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Abstract Many complex diseases that are difficult to treat cannot be mapped onto
a single cause, but arise from the interplay of multiple contributing factors. In the
study of such diseases, it is becoming apparent that therapeutic strategies targeting a
single protein or metabolite are often not efficacious. Rather, a systems perspective
describing the interaction of physiological components is needed. In this paper, we
demonstrate via examples of disease models the kind of inverse problems that arise
from the need to infer disease mechanisms and/or therapeutic strategies. We identify
the challenges that arise, in particular the need to devise strategies that are robust
against variable physiological states and parametric uncertainties.
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1 Introduction

In recent years, there has been a shift away from the perspective of viewing dis-
eases as isolated physiological dysfunctions towards a network view of pathogenesis
(Liu and Lauffenburger 2009). There is an increasing awareness of the need for ush-
ering in a era of “model-based medicine” to supplement evidence-based medicine
(Zenker et al. 2007), including the use of biological knowledge together with patient-
specific data in stratifying patients for personalized therapy (Faratian et al. 2009).
Given a parametrized differential equations model of a disease, there has been a sig-
nificant amount of research effort looking into the inference of optimal therapeutic
strategies, ranging from: optimal drug administration (Lim and Teo 1989), chemo-
therapy (Swan 1984), multi-drug therapy (Magombedze et al. 2011), the control of
the hypothalamic–pituitary–adrenal (HPA) axis for the correction of chronic stress
syndrome (Ben-Zvi et al. 2009), the control of glucose regulation in diabetic patients
(Acikgoz and Diwekar 2010) and the identification of optimal drug combinations in
signaling and metabolic networks (Iadevaia et al. 2010; Yang et al. 2008).

However, much of the existing literature do not take into account the ill-posedness
inherent in the process of diagnosis (Zenker et al. 2007) as well as the subsequent
identification of appropriate therapeutic strategies (Yang et al. 2008). In particular,
the traditional approach of identifying an optimal solution under a given physiologi-
cal state and an assumed set of parameter values may give rise to misleading results
that fail to be consistent with the outcomes of clinical tests. The inaccuracy of model
predictions for disease treatments may arise from some combination of the following
factors:

– the relevant biology may not be completely known: for instance, in cancer models
not all of the relevant oncogenes and tumor suppressor nodes in the relevant signal-
ing pathway may have been found, giving rise to incomplete network topologies;

– given a network of fine granularity and broad coverage, the interaction strengths
of pathways components often cannot be fully determined from the available data,
resulting in parametric uncertainties due to the lack of practical or structural iden-
tifiability (Miao et al. 2011);

– the physiological states may vary significantly between individuals as well as
between cell types;

– drugs that affect the desired physiological process may also have unknown side-
effects, restricting their therapeutic windows.

These factors pose significant challenges to the use of modeling in biomedicine. In
order to counteract the lack of complete knowledge and quantitative data, we propose
the following set of strategies:

– formulation of inverse problems involving qualitative dynamics when detailed
quantitative knowledge is lacking;

– solving the robust counterpart of optimal treatment strategies when problem uncer-
tainties become important;

– application and development of appropriate regularization methods in managing
problem dependent side-effects and ill-posedness.
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Inverse problems from biomedicine 145

In Sect. 2, we propose inverse analysis of qualitative dynamics as a way to illu-
minate the task of disease treatment even when quantitative time-course data is not
readily available. This section serves to motivate the focus of the paper on qualitative
dynamics. In Sect. 3, we show some links between robustness and its approximations
via regularization strategies and propose some methods for treating identification prob-
lems under uncertainties. Results in this direction show that while the general robust
optimization problem is computationally challenging, one way to construct surrogate
approximations that approach the robustified version is via the use of regularization
methods. In Sect. 4, we show some illustrative examples of inverse problems in disease
identification and treatments, with the main goal being examining the effect of dif-
ferent regularization strategies and their possible implications on solution robustness
and sparsity. Finally, given that we have only taken the first steps in showing some
correspondence between robustness criteria and regularization and much remains to
be developed and understood, in Sect. 5 we point to some of the new challenges that
arise in tackling inverse problems from biomedicine.

2 Inverse problems for qualitative dynamics

Let us denote the dynamical system of interest as

ẋ(t) = f (x(t), α, γ ), (1)

where α ∈ R
m is the set of kinetic and physiological parameters, γ ∈ R

r are the
set of bifurcation or input parameters of interest. The distinction between these two
classes of parameters is usually made on a problem- and task-dependent basis; kinetic
parameter are those that play a role in regulating the system dynamics, while input
parameters are those that are primarily not under the control or regulation of the sys-
tem under study but to which the latter should respond in accordance. For instance, in
signaling models γ may play the role of ligand concentration that triggers a switch in
response.

As an example of a qualitative inverse problem (Lu et al. 2006; Engl et al. 2009),
let us consider the task of relocating the positions of limit-point bifurcation points
(Kuznetsov 2004) in a bistable switch system. While the transient dynamics may be
important for some biological phenomena, in many instances the steady-state behavior
discriminates between healthy and diseased states. For bifurcation points occurring
at abscissas γ1, γ2 (see Fig. 1 for an illustration), the system satisfies the following
conditions:

f (x, α, γ1) = f (x, α, γ2) = 0

det

(
∂ f

∂x
(x, α, γ1)

)
= det

(
∂ f

∂x
(x, α, γ2)

)
= 0.

