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Transient Radiative and Conductive Heat Transfer
in Ceramic Materials Subjected to Laser Heating1

M. Musella2,3 and H. R. Tschudi2

In this work the problem of transient energy transport in a conductive, emit-
ting, and scattering medium is addressed. A new approach for describing
the transient response of a participating one-dimensional layer subjected to
a finite laser pulse is presented. The model considers heat transport in one
dimension by conduction and radiation, where the radiative field is described
by the two-flux approximation. The material is assumed to be gray, homoge-
neous, and isotropic, with physical and optical properties dependent on tem-
perature. Numerical results have been obtained on a layer of low optical
thickness using the thermophysical properties of zirconia as a typical mate-
rial.

KEY WORDS: emitting and scattering material; isotropic; participating
medium; semitransparent; two-flux model.

1. INTRODUCTION

Ceramics have excellent heat and corrosion resistant properties, and they are
nowadays extensively employed both as structural and coating materials for
high-tech applications, especially at very high temperatures. Some of these
materials, such as zirconia, are partially transparent to radiant energy. Inter-
nal absorption, emission, and scattering of thermal radiation have therefore
strong influence on their internal temperature distributions.

For a proper description of energy transfer in those materials, detailed
modeling of the interaction of light with matter and of the combined
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effects of radiative and conductive heat transfer is required. During recent
years radiative transfer has become the subject of many investigations,
and because of the mathematical complexity of the topic, several approx-
imation techniques have been developed to treat the problem [1]. Most
of the studies, however, deal with steady-state solutions, and the compu-
tational complexity of the time-dependent problems restricted studies of
transient behavior to very special cases [2, 3]. The problem of transient
coupled radiative and conductive heat transfer for scattering materials was
addressed by only a few authors, and also in this case, only very special
problems were solved [4-6].

This work addresses the problem of energy transport by conduction
and radiation in a participating medium (absorbing, emitting, and scatter-
ing) subjected to an impinging time-dependent flow of radiating energy,
and proposes a new approach for approximately solving the two-flux equa-
tions [7] describing the radiative field. This approximate treatment rests on
the observation that the two-flux equations describing the radiative field
are inhomogeneous, linear differential equations. The general solution of
these equations is expressed as the sum of a special solution of the inho-
mogeneous equations and of the general solution of the homogeneous
equations, the equations without the emission term. Of those two solu-
tions, the first accounts for the emission term, while the second matches
the boundary condition for the radiative field. A special solution of the
inhomogeneous equations is found here by a systematic formal expansion,
whereas the homogeneous two-flux equations can be solved analytically
for constant material parameters.

We developed the procedure for describing the response of an isotro-
pic, gray, polycrystalline ceramic layer subjected to a laser pulse imping-
ing on one side, the other being kept at constant temperature. The model
takes into account energy transport in one dimension by conduction
and radiation with temperature-dependent material properties. Results are
shown for a layer of zirconia, a typical high porosity absorbing and scat-
tering material.

2. PHYSICAL MODEL AND GOVERNING EQUATIONS

An infinitely extended plane layer of thickness L, consisting of a con-
ductive, gray emitting, absorbing, and scattering medium is considered
here. The layer, initially at a temperature TL, is uniformly irradiated on the
front surface by a laser pulse of finite width, while its rear surface is kept
at a constant temperature TL. The system is placed in vacuum. The mate-
rial is assumed to be homogenous and isotropic, with physical and optical
properties that may depend on temperature.
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Treating the problem as one dimensional (i.e., temperature and energy
fluxes vary only in the direction perpendicular to the surfaces), the tran-
sient energy equation describing the system has the form,

d(T )cp(T )
∂T (x, t)

∂t
=− ∂

∂x

(
JQ +Jrad

)
(1)

For solving Eq. (1) the conductive and radiative flux have to be related
to the instantaneous temperature and light distribution inside the material.
While the conductive flux JQ can be expressed by Fourier’s equation,

JQ =−k(T )
∂T (x, t)

∂x
, (2)

such a formula does not exist for describing the radiative flux. The formu-
lation and solution of the exact equations of radiative transfer including
scattering is rather complicated, and usually approximation methods are
used to simplify the problem. It has been extensively demonstrated [1] that
the two-flux approximation provides an accurate simplified formulation for
describing the present case, and it will therefore be used here. As shown in
Fig. 1, a two-flux model assumes that the radiative field in the medium is
described by only two uniform fluxes, J+ and J−, the first flowing in the
positive x-direction and the second in the negative x-direction. According
to the Kubelka–Munk theory [8], the equations governing these two quan-
tities can be written as

−∂J−
∂x

=SJ+ − (A+S)J− +q, (3a)

∂J+
∂x

=−(A+S)J+ +SJ− +q, (3b)

where q is the source term, which for a gray body is expressed by

q =AσBT (x)4. (4)

Introducing the quantity,

Jrad(x, t)=J+(x, t)−J−(x, t)

and

F(x, t)=J+(x, t)+J−(x, t)
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it follows from Eqs. (3) and (4) that

∂Jrad(x, t)

∂x
=−A(F(x, t)−2σBT 4). (5)

and

∂F (x, t)

∂x
=−(A+2S)Jrad(x, t). (6)

For given boundary conditions, the solution of the equations of radiative
transfer, Eqs. (5) and (6), can be expressed as the superposition of a spe-
cial solution of the full, inhomogeneous equation and a solution of the
homogeneous equation without the source term, AσBT 4, so that Jrad and
F can be expressed as

Jrad =J si +J h (7a)

and

F =F si +F h. (7b)

The first terms on the right-hand side of Eq. (7), J si and F si, take into
account the source term while with the second contributions, J h and F h,
are used to match the boundary conditions for the radiative field.

A S k d cp 
J+(0,t) 

JQ(x,t) 

ρsh 

J+(x,t) E(t) 

J-(x,t) 

J-(L,t)

T(x,t) 

x 
x=L x=0 

T(L,t)=TL

Fig. 1. Geometry, coordinate system, and nomencla-
ture of the studied physical system.
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A special solution of the inhomogeneous equation can be derived
from Eqs. (5) and (6) recursively. Starting with the value of J (x)=0, one
gets for the first recursion from Eq. (5),

F si =2σBT 4 (8a)

which substituted in Eq. (6) gives

J si =− 8σBT 3

A+2S

∂T

∂x
. (8b)

The recursion does not need to be driven further, and Eqs. (8a) and (8b)
are accepted as the special solution of the inhomogeneous two-flux equa-
tions. It should also be noted that Eq. (8b) corresponds to the diffusion
approximation [6].

The system of Eqs. (5) and (6) without the source term (homogeneous
equations) can be written as

∂J h(x, t)

∂x
=−AF h(x, t) (9a)

∂F h(x, t)

∂x
=−(A+2S)J h(x, t), (9b)

which can be solved analytically when A and S do not vary with x. Since
the solution of the homogeneