memory): There exist constants 0 < C < ∞, 0 < d < 1
2 such that

lim
j→∞

aj

Cjd−1
= 1 (16)

Assumption A1 implies short memory with |γ (k)| = |cov(Xi,Xi+k)| ≤ Aϕ|k| for
some constant 0 < A < ∞, and a spectral density

fX(λ) = σ 2
ε

2π

∣∣∣∣∣∣

∞∑

j=0

aj exp(ijλ)

∣∣∣∣∣∣

2

that converges to a finite positive constant at the origin. The latter can also be
expressed by limλ→0 f (λ)λ

2d = cf with d = 0 and 0 < cf < ∞. These properties
hold, for instance, for stationary ARMA processes. Assumption A2 implies long
memory with slowly decaying aucotocovariances characterized by

lim
|k|→∞

γ (k)

C2|k|2d−1
= 1. (17)

In particular,
∑∞

k=−∞ γ (k) = ∞ and for the spectral density we have limλ→0 fX

(λ)λ2d = cf , i.e. f has a hyperbolic pole at the origin. Best known examples are frac-
tional ARIMA (or FARIMA) models (Granger and Joyeux, 1980; Hosking, 1981)
and fractional Gaussian noise (Mandelbrot and Wallis, 1969). For an overview on
long-memory processes see e.g. Beran (1994).

The asymptotic variance of mX,n(t) and �X,n(t) is given by the following two
propositions.

Proposition 1 Under A1, we have, as n → ∞,

lim
n→∞ n var(mX,n(t)) = v(t) (18)

with

v(t) =
∞∑

k=−∞






∞∏

j=0

mε(t (aj + aj+k))
k−1∏

j=0

mε(taj )−m2
X(t)




 (19)

and

lim
n→∞ n var(�X,n(t)) = m−2

X (t)v(t) (20)

Proposition 2 Under A2, we have, as n → ∞,

lim
n→∞ n

1−2d var(mX,n(t)) = w(t) (21)

with

w(t) = C2σ 2
ε t

2m2
X(t){

∫ ∞
0 xd−1(1 + x)d−1dx − [2(1 − 2d)]−1}

d(2d + 1)
(22)

and

lim
n→∞ n

1−2d var(�X,n(t)) = m−2
X (t)w(t). (23)
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The rate of convergence of var(�X,n) is discussed in a proceedings paper by Ghosh
(2003). Propositions 1 and 2 provide explicit expressions for the asymptotic vari-
ance. Detailed proofs are given in Appendix. Note, in particular, that under long-
range dependence the variance converges to zero at a rate slower than n−1. This
phenomenon is well known for long-memory processes (see e.g. Taqqu, 1975;
Giraitis and Surgailis, 1985, 1999; Beran, 1991, 1994). Together with Lemma 1,
we also obtain the rate of convergence for the bias of �X,n(t).

Corollary 1 As n → ∞ the following holds

1. Under A1,

Bias(�X,n(t)) = E[�X,n(t)] − �X(t) = O(n−1) (24)

2. Under A2,

Bias(�X,n(t)) = E[�X,n(t)] − �X(t) = O(n2d−1). (25)

Finally, the asymptotic expression for theMSE(�X,n(t)) = E[(�X,n(t)− �X(t))2]
follows from the decompositionMSE = Bias2(�X,n(t))+Var(�X,n(t)). Lemma 1
and Propositions 1 and 2 imply that the MSE is dominated asymptotically by the
variance. Thus, we have

Proposition 3 As n → ∞, the following holds:

1. Under A1,

lim
n→∞ nMSE(mX,n(t)) = v(t) (26)

and

lim
n→∞ nMSE(�X,n(t)) = m−2

X (t)v(t) (27)

with v(t) defined in Proposition 1;
2. Under A2,

lim
n→∞ n

1−2d MSE(mX,n(t)) = w(t) (28)

and

lim
n→∞ n

1−2d MSE(�X,n(t)) = m−2
X (t)w(t) (29)

with w(t) defined in Proposition 2.
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3 Asymptotic results for �̂X(t)

3.1 Asymptotic bias

The bias of mε,n is zero and the bias of �ε,n(t) is of the order of the variance
of �ε,n(t) (see Lemma 1). The bias of �̂X(t) depends on the rate of decay of the
coefficients aj .