(2)

Note that in Fig. 1 only a single state variable is plotted, while the state of the system
would almost always be multi-dimensional; in particular, x represents a measurable
biomarker of the system whose level is indicative of the healthy versus diseased states.
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Fig. 1 Illustration of a bistable system with 2 limit-point bifurcation points

In posing qualitative inverse problems, we assume that the input values at which the
system switches between states (i.e., γ1, γ2 in Fig. 1) and the relevant state component
indicative of such a switching can be measured; however, the kinetic parameters and
whole set of state variables need not be known. The locations of bifurcation points of
a biological system often have direct relevance to the physiological state and the need
to solve inverse problems associated with the geometry of bifurcation manifolds arise
in many situations:

– in modeling, the values of the input signal at which the system dynamics changes
in a qualitative manner may lead to valuable constraints for the model parameters
(Cedersund and Knudsen 2005);

– in trying to identify putative mechanisms underlying observed dynamic diseases
(Glass and Mackey 1979), solving inverse qualitative problems may allow one to
explore different hypotheses;

– in attempting to devise possible therapeutic strategies for diseases associated with
the control system crossing into an undesired dynamical regime, the optimal inter-
vention strategies for remedying the disease can be obtained solving the associated
inverse problems (Engl et al. 2009).

Given a dynamical system let F(·) denote the (forward) operator that maps a param-
eter set to the bifurcation structure, Γ . In the bistable example discussed here, the
bifurcation structure of interest could consist of the vector of abscissas for the two
bifurcation points, Γ = (γ1, γ2); more generally, Γ may encode the geometry of the
bifurcation. Given a desired bifurcation structure Γ ∗, starting from the (uncertain)
nominal parameter values α0, the inverse qualitative problem may be formulated in a
general manner as the following nonlinear operator equation: find α∗ ∈ R

m such that,

F(α∗) = Γ ∗. (3)

Once the α∗ has been derived, its difference from the nominal α∗ − α0 represents
the desired parameter change that one would wish to obtain from the pharmacologi-
cal intervention. For implementation details, see Lu et al. (2006) for a discussion on
gradient-based methods that move bifurcation points to desired locations. We remark
that in general, the inverse problem (3) suffers from the effects of ill-posedness (Engl
et al. 1996); for applications in biomedicine, the following are of special importance:
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Inverse problems from biomedicine 147

– the identified solution α∗ may be sensitive to perturbations δα: that is, ‖F(α∗ +
δα)− Γ ∗‖/‖δα‖ � 1;

– many solutions α∗ may exist, in which case one needs to select those out of the
solution set that are of the most interest: they are usually solutions involving
few non-zero components in α∗ − α0, where α0 is the nominal parameter set
that matches the nominal data/dynamics. Typically, sparse solutions can be more
easily checked experimentally or implemented as therapeutic strategies.

Therefore, one needs to apply and develop appropriate methods that can find the desired
balance between robustness and sparsity in the solutions to the inverse problems.

3 Regularization strategies

3.1 Incorporating robustness

We consider the problem of starting with a model that exhibits the nominal dynamical
characteristics (denoted as Γ 0) and we wish to identify a parameter set that gives rise
to the desired dynamics. In particular, due to the typical paucity of data in problems
of biomedicine we do not assume the parameters are identifiable (Miao et al. 2011)
and hence wish to account for the uncertainty in the nominal parameters. As stated in
Sect. 2, we assume the values of input parameters are known as well as component(s)
of the state which allows for the characterization of qualitative system dynamics. From
these and any additional quantitative data for the system, using parameter identifica-
tion methods we assume that at least one single parameter set α0 has been found that
matches the data up to a δ-tolerance, the estimated noise level. Hence, in terms of the
operator formalism described in Sect. 2, we have: ‖F(α0)−Γ 0‖ ≤ δ. However, typi-
cally α0 is not the only parameter set matching the given data: we denote by D(δ) the
set of all parameters matching the nominal dynamics up to δ-tolerance. By definition,
α0 ∈ D(δ) and,

‖F(α)− Γ 0‖ ≤ δ, ∀α ∈ D(δ). (4)

For the purpose of developing tight bounds below, ideally α0 should be close to the
centroid of the region D(δ).

Now we consider the inverse problem of identifying an α∗ that is mapped, via F(·),
to the desired dynamical characteristics Γ ∗. Note that the initial uncertainty region
D(δ) is mapped to the identified parameter, giving rise to the parametric uncertainty
of the form α∗ + (α̃ − α0) where α̃ ∈ D(δ). In the estimates derived below, we make
the assumption that the desired Γ ∗ is significantly beyond the initial uncertainty level,
‖Γ ∗ − Γ 0‖ � δ, hence a non-trivial parameter change is needed to bring about the
desired system dynamics.

In the idealized situation of no data noise and parametric uncertainties, we could
well identify the parameter change α∗ − α0 corresponding to a disease mechanism or
therapeutic strategy that underly or result in Γ ∗ respectively, by simply solving the
following minimization problem:
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α∗ ← arg min
α∈Rm

‖F(α)− Γ ∗‖. (5)

First of all, even in the stated idealized situation the solution α∗ may not be unique;
however, this usually does not pose a major impediment as one can simply select the
desirable ones from the identified solution set. A more important consideration is the
robustness (Hafner et al. 2009) of the solution:

– for the application of identifying putative disease mechanisms, it is likely that the
diseased state persists under variable physiological states;

– for identifying therapeutic strategies, one would like the intervention approach to
be effective under variable drug concentrations as well as various cell types.

This motivates us to solve the robust counterpart (Ben-Tal et al. 2009) to (5):

α∗RC ← arg min
α∈Rm

max
α̃∈D(δ)

‖F(α + (α̃ − α0))− Γ ∗‖, (6)

where α̃ is used to denote variations in the kinetic parameters, due to incomplete knowl-
edge. We define JRC (α) ≡ maxα̃∈D(δ) ‖F(α + (α̃ − α0)) − Γ ∗‖ as the robustified
objective function, the evaluation of which, in general, involves sampling over param-
eter sets. Below, we develop a bound for JRC (α) and show how an approximation of
the robust version has a correspondence with variational regularization.