Theorem 1 Under A1 we have, as n → ∞,

Bias(�̂X(t)) = E[�̂X(t)] − �X(t) = O(max(n−1, ϕ2Nn)) (30)

A different result is obtained for slowly decaying correlations.

Theorem 2 Under A2 we have, as n → ∞,

lim
n→∞N

1−2d
n Bias(�̂X(t)) = lim

n→∞N
1−2d
n {E[�̂X(t)] − �X(t)} = B(t) (31)

with

B(t) = − C2σ 2
ε t

2

2(1 − 2d)
. (32)

3.2 Asymptotic variance

The asymptotic variance of �̂X(t) follows from the covariances ofmε,n(t) and �ε,n(t)
together with the asymptotic behaviour of the coefficients aj and the properties of
mε(t) near the origin. Asymptotic expressions for the covariances of mε,n(t) and
�ε,n(t), respectively are well known (see e.g. Csörgő, 1982; Ghosh, 1996, 1999;
Ghosh and Beran, 2000 and references therein):

Lemma 2 If εi are iid with existing finite moment generating functionmε(t), then

cov(mε,n(t),mε,n(s)) = n−1{mε(t + s)−mε(t)mε(s)} (33)

and

g(t, s) = cov(�ε,n(t), �ε,n(s)) = n−1

{
mε(t + s)

mε(t)mε(s)
− 1

}
+ rn(t, s) (34)

where rn(t, s) = o(g(t, s)).

This implies

Theorem 3 As n → ∞, we have

vn = var(�̂X(t)) = An(t)+ r(t, Nn) (35)

with r(t, Nn) = o(An) and

An(t) = n−1
Nn∑

i,j=0

{
mε(t (ai + aj ))

mε(tai)mε(taj )
− 1

}
. (36)
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Since An may or may not converge to a finite constant, this result does not yet tell
us the rate of convergence of vn.

For short-memory processes we then have

Theorem 4 Under A1,

lim
n→∞ nvn = A(t) (37)

with

A(t) =
∞∑

i,j=0

{
mε(t (ai + aj ))

mε(tai)mε(taj )
− 1

}
, 0 < A(t) < ∞. (38)

The analogous result for long-memory processes is

Theorem 5 Under A2,

lim
n→∞ nN−2d

n vn = D(t) (39)

with

D(t) = C2t2σ 2
ε

d2
(40)

These results, together with the expressions for the bias, imply that the role of the
bias in the MSE is fundamentally different for the cases of long and short memory,
respectively: For short memory, the square of the bias is of smaller order than the
variance so that the MSE is asymptotically equal to the variance. In contrast, under
long memory, the square of the bias may be asymptotically of the same order as the
variance or it may be smaller or larger, depending on the order of Nn/n. Note, in
particular, that under long memory, the variance is proportional to n−1N2d

n instead
of n1−2d . This will make it possible to choose Nn such that the MSE is of smaller
order than the one for �X,n. More specifically we have

Theorem 6 Under A1,

lim
n→∞ nMSE(�̂X(t)) = A(t) (41)

with A(t) as in Theorem 4.

Theorem 7 Under A2,

MSE(�̂X(t)) = B2(t)N4d−2
n +D(t)N2d

n n
−1 + o(max(N4d−2

n , N2d
n n

−1)) (42)

where B(t) and D(t) are defined in Theorems 2 and 5, respectively.
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4 Asymptotically optimal Nn and MSE under long memory

Theorem 7 implies an asymptotically optimal choice of Nn under long memory.
Assume that Nn = βnα . Then minimization of B2N4d−2

n +DN2d
n n

−1 with respect
to α and β yields

Corollary 2 Under A2, the optimal choice of Nn is

Nn = βn1/(2−2d) (43)

with

β =
(

C2t2d

4(1 − 2d)

)1/(2−2d)

(44)

The resulting asymptotically optimal MSE is given by

MSEopt(�̂X(t)) = Mn(2d−1)/(1−d) + o(n(2d−1)/(1−d)) (45)

with

M = B2β4d−2 +Dβ2d (46)

Note that the optimal rate ofNn is such that the contribution of the bias and the var-
iance to the MSE are of the same order. This is similar to results in nonparametric
smoothing.

We now can compare the asymptotic MSE of the two estimators �X,n(t) and
�̂X(t):

Corollary 3 Let Nn = βnα with 1
2 < α < 1. Then under A2, there are constants

0 < δ < ∞ and 0 < q(t) < ∞ such that

lim
n→∞ n

−δ ·
{

MSE(�X,n(t))

MSEopt(�̂X(t))

}
= q(t). (47)

In particular, for Nn = βn1/(2−2d),

δ = d(1 − 2d)

1 − d
. (48)

This result means that the relative asymptotic efficiency of �X,n(t) as compared to
�̂X(t) is zero, with a hyperbolic rate of deterioration, provided that Nn diverges to
infinity slower than n but faster than

√
n. The intuitive reason is that �̂X(t) uses

the additional information of linearity. The variance is kept low by not adding too
many random terms, each of them having a square root n rate of convergence. The
bias is kept low by adding a sufficient number of terms. The optimal choice of Nn
keeps a balance between bias and variance such that their contribution to the MSE
is of the same order. This possibility of optimization disappears for short-memory
processes, since there the variance is of order n−1 and dominates the MSE, inde-
pendently of the choice of Nn. This can also be seen in the expression for δ. As d
tends to 0, δ tends to zero as well. On the other hand, for d tending to 1/2, we also
have δ → 0. The reason is that for d close to 1/2, the bias due to leaving out terms
in the infinite series (6) increases. The optimal number of terms is proportional to
n1/(2−2d) which approaches n as d tends to 1/2. As a result, the improvement by
using a finite slowly increasing number of terms in �̂X(t) disappears.
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5 Estimating innovations

The results above are derived under the assumption that εi and the coefficients aj
are known. For observed time series, the innovations εi are not observable directly
but must be calculated from the observed seriesXi, and the coefficients aj (j ≥ 0)
have to be estimated. Here, we discuss the general idea how to proceed in this case.

Suppose that Xi is an invertible linear process given by Eq. (1). Then there are
uniquely defined coefficients bj such that

εi =
∞∑

j=0

bjXi−j . (49)

Estimation of bj can be done, for instance, by applying a flexible class of parametric
models for the spectral density function fX. For example, we may consider frac-
tional ARIMA-models given by Granger and Joyeux (1980) and Hosking (1981)

(1 − B)dφ(B)Xi = ψ(B)εi (50)

where − 1
2 < d < 1

2 , B is the backshift operator, the polynomials φ(z) = 1 −∑p

j=1 φjz
j and ψ(z) = 1 + ∑q

j=1 ψjz
j have no roots with |z| ≤ 1 and

(1 − B)d =
∞∑

j=0

(
d
j

)
(−B)j .

Here, we have

fX(λ) = fX(λ; θ) = σ 2
ε

2π
|ψ(e−iλ)/φ(e−iλ)|2|1 − eiλ|−2d

where θ = (σ 2
ε , d, φ1, . . . , φp, ψ1, . . . , ψq).Given p and q, the unknown param-

eter vector θ can be estimated by Whittle’s estimator or another (approximate)
Gaussian maximum likelihood method. Giraitis and Surgailis (1990) showed that,
even if Xt is non-Gaussian, this estimate is consistent and a central limit theorem
holds under standard regularity conditions. Given estimates b̂j = bj (θ̂), εi may
thus be estimated by

ε̂i =
i−1∑

j=0

b̂jXi−j . (51)

An alternative, more precise, estimate can be given by

ε̂i =
i−1∑

j=0

b̂jXi−j + µ̂i (52)

where µ̂i is the best linear forecast (into the past) of
∑∞

j=i b̂jXi−j givenX1, . . . , Xn.