We assume that F(·) is differentiable, hence by the mean-value theorem applied to
the path between α̃ and (α − α0)+ α̃ we have:

F((α − α0)+ α̃) = F(α̃)+
⎛
⎝

1∫
0

∇F(α̃ + c(α − α0))dc

⎞
⎠ · (α − α0). (7)

Therefore, using the error bound (4) and triangle inequality, we have the following
bound for the expression contained in (6),

∀α̃ ∈ D(δ) :
‖F(α + (α̃ − α0))− Γ ∗‖

≤ δ +
∥∥∥∥∥∥
⎛
⎝

1∫
0

∇F(α̃ + c(α − α0))dc

⎞
⎠ · (α − α0)− (Γ ∗ − Γ 0)

∥∥∥∥∥∥ . (8)

Let us examine the part of the above bound which has dependence on the parameter
uncertainty, α̃ ∈ D(δ). Define the uncertainty range of the Jacobian matrix as:

U(α) ≡
⎧⎨
⎩

1∫
0

∇F(α̃ + c(α − α0))dc | α̃ ∈ D(δ)

⎫⎬
⎭ . (9)
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Using the above, we have an upper-bound for JRC (α) as defined in (6):

JRC (α) ≤ δ + max
A∈U(α)

‖A · (α − α0)− (Γ ∗ − Γ 0)‖. (10)

Sinceα0 ∈ D(δ), by the mean-value theorem, Ā(α, α0) ≡ ∫ 1
0 ∇F(α0+c(α−α0))dc ∈

U(α) satisfies the following:

Ā(α, α0) · (α − α0) = F(α)− F(α0). (11)

Define ρ(α) as an upper bound for the Frobenius distance between members of the
set U(α) and Ā(α, α0): ‖u − Ā(α, α0)‖F ≤ ρ(α),∀u ∈ U(α). Using the above and
appealing to a result of robust least-squares (El Ghaoui and Lebret 1997), JRC (α) of
(6) may be bounded by:

JRC (α) ≤ δ + max
A∈{ Ā(α,α0)+ Ã|‖ Ã‖F≤ρ(α)}

‖A · (α − α0)− (Γ ∗ − Γ 0)‖

≤ δ + ‖ Ā(α, α0) · (α − α0)− (Γ ∗ − Γ 0)‖ + max
{ Ã|‖ Ã‖F≤ρ(α)}

‖ Ã · (α − α0)‖

≤ 2δ + ‖F(α)− Γ ∗‖ + max
{ Ã|‖ Ã‖F≤ρ(α)}

‖ Ã · (α − α0)‖

= 2δ + ‖F(α)− Γ ∗‖ + ρ(α)‖α − α0‖. (12)

In conclusion, we have shown that if the Jacobian uncertainty set U(α) is well-approx-
imated by { Ā(α, α0) + Ã | ‖ Ã‖F ≤ ρ(α)}, solving the robust counterpart of the
uncertain inverse problem corresponds to a applying a variational regularization. If
this assumption does not hold but U(α) is better approximated by some other convex
set, then the robustness criterion would have correspondence to some other form of
variational regularization; we leave this as an open problem for future work.

We remark that there are other ways to “immunize against uncertainty” (Ben-Tal
et al. 2009) in solving inverse problems. As an alternate to the robust optimization
formulation given in (6), one can take a stochastic optimization approach (Stengel
1986; Hafner et al. 2011) and minimize the expected value of the mis-match:

α∗SO ← arg min
α∈Rm

Eα̃[‖F(α + α̃)− Γ ∗‖]. (13)

Parameter distributions for α̃ (that match the known data) may be obtained by using
Bayesian inference, for instance. The stochastic approach is less conservative than the
robust formulation, the trade-off being that one should be willing to accept probabi-
listic guarantees.

3.2 Minimal-norm and sparsity

In addition to the use of a robust formulation to account for model uncertainties, a
strictly convex variational regularization term can be appended for additional stability
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in order to counteract the effect of data noise. A standard regularization method is to
include the l2-norm as the penalty term, which gives rise to Tikhonov regularization
(Engl et al. 1996):

α∗ ← arg min
α∈Rm

‖F(α)− Γ ∗‖2 + μ‖α − α0‖22. (14)

For examples showing the effect of stabilization in parameter estimation for biochem-
ical networks, refer to Engl et al. (2009).

Regularization methods based on the l1-norm can be useful under the assumption
that the underlying network is sparse (August and Papachristodoulou 2009), that is
consisting of few non-zero edges. The identification of sparse vectors can also be
useful in pinpointing important factors underlying the observed effects; for instance,
in cluster analysis on microarray data, sparsity helps to identify the key genes out of
the many (d’Aspremont et al. 2007). For linear problems, under the condition that
a sufficiently sparse solution exists, it has been shown that l1 minimization can give
good approximations to the sparsest solution (Donoho 2006). However, for highly
nonlinear problems, a non-convex regularization term may be necessary to identify
sparse solutions (Engl et al. 2009). In particular, the following sparsity-promoting
penalty has been proposed:

l p,ε(x) ≡
n∑

i=1

(x2 + ε)p/2, 0 < p < 1. (15)

Despite the fact that there has been some theoretical underpinnings for the use of such
a non-convex regularization term (Zarzer 2009), much remain to be understood in
terms of their stabilizing properties.

Elastic net is a regularization method that combines l2 and l1 penalties to identify
sparse groups of correlated features (Zou and Hastie 2005). Methods based on mixing
penalty functions have been used in a number of biological applications, including
network inference (Shimamura et al. 2009) and gene selection from microarray data
(De Mol et al. 2009). We propose an extension of the use of elastic-net methodology
to nonlinear problems, by combining the l2 with sparsity-enforcing l p,ε-function: that
is, we seek,

α∗ ← arg min
α∈Rm

‖F(α)− Γ ∗‖2 + μ‖α − α0‖22 + μsl p,ε(α − α0). (16)

In order to obtained desired solution properties, one needs to find the appropriate
balance between the regularization parameters, μ and μs . We expect that in practical
applications, there is likely not be a single criterion on the desired trade-off between
sparsity and the norm of the solution; instead, the user of the identification algorithm
may wish to obtain a sequence of solutions from which candidate strategies are then
selected based on their feasibility. We currently do not have a way to select regu-
larization parameters based on some plausible user criteria and leave this to future
work.