A detailed study of the effect of different approximations ε̂i on the MSE of �X(t)
would be beyond the scope of this paper and will be pursued elsewhere.
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6 Simulations

The results are illustrated by a small simulation study. For d = 0.1, 0.2, 0.3 and
0.4, 2,000 replicated series of lengths n = 25, 50, 100, 200, 400, 800, 1,000, 1,200,
1,400, 1,600, 1,800 and 2,000 of a stationary FARIMA(0,d,0) process (Granger
and Joyeux, 1980; Hosking, 1981)

(1 − B)dXi = εi (53)

were generated, with (a) εi iid N(0, σ 2
ε ) distributed, and (b) εi = ξi − 1/2 where

ξi are iid exponential with expected value 1/2. For each value of d, the simulated
ratio of the MSEs qn = MSE(�X,n)/MSEopt(�̂X) was calculated. In Fig. 1a–d, the
simulated values log qn(t) for case (a) are plotted against log n. The same plots
for case (b) are given in Fig. 2a–d. As expected from the theoretical results, the
simulated values log qn are scattered approximately around an increasing straight
line. Using sample sizes of n = 1,000 and larger, the fitted least squares slopes and
the theoretical asymptotic values are reasonably close (see Tables 1, 2). Note also
that all y coordinates are above zero, even for n = 25. This indicates that even for
small sample sizes the estimate based on the linear representation is more efficient.
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Fig. 1 Plot of qn = MSE(�X,n)/MSE(�̂X) versus log n. For each value of d = 0.1, 0.2, 0.3, 0.4
and n = 25, 50, 100, 200, 400, 800, 1,000, 1,200, 1,400, 1,600, 1,800 and 2,000, the results
are based on 2,000 simulations of a fractional ARIMA(0, d, 0) process with standard normal
innovations εi
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Fig. 2 Plot of qn = MSE(�X,n)/MSE(�̂X) versus log n. For each value of d = 0.1, 0.2, 0.3,
0.4 and n = 25, 50, 100, 200, 400, 800, 1,000, 1,200, 1,400, 1,600, 1,800 and 2,000, the
results are based on 2,000 simulations of fractional ARIMA(0, d, 0) process with innovations
εi = ξi − 1/2 and ξi independent exponential random variables with expected value 1/2

Table 1 Least squares slopes δsim fitted to log qn versus log nwhere qn = MSE(�X,n)/MSE(�̂X)
and d = 0.1, 0.2, 0.3, 0.4. The theoretical asymptotic slopes are δ = d(1 − 2d)/(1 − d). The
simulated process is a fractionalARIMA(0, d, 0) process of length n =1,000, 1,200, 1,400, 1,600,
1,800 and 2,000 respectively, with standard normal innovations εi

δsim δ

d = 0.1 0.10 0.09
d = 0.2 0.14 0.15
d = 0.3 0.16 0.17
d = 0.4 0.06 0.13

Table 2 Least squares slopes δsim fitted to log qn versus log nwhere qn = MSE(�X)/MSE(�̂X,n)
and d = 0.1, 0.2, 0.3, 0.4. The theoretical asymptotic slopes are δ = d(1 − 2d)/(1 − d).
The simulated process is a fractional ARIMA(0, d, 0) process of length n = 1,000, 1,200,
1,400, 1,600, 1,800 and 2,000 respectively, with innovations εi = (ξi −1/2) and ξi independent
exponential random variables with expected value 1/2

δsim δ

d = 0.1 0.07 0.09
d = 0.2 0.15 0.15
d = 0.3 0.17 0.17
d = 0.4 0.15 0.13
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Appendix: Proofs

Proof of Proposition 1
By definition of mX,n, we have

var(mX,n(t)) = n−1
n−1∑

k=−(n−1)

(
1 − |k|

n

)
γe(k; t)

with γe(k; t) = γe(−k; t), and for k ≥ 0,

γe(k; t) = cov(etX1, etX1+k ) = E[et (X1+X1+k)] −m2
X(t)

= E



exp




t
∞∑

j=0

(aj + aj+k)ε1−j








E



exp




t
k−1∑

j=0

aj ε1+k−j








 −m2
X(t)

=
∞∏

j=0

mε(t (aj + aj+k))
k−1∏

j=0

mε(taj )−m2
X(t).

Now,

log






∞∏

j=0

mε(t (aj + aj+k))
k−1∏

j=0

mε(taj )




 =
∞∑

j=0

log mε(t (aj + aj+k))

+
k−1∑

j=0

log mε(taj ).

As k → ∞, aj+k → 0 and

mε(t (aj + aj+k)) = mε(taj )+m′
ε(taj )taj+k +m′′

ε (taj )
(taj+k)2

2
+ rk(t)

with |rk| ≤ c|taj+k|2 for some c > 0. Hence,

∞∑

j=0

log mε(t (aj + aj+k)) =
∞∑

j=0

log mε(taj )+
∞∑

j=0

m′
ε(taj )

mε(taj )
taj+k + R(t).

Since aj → 0 as j → ∞, |m′
ε(taj )/mε(taj )| is bounded from above by a

constant M. Under assumption A1, it follows that
∣∣∣∣∣∣

∞∑

j=0

m′
ε(taj )

mε(taj )
taj+k

∣∣∣∣∣∣
≤ |t |M

∞∑

j=0

φj+k ≤ Dφk

for a constant 0 < D < ∞.
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Also, noting that m′
ε(0) = 0, we have

k−1∑

j=0

log mε(taj ) = log mX(t)− (σεt)
2

2

∞∑

j=k
{a2
j + uj (t)}

with uj (t) = o(a2
j ). Hence, under A1,

∣∣∣∣∣∣

k−1∑

j=0

log mε(taj )− log mX(t)

∣∣∣∣∣∣
≤ const φk

(σεt)
2

2

∞∑

j=k
{φj + uj (t)}.

Putting these results together leads to γe(k; t) ≤ Aφk for some constant 0<A<∞.
It then follows by standard arguments that v(t) exists, 0 < v < ∞ and Eqs. (18),
(19) and (20) hold. The result for �X,n follows by Taylor expansion.

Proof of Proposition 2

γe(k; t) =
∞∏

j=0

mε(t (aj + aj+k))
k−1∏

j=0

mε(taj )−m2
X(t)

= a(t, k)−m2
X(t)

Consider

b = log a(t; k) =
∞∑

j=0

log mε(taj + taj+k)+
k−1∑

j=0

log mε(taj )

Since taj+k → 0 →, as k → ∞, and mε ∈ C2(−T , T ) for some T > 0, we have

mε(taj + taj+k) = mε(taj )

(
1 + m′

ε(taj )

mε(taj )
taj+k + rj,k(t)

)

where |rj,k(t)| ≤ sup|u|≤M(t) |m′′(u)|t2a2
j with M(t) = max |taj |, and

log mε(taj + taj+k) = log mε(taj )+ m′
ε(taj )

mε(taj )
taj+k + r∗

j,k(t)

where rj,k(t) = o(aj+k) uniformly in j . Hence

∞∑

j=0

log mε(taj + taj+k) =
∞∑

j=0

log mε(taj )+
∞∑

j=0

m′
ε(taj )

mε(taj )
taj+k + Rk(t)

where Rk is of smaller order than the other terms in the equation. Furthermore,

mε(taj ) = 1 + 1

2
m′′
ε (0)(taj )