123



Inverse problems from biomedicine 151

3.3 Applications to biomedicine

Amongst the applications of inverse problems to biomedicine, we consider the fol-
lowing:

1. inferring disease mechanisms underlying the observed diseased phenotype;
2. identifying intervention strategies given a diseased phenotype.

In case 1, one wishes to infer the most likely and simplest cause, out of the many that
would all give rise to the same observed diseased state. While many combinations of
kinetic rates in the physiological system may have changed due to genetic and envi-
ronmental factors, one may assume that the different instances of the disease may arise
from a few important sparse factors. Therefore, sparsity enforcing penalty would have
more relevance in this case. In case 2, there is typically no a priori restriction in the
number of drug combinations used; however, the drug dosage should be controlled in
order to avoid toxicity, especially those drug combinations that give rise to synergistic
adverse effects. Therefore, in such applications the minimal-norm penalty would gen-
erally have a higher priority. In addition, a symmetric positive definite weight matrix
W may be introduced in order to penalize any known drug combination toxicity effects.

In summary, for inferring the best therapeutic strategies one may wish to find an
appropriate trade-off between high degree of robustness, against low toxicity and
sparsity by an appropriate tuning of the respective penalty parameters μt and μs :

α∗ ← arg min
α∈Rm

max
α̃∈D(δ)

‖F(α + (α̃ − α0))− Γ ∗‖2

+μt (α − α0)T W (α − α0)+ μsl p,ε(α − α0). (17)

We remark that while (17) formulates the robustness problem in the general setting,
further work is needed to make it a computationally tractable task. In order to render the
minimization problem implementable, one needs to approximate D(δ) or optimize a
surrogate function for (17). Also needed is a method of determining the regularization
parameters in relation to the desired level of robustness.

4 Examples

In this section, we consider inverse problems for a number of examples from the
systems biology and disease modeling literature. The aim here is not to draw partic-
ular implications from the results of the inverse analysis, but to show what type of
inverse problems of qualitative nature may arise and what computational methodolo-
gies can be applied. We remark that there may be no single computational approach
which can be used for solving all such problems in one go; instead, the solution pro-
cess is likely to be iterative in nature and involve a combination of computational
approaches. In particular, the steps may involve first evaluating the robustness of the
identified (regularized) solutions and certify the level of robustness if possible. If the
solution robustness of the solution needs to be improved, more computationally inten-
sive procedures can then be called upon to find the desired trade-off between solution
magnitude, sparsity and robustness. In Sect. 4.1, we demonstrate how the use of sparsity
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regularization identifies a solution that suggests the plausibility of the proposed disease
mechanism. In Sect. 4.2, we use the sum of squares (SOS) technique to provide a cer-
tificate on the solution robustness and compare it to numerical estimates. In Sect. 4.3,
we employ elastic net regularization to identify a sequence of solutions of decreasing
sparsity, which could be different in their robustness against resistance mechanisms.

4.1 HPA axis: cyclic Cushing syndrome

The hypothalamic–pituitary–adrenal (HPA) axis is a neuroendocrine system which
plays a key role in governing homeostasis of the human body in response to various
stresses (Gupta et al. 2007). Under normal physiological conditions, stress triggers the
hypothalamus to release corticotropin releasing hormone (CRH), which travels via the
blood circulation and in turn activates the secretion of adrenocorticotropic hormone
(ACTH) in the pituitary. ACTH stimulates the adrenals to synthesize and secrete cor-
tisol, which binds with the gluococorticoid receptors (GR) and feedback negatively on
both the hypothalamus and pituitary in their secretion of CRH and ACTH respectively.

A mathematical model of the HPA axis has been proposed by Gupta et al. (2007),
showing that the system is able to exhibit bistable behavior, with the switching between
states triggered by changes in the stress level. The model consists of 3 organs (namely,
the hypothalamus, pituitary and adrenals) with the production and degradation of the
respective hormones described by linear kinetics. Michaelis–Menten enzyme kinet-
ics is used to capture the inhibitory effect of cortisol, while Hill kinetics is used in
describing the up-regulation of glucocorticoid receptors in the pituitary following the
binding of cortisol. The system of equations is shown below,

d

dt
[ACT H ] = Ka

[C RH ]
[cortisol][G R]

Ki2
+ 1
− Kad [ACT H ]

d

dt
[cortisol] = Ko[ACT H ] − Kod [cortisol]
d

dt
[C RH ] = stress(t)+ Kc

[cortisol]
Ki1

+ 1
− Kcd [C RH ]

d

dt
[G R] = Kr

[cortisol]2[G R]2
[cortisol]2[G R]2 + K

− Krd [G R] + Kcr

(18)

The model predicts that upon transient stress of sufficiently short duration, the HPA
system responds accordingly and return to the normal steady state following the
removal of stress. However, upon stress inputs of a sufficiently long duration and/or
magnitude, the glucocorticoid receptor synthesis remains turned on after the stress
removal, leading to the chronic stress condition (Gupta et al. 2007). The transient
and irreversible nature of stress response in the HPA axis are shown in Figs. 2 and 3
respectively.