2 + uj (t) = 1 + σ 2
ε

2
t2a2

j + uj (t)

and

m′
ε(taj ) = σ 2

ε taj + u∗
j (t)
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with uj = o(a2
j ) and u∗

j = o(aj ). By assumption A2, aj + k = C(j +k)d−1 +
o(kd−1), as k → ∞, so that

∞∑

j=0

log mε(taj + taj+k) = log mX(t)+ σ 2
ε t

2
∞∑

j=0

ajaj+k + R∗
k (t)

= log mX(t)+ σ 2
ε t

2C2
∞∑

j=1

(jd−1 + o(jd−1))(j + k)d−1

+ o(k2d−1)

= log mX(t)+k2d−1σ 2
ε t

2C2
∞∑

j=1

(
j

k

)d−1 (
j

k
+ 1

)d−1 1

k

+ o(k2d−1)

= log mX(t)+ A1k
2d−1 + o(k2d−1)

with

A1 = σ 2
ε t

2C2
∫ ∞

o

xd−1(1 + x)d−1dx.

Similarily,

k−1∑

j=0

log mε(taj ) =
∞∑

j=0

log mε(taj )−
∞∑

j=k
log mε(taj )

= log mX(t)−
∞∑

j=k
log mε(taj )

= log mX(t)−
∞∑

j=k

σ 2
ε

2
t2a2

j + rk

= log mX(t)− σ 2
ε

2
t2C2

∞∑

j=k
j 2d−2 + r∗

k

= log mX(t)− k2d−1 σ
2
ε

2
t2C2

∫ ∞

1
x2d−2dx + r∗∗

k

= log mX(t)− A2k
2d−1 + r∗∗

k

with

A2 = σ 2
ε

2(1 − 2d)
t2C2

Putting the results together yields

b = 2 log mX(t)+ (A1 − A2)k
2d−1 + o(k2d−1),

a = eb = m2
X(t)[1 + (A1 − A2)k

2d−1] + o(k2d−1)
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and

γe(k; t) = Ak2d−1 + o(k2d−1)

with

A = C2σ 2
ε t

2m2
X(t)

[∫ ∞

o

xd−1(1 + x)d−1 − 1

2(1 − 2d)

]

As a result, we have (see e.g. Taqqu, 1975; Beran, 1994),

var(mX,n(t)) = A

d(2d + 1)
n2d−1 + o(n2d−1)

and

var(�X,n(t)) = A

d(2d + 1)
m−2
X (t)n

2d−1 + o(n2d−1).

Proof of Theorem 1
From

Bε,n(t) = E[�ε,n(t)] − �ε(t) = m−2
ε (t)var(mε,n(t))+ o{var(mε,n(t))}

we have

E[�̂X(t)] =
Nn∑

j=0

E[�ε,n(aj t)] =
Nn∑

j=0

{�ε(aj t)+ Bε,n(aj t)}

=
∞∑

j=0

�ε(aj t)−
∞∑

j=Nn+1

�ε,n(aj t)+
Nn∑

j=0

Bε,j (aj t)

and

Bias = E[�̂X(t)] − �X(t) = −
∞∑

j=Nn+1

�ε(aj t)+
Nn∑

j=0

Bε,j (aj t)

= −
∞∑

j=Nn+1

�ε(aj t)+ n−1
Nn∑

j=0

m−2
ε (aj t){mε(2aj t)−m2

ε(aj t)} + r(Nn, n).

Since aj → 0 (j → ∞), we may replace mε by its Taylor expansion around zero
so that

m−2
ε (aj t){mε(2aj t)−m2

ε(aj t)} = 1 − 1 + 4σ 2
ε a

2
j t

2

2
− 2

σ 2
ε a

2
j t

2

2
+ o(a2

j )

= σ 2
ε a

2
j t

2 + o(a2
j t

2)

Since
∑∞

j=0 a
2
j < ∞, we have

∣∣∣∣∣∣
n−1

Nn∑

j=0

m−2
ε (aj t){mε(2aj t)−m2

ε(aj t)}
∣∣∣∣∣∣
≤ const n−1
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Moreover,

�ε(aj t) = σ 2
ε t

2

2
a2
j + o(a2

j t
2)

so that

−
∞∑

j=Nn+1

�ε(t) = −σ
2
ε t

2

2

∞∑

j=Nn+1

{a2
j + o(a2

j t
2)}.