Using this coarse-grained model of interaction between hormones and their secret-
ing organs, one could already ask if known diseases can be mapped to the existing phys-
iological knowledge as encoded in the model. One disease involving abnormal levels of
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Fig. 2 Transient response of HPA axis to short duration stress
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Fig. 3 Irreversible response of HPA axis to long duration stress
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Table 1 Parameter change leading to oscillatory behavior in HPA axis model obtained using inverse
eigenvalue analysis

Parameter Affected reaction mechanism Change

Kod Degradation rate of cortisol 1.0→ 0.1104

Ki2 Michaelis–Menten constant in inhibition of ACTH 0.1→ 0.01

production by cortisol-glucocorticoid receptor complex

K Disassociation constant in the binding of 0.001→ 0.00354

glucocorticoid receptor dimers to its promoter

cortisol is the cyclic Cushing syndrome (CS) (Velez et al. 2007), where cortisol levels
are seen to fluctuate in a cyclic manner, with durations ranging from 12 hours to days.
Due to its periodic nature, the diagnosis of the cyclic CS can be easily missed if only a
few measurements are taken. A long period of surveillance as well as a careful evalua-
tion of the clinical data is necessary for a confirmation of the disease in terms of its sig-
nature troughs and peaks in the patient’s cortisol level (Velez et al. 2007). The origins of
cyclic CS is not well understood, although it could be related to corticotrophic adenoma
of the pituitary, as well as with adrenal hyperplasia and hypothalamic disorders. As we
have seen, the model has been shown to exhibit a bistable switching behavior (Gupta
et al. 2007); from the need to understand putative mechanisms underlying cyclic CS, we
ask: can the model also be made to exhibit oscillations by changing some of its param-
eters, as would be the case if some of the underlying physiological processes become
dysfunctional?

In order to explore this question, we solve an inverse eigenvalue problem (see Lu
2009 for algorithmic details) to bring the system close to a Hopf bifurcation. For this
task, the forward operator F(·) maps the kinetic parameters in the HPA model to the
position of the eigenvalue pairs closest to the imaginary axis. The sparsity-enforcing
penalty term l p,ε was used, with p = 1/10, ε = 0.052. The gradient-based optimiza-
tion algorithm identified a change in only 3 out of the 12 model parameters, see Table 1
for the changes in model parameters; the remaining parameters each changed less than
5 % from its original value. The fact that only few parameters need to be varied and
that changes are within an order of magnitude suggests that it is not implausible that
physiological perturbations can bring about the diseased state. Figure 4 shows the
oscillatory dynamics exhibited by the model using the identified parameters. While
the posed problem is to bring about a limit cycle solution, due to the use of regulari-
zation term the condition F(α∗) = Γ ∗ is not exactly met and the system is brought
to a damped oscillatory regime. However, numerical bifurcation analysis around the
identified parameter values shows that the system can be brought to exhibit limit cycle
oscillations. This inverse analysis shows that the known qualitative dynamics of cyclic
CS is not in contradiction to the existing physiological knowledge. Therefore, muta-
tions or other processes may affect kinetic parameters in such a way so as to give rise
to oscillatory dynamics. Whether the identified combination of mechanisms are the
minimal ones and how sensitive the oscillatory dynamics is with respect to parameter
variations, remain topics for future work.
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Fig. 4 Oscillatory dynamics in the HPA axis model using the identified parameter set

4.2 Lipoprotein metabolism

4.2.1 Model description

Lipoproteins are the primary means of transport of necessary lipids from the liver to the
cells. Unfortunately, there is a strong body of medical evidence that when in excess in
the blood stream, lipoproteins lead to the development of atherosclerosis, particularly
if concentrations of low density lipoproteins (LDL) are high (Glass and Witztum 2001;
Rodríguez et al. 1999; Libby 2002). Although much research has been carried out in
this area, it is still unknown why plasma cholesterol concentrations in adults are so
high (Goldstein and Brown 1977), what the exact effects of statins are (Davidson and
Jacobson 2001), and which metabolic processes should be targeted to reduce plasma
LDL concentrations most effectively. In the following, we provide a brief description
of the main processes related to lipoprotein metabolism.

The liver secretes very low density lipoprotein (VLDL), whose rate we denote by
uV . While in the blood stream, VLDL is degraded by interaction with LPL (lipoprotein
lipase) to intermediate density lipoprotein (IDL), which is then degraded in a similar
fashion and forms LDL. We denote the turnover rates of VLDL and IDL in the blood
stream by kV and kI , respectively. The uptake of lipoproteins by cells is mostly recep-
tor-mediated. We denote the rate constants of the receptor-mediated uptake of LDL
and IDL by dL and dI , respectively. It is also possible for LDL (but not for IDL) to
be absorbed directly through a non-receptor mediated pathway (with rate constant d).
Upon internalization, the lipoproteins are hydrolyzed in the cell releasing lipids into
the cytoplasm. A significant proportion of these lipids (we denote these proportions
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Fig. 5 Overview of origin, transport and fate of lipoproteins. The liver secretes VLDL, which goes into the
bloodstream and is degraded by LPL to IDL. In turn, IDL is degraded to LDL. Cells take up lipoproteins in
a receptor-mediated manner as well as directly

by χI and χL ) is cholesterol which contributes to the level of intracellular choles-
terol (IC). The intracellular cholesterol is used for cell function or eliminated, mainly
through the action of high density lipoprotein (HDL), at a rate that we denote dI C .
Thus, HDL, which is also secreted by the liver, is the so called “good cholesterol”, as
it is responsible for reverse cholesterol transport, the transport of excess cholesterol
from cells and from other lipoproteins back to the liver. Finally, a fraction (1− b) of
receptors used in endocytosis is recycled and reincorporated into the membrane. In
addition, the nuclear synthesis of receptors LR is regulated through negative feedback
(�) by intracellular cholesterol. Although almost every cell can synthesize cholesterol
to some extent, we assume that all cholesterol has to be delivered to the cells via LDL
or IDL absorption (Mathews et al. 2000; Cooper 2000; Converse and Skinner 1992;
Dietschy et al. 1978). Figure 5, taken from reference (August et al. 2007), provides
a schematic overview of the origin, transport and fate of the different lipoproteins in
the human body.

In the following, we present a model of lipoprotein metabolism from refer-
ence (August et al. 2007), which exhibits a transition between low and high LDL
steady states. Due to the fact that the equations are directly related to physiological
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Table 2 Parameters of the model (19)

Source Units Nominal Range
value

Kinetic parameter

kV Packard et al. (2000) h−1 0.3 0.15–0.6

kI Packard et al. (2000) h−1 0.1 0.025–0.1

dI Packard et al. (2000) h−1 1.4 0.5–2

dL White and Baxter (1984) h−1 0.0075 0.005–0.02

d Dietschy et al. (1993) h−1 0.0025 0.0025-0.0075

b August et al. (2007) lg−1 0.1 0–1

c Goldstein and Brown (1977) g(lh)−1 0.05 0–1

χI Adiels (2002) – 0.35 0.25–0.45

χL Adiels (2002) – 0.45 0.4–0.5

Control parameter

uV White and Baxter (1984) g(lh)−1 0.3 Variable

dI C White and Baxter (1984) h−1 0.45 Variable

Nominal values and ranges as found in the literature. Because of their high dependence on diet, medication
and genetics, we consider uV and dI C as the control parameters

processes, the model can be used to study the effect of medical or behavioral inter-
ventions. The previously described metabolic processes are modeled by the following
system of differential equations, where [·] denotes concentration in g/ l (August et al.
2007):

d[V L DL]
dt

= −kV [V L DL] + uV

d[I DL]
dt

= kV [V L DL] − kI [I DL] − dI [I DL]φL R

d[L DL]
dt

= kI [I DL] − dL [L DL]φL R − d[L DL]
dφL R

dt
= −b (dI [I DL] + dL [L DL]) φL R + c

1− φL R

[I C]
d[I C]

dt
=(χI dI [I DL]+χLdL [L DL]) φL R+χLd[L DL]−dI C [I C]

(19)

Here, the attachment of the cytosolic LDL receptors to the cell surface is described in
its simplest form with a rate that is proportional to the fraction of unoccupied receptor
sites (1−φL R). The combined rate at which φL R increases is then given by the product
c(1− φL R)/[I C], where parameter c modulates the weight of the combined process
of regulated synthesis and attachment. The model contains 9 kinetic parameters and
2 control parameters uV , dI C with nominal values and ranges shown in Table 2.

We note that of the two control parameters, uV can be more easily varied over
individuals within a given population. Shown in Fig. 6 is the bifurcation diagram of

123



158 J. Lu et al.

0 0.5 1 1.5 2 2.5
0

5

10

15

20

25

30

35

40

LP

LP

Bifurcation parameter u
V

[L
D

L]
 (

g/
l)

LP

LP

γ
1
0 γ

2
0 γ*

1 γ*
2

Fig. 6 The nominal bifurcation diagram (curve shown with lighter shading) with limit-points at the values
of bifurcation parameter uV = γ 0

1 , γ 0
2 and a bifurcation diagram having the corresponding values at the

desired locations, γ ∗1 and γ ∗2

the lipoprotein model with uV as the bifurcation parameter. The diagram shows that
while for uV < γ 0

1 = 1.637 the system has a single steady-state, within the range
γ 0

1 < uV < γ 0
2 the system can be in one of the two steady-states, depending on

the history of the system trajectory and perturbations exerted on the system. Physio-
logically, this implies that individuals, who have higher values of uV (due to diet or
genetic factors), could suffer from the adverse condition of high LDL level in their
system. Given the connection between the diseased state corresponding to high LDL
and the bifurcation points of the model, for the purpose of identifying mechanisms for
its treatment we pose the inverse problem of shifting the bifurcation points so that they
occur at higher values of the bifurcation parameter. In particular, we aim to shift the
abscissas of the bifurcation points to (γ ∗1 , γ ∗2 ) = 4/3× (γ 0

1 , γ 0
2 ). Figure 6 shows the

bifurcation diagrams for the system corresponding to the initial kinetic parameters and
a perturbation attaining the specified therapeutic goal.

4.2.2 Choice of regularization terms and a numerical evaluation of robustness

As discussed in Sect. 3.2, various choices exist for the regularization term, resulting
in different solution properties. Here, we solved 3 instances of the inverse problem
taking the following general form:

α∗ ← arg min
α∈R9

∥∥∥∥F(α)−
(

γ ∗1
γ ∗2

)∥∥∥∥
2

2
+ μ

∥∥∥∥α − α0

α0

∥∥∥∥
2

2
+ μsl p,ε

(
α − α0

α0

)
.

In particular, we consider the following three cases of regularization parameters:

– Case 1: no regularization, μ = μs = 0;
– Case 2: l2 regularization, μ = 0.5, μs = 0;
– Case 3: sparsity regularization, μ = 0, μs = 0.5.
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Table 3 Identified parameter
solutions from the lipoprotein
model

Parameter Nominal No reg. l2 reg. Sparsity reg.

b 0.1 0.0638 0.0757 0.1000

c 0.05 0.0671 0.0579 0.0873

d 0.0075 0.0539 0.0075 0.0075

dI 2.0 2.0815 2.0427 2.0002

dL 0.01 0.1060 0.0100 0.0100

kI 0.025 0.0925 0.0244 0.0250

kV 0.3 0.3000 0.3000 0.3000

χI 0.1 0.0517 0.0904 0.1000

χL 0.6 0.7166 0.5344 0.5999

In particular, the notation (α − α0)/α0 should be read component-wise, denoting the
vector of normalized deviation for the 9 kinetic parameters with respect to the nominal
values, α0. The identified solutions are given in Table 3 and Fig. 7 shows the deviation
of identified parameters α∗ in comparison to their nominal values. In particular, we
note that in the non-regularized case, parameters dL and d are significantly increased,
close to an order of magnitude higher than their nominal values. In comparison, using
the l2 regularization, the identified parameters deviate much less from the nominal val-
ues; however the desired shift in the bifurcation diagram is brought about via changes
in many parameters. In contrast, using the sparsity approach a single parameter c is
identified. Clearly, the identified solutions exhibit different properties with respect
to their magnitudes and sparsity; the question naturally arises: how do they differ in
robustness?