Under A1, a2
j ≤ ϕ2j , which leads to the upper bound

∣∣∣∣∣∣

∞∑

j=Nn+1

�ε(aj t)

∣∣∣∣∣∣
≤ const

∞∑

j=Nn+1

ϕ2j ∼ const ϕ2Nn+1

Putting these results together leads to the upper bound for the bias of the order
O(max(n−1, ϕ2Nn)).

Proof of Theorem 2
As above,

∣∣∣∣∣∣
n−1

Nn∑

j=0

m−2
ε (aj t){mε(2aj t)−m2

ε(aj t)}
∣∣∣∣∣∣
≤ const n−1

However, for the first part of the bias term in Eq. (50) we obtain a different order
than in Theorem 1: Under A2, aj ∼ Cjd−1. Hence

∞∑

j=Nn+1

�ε(t) = σ 2
ε t

2

2

∞∑

j=Nn+1

{a2
j + o(a2

j t
2)} = C2σ 2

ε t
2

2

∞∑

j=Nn+1

{j 2d−2 + o(j 2d−2)}

= N2d−1
n

C2σ 2
ε t

2

2

∞∑

j=Nn+1

(
j

Nn

)2d−2 1

Nn
+ o(N2d−1

n )

= N2d−1
n

C2σ 2
ε t

2

2

∫ ∞

1
x2d−2dx + o(N2d−1

n )

= N2d−1
n

C2σ 2
ε t

2

2(1 − 2d)
+ o(N2d−1

n )

As a result, we have

Bias = E[�̂X(t)] − �X(t) = −N2d−1
n

C2σ 2
ε t

2

2(1 − 2d)
+ o(N2d−1

n )
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Proof of Theorem 3
Using Lemma 1 we have

var(�̂X(t)) = var




Nn∑

j=0

�ε,n(aj t)



 =
Nn∑

i,j=0

cov(�ε,n(ai t), �ε,n(aj t))

= n−1
Nn∑

i,j=0

{
mε(t (ai + aj ))

mε(tai)mε(taj )
− 1

}
+ r(n,Nn)

where r(n,Nn) is of smaller order than the first term in the last expression.

Proof of Theorem 4
Under A1,

∣∣∣∣∣∣

Nn∑

i,j=0

{
mε(t (ai + aj ))

mε(tai)mε(taj )
− 1

}∣∣∣∣∣∣
≤ t2

Nn∑

i,j=0

|ai ||aj | ≤ const t2 ·



∞∑

j=0

ϕj




2

< ∞

Proof of Theorem 5
Note that for t, s → 0,mε(t + s)/[mε(t)mε(s)] = 1 + σ 2

ε ts + o(ts). Then,
under A2

Nn∑

i,j=0

{
mε(t (ai + aj ))

mε(tai)mε(taj )
− 1

}
= C2t2σ 2

ε

∑Nn
i,j=1 i

d−1jd−1 + r(n,Nn)

and

C2t2σ 2
ε

Nn∑

i,j=1

id−1jd−1 = N2d
n C

2t2σ 2
ε

Nn∑

i,j=1

(
i

Nn

)d−1 (
j

Nn

)d−1 1

Nn

1

Nn

= N2d
n C

2t2σ 2
ε

(∫ 1

o

xd−1dx

)2

+ r∗(n,Nn)

= N2d
n C

2t2σ 2
ε d

−2 + r∗(n,Nn)

Proof of Corollary 2
The optimal value of α is obtained by plugging Nn = βnα in Theorem 7, and

setting the derivative with respect to α and β equal to zero.

Proof of Corollary 3
Let Nn = βnα. Then MSE(�̂X) = o{MSE(�X,n)} if and only if α(4d − 2) <

2d − 1 and 2αd − 1 < 2d − 1. This is equivalent to 1/2 < α < 1.
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