To numerically estimate robustness in the identified solutions, we examine the
resulting perturbations {F(α∗ + δα) − Γ ∗ : δα ∈ �} taking � to consist of the
set of perturbations in the individual components of the parameter vector. That is,
� = ∪m

i=1{0.5 j/N · |α0
i | · ei : j ∈ Z,−N ≤ j ≤ N }, where we take N = 20

number of samples in each direction, ei denotes the i-th column of the m×m identity
matrix and 0.5 represents the perturbation amplitude. Thus, the same set of parameter
variation � is introduced in each of the 3 solutions shown in Table 3. For each of
the 3 regularization cases considered, we plot the histograms for the variations in the
components of the mapped values, F(α∗ + δα); also shown in the histogram are the
corresponding desired values, γ ∗1 and γ ∗2 . Looking at the results shown in Fig. 8, we
first observe that the variability for the unregularized case are higher than that for
the regularized cases: for γ1, the standard deviation for the unregularized case 0.12
versus 0.111 and 0.0916 for the l2 and sparsity regularization respectively; for the γ2
results, we have 0.136 versus 0.122 and 0.101 respectively. We remark that the same
parameter variation (defined respect to the sizes of the nominal parameters) is used
in the variability analysis, hence the differences in the robustness are not due to the
shift in the magnitudes of the parameter values. The second observation is that the
sparse solution results in less variability than the l2 case, under the parameter pertur-
bation we considered. While these results were obtained using a particular choice of
regularization parameter and carried out on a specific system, it raises the question of
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Fig. 7 Comparison of identified parameters using 3 different strategies. In each of the 3 regularization
cases, the logarithmic ratios of identified parameters to their nominal values are plotted

whether regularization by itself could lead to an increase in parametric robustness. If
one resorts to solving the robust counterpart of the inverse problem to directly coun-
teract parametric variability, one could further increase the robustness of the identified
solution.
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Fig. 8 Numerical comparison of solution robustness obtained using the 3 different regularization strate-
gies. In each subfigure, the red bars indicate the values of γ ∗1 and γ ∗2 and the computed standard deviations
are shown at the top of the plots (color figure online)
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4.2.3 Certificate for solution robustness

Next, we reformulate the above robustness test as a feasibility problem fulfilling cer-
tain positivity conditions. Although testing for positivity of a polynomial function is
NP-hard (Murty and Kabadi 1987), recent developments by Parrilo (2003) and Aylward
et al. (2008) have explored the use of semidefinite programs (SDPs) to study a relax-
ation of this problem, namely, to check if a polynomial function can be expressed as
a sum of squares (SOS). Clearly, being SOS is only a sufficient (and in some cases
quite conservative) condition for positivity but, on the other hand, it is a condition that
can be checked with the aid of SDPs (Vandenberghe and Boyd 1996; Parrilo 2005,
2003; Lasserre and Putinar 2010). The key advantage of SDPs is their generality and
flexibility together with the fact that they can be solved efficiently using interior-point
methods (Vandenberghe and Boyd 1996; Boyd and Vandenberghe 2004; Parrilo 2003).
In this paper, we solve SOS programmes using SOSTOOLS, (Prajna et al. 2002) a free,
third-party MATLAB toolbox that relies on the SDP solver SeDuMi (Sturm 1999).

Let us suppose the kinetic parameters b, c, dI , dL , kV , χI , χL are fixed at their
nominal values as given in Table 3. Let vT = [kI , d] be the vector of variable kinetic
parameters and vsol correspond to each of the 3 sets of identified values given in
Table 3. Consider the parameteric η-box: V ≡ {v ∈ R

2 | vsol
i ≤ vi ≤ vsol

i (1 + η)}.
For each of the 3 identified solutions given in Table 3, we would like to construct
a certificate ensuring [L DL] < 3 for v ∈ V and control parameters within the box
0 ≤ uV ≤ 1.5 and 1 ≤ dI C ≤ 2. Hence, we formulate the following SOS problem,
where state vector x ∈ R+5 codes for the five state variables given in (19) and f (x)

the corresponding vector field:

max
η∈R+

p1(v),p2(v) are SOS
p3(x,v),p4(x,v) are SOS

η

s. t. p1(v)
(

f1(x)2 + f2(x)2 + f3(x)2 + f4(x)2x2
5 + f5(x)2

)

+(v − vsol)T(v − vsol(1+ η))+ p2(v)x3(x3 − 3)

+p3(x, v)uV (uV − 1.5)+ p4(x, v)(dI C − 1)(dI C − 2) is SOS, ∀x, v. (20)

Solving (20) for the 3 cases, we obtain the following values for η : 0.0001514 for
the unregularized solution, 0.0066513 for the l2 regularized solution and 0.008703 for
the sparsity regularized case. Hence, we see that for the regularized cases, there is a
significantly larger parameter box size for which we can guarantee that [L DL] < 3;
moreover, the sparse solution results in the largest certified box.

In conclusion, the result of the robustness analysis gives a promising outcome
since, as discussed earlier, sparse solutions correspond to the use of only a few drugs
in combination for disease treatments. Therefore, sparse solutions are easier to test
and possibly minimizing the extent of side effects. Indeed, statins, which belong to a
class of drugs used to lower LDL levels, are HMG-CoA reductase inhibitors (Ma et al.
1986), which means that they lower the production rate of VLDL, which is described
by the parameter uV in the model. Additionally, they alter the intracellular cholesterol
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Fig. 9 Schematic diagram of the EGFR signaling network (Orton et al. 2009)

levels in hepatic cells and thus, the value of c in these cells, which is the parameter
identified using the sparsity approach.

4.3 EGFR/ERK signaling pathway

The Epidermal Growth Factor Receptor (EGFR) activated Extracellular-signal
Regulated Kinase (ERK) pathway plays a critical role in regulating cell prolifera-
tion by relaying signal from cell membrane to the nucleus (Orton et al. 2009). In
normal cells, Epidermal Growth Factor (EGF) induces a transient activation of ERK;
however, upon genetic mutations ERK can become active in a sustained way, leading
to cancerous cell proliferation. For a schematic diagram showing how the signal is
relayed from EGFR to ERK, refer to Fig. 9. Via computational modeling of the known
interactions, it has been shown that mutations in different genes in the pathway lead
to distinct perturbations of the signaling pattern.

One particular perturbation known to lead to cancer is a mutation in EGFR so that
it is not degraded by the cellular machinery, as would be the case in normal cells.
Constitutively active EGFR in turn actives SOS and C3G even in the absence of EGF,
which then activate the Ras and Rap1 branches of the pathway. Figure 10 shows the
simulation results of the EGFR model as described in Orton et al. (2009), for the
normal as well as the cancerous case where the EGFR degradation rate has been set
to 0.

Due to the cross-talk between the Ras and Rap1 pathways as well as the nega-
tive feedback from ERK to SOS, it is not clear how best to target the network to
compensate for the constitutively active EGFR after the mutation. Given our goal
of reverting the system back to having a transient activation of ERK, an operator
that could differentiate the healthy from the diseased state consist of integrals over
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Fig. 10 Time-course of the EGFR model for normal and cancerous cases, with active ERK shown in solid
red curves (color figure online)
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Fig. 11 Time-course of active ERK and the time window of interest. The area-under-curve (AUC) for the
two windows T1 and T2 evaluate to 0.46 and 0.05 respectively for normal cells, while they are 0.56 and
2.34 for cancerous cells

the time-windows. Motivated by the solution trajectories shown in Fig. 10, we con-
sider as the forward operator the following normalized time-integrals of the level
of active ERK, for the time-intervals from 5 to 15 min and 30 to 80 min respec-
tively:

F(α) =
(

1
K

∫
T1

Erkact (α, t)dt
1
K

∫
T2

Erkact (α, t)dt

)
. (21)

where T1 = [5, 15], T2 = [30, 80] and K = 107 a normalization factor. As illustrated
in Fig. 11, we note that while both the normal and cancerous cells have high levels of
active ERK in the first window t ∈ T1, in the second window t ∈ T2 the level is high in
cancerous cells but low in the normal cells. In particular, the integrals defined in (21)
evaluate to 0.46 and 0.05 in normal cells, while they are 0.56 and 2.34 in cancerous
cells. With the set of 54 kinetic parameters in the model as variables, in the cancerous
case we wish to identify parameters α∗ that would revert system dynamics back to
having a transient ERK activation. An examination of the difference between the iden-
tified to nominal parameters, α∗ − α0, would then suggest the optimal intervention
nodes in the signaling network. We solve the following inverse problem, choosing
various combinations of values for the regularization parameters μ,μs :
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Fig. 12 Identified parameters reversing the effect of EGFR mutation on ERK activation. A sequence
of solutions are obtained using the stated choice of regularization parameters. In each case, the quantity
(α∗ − α0)/α0 is plotted

α∗ ← arg min
α∈R54

∥∥∥∥F(α)−
(

0.5
0.1

)∥∥∥∥
2

2

+μ

∥∥∥log
( α

α0

)∥∥∥2

2
+ μsl p,ε

(
log

( α

α0

))
. (22)

The desired values in the components of the operator F(·) are chosen to be 0.5 and 0.1,
as these are the typical values one might observe in normal cells. We use the notational
convention that log(·) is applied component-wise to the vector of parameter ratios.
The logarithmic scaling was chosen in order to allow parameters to vary over orders
of magnitude if necessary. In terms of implementation, the problem (22) was solved
via interior-point optimization method, in which the adjoint-based method (Lu et al.
2008) was used for computing the derivative, F ′(α).

The inverse problem (22) was solved using various regularization parameter com-
binations, ranging from (μ,μs) = (0.04, 0.16) to (0.16, 0.04). The sequence of iden-
tified parameters are shown in Fig. 12. In particular, we see that using μ = 0.04
and μs = 0.16, a single parameter is identified: the deactivation rate of B-Raf by
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Raf1PPtase. This result indicates that the use of drugs binding to B-Raf and thereby
inhibiting it could be a strategy to reverse the effect of EGFR mutation. By increasing
the relative weight of l2 versus sparsity regularization to μ = 0.08, μs = 0.12, we
obtained a solution consisting of changing 6 parameters simultaneously: in addition to
B-Raf, the solution identifies mechanisms including the deactivation of Rap1 which
in turn would also lead to the down-regulation of B-Raf. To summarize, by choos-
ing appropriate weight between the regularization terms, one could attempt to strike
the desired balance between sparsity and robustness against resistance mechanisms
whereby signals are routed via alternative pathways.

5 Conclusions and outlook

While some of the standard methods and techniques from inverse problems can be
directly applied to certain areas of medical diagnosis, new techniques and theories are
needed for many of the emerging applications involving mathematical models in sys-
tems biomedicine. In particular, the uncertainties that arise at various levels of model
description and the lack of available quantitative data pose significantly different chal-
lenges than those from other applications of inverse problems in the fields of physical
sciences and engineering. Resolving ill-posedness due to the infinite dimensionality
of function spaces may not be of as much direct concern in comparison to the need for
solving the underlying problems of devising disease treatment strategies in an optimal
manner given the constraints on data quantity and quality. Nevertheless, significant
mathematical challenges arise in tackling these issues.

While we have proposed some strategies to account for uncertainties and examined
some links between regularization strategies and robustness, many important ques-
tions remain. One area that we have not touched upon in this paper is uncertainties in
kinetic mechanisms and/or network topologies of disease models, due to the incom-
plete understanding of the underlying biology. For instance, missing out feedbacks and
cross-talks in pathways that could occur at significantly different time-scales would
likely lead to very contrasting predictions regarding the development of resistance
mechanisms in cancer treatments. A consideration of possible missing edges in an
existing topology can quickly give rise to combinatorial possibilities regarding net-
work alterations. Quantifying and managing uncertainties in biological models remain
important tasks that need to be better addressed for the use of mathematical modeling
to increase its utility in understanding diseases and making therapeutic decisions.
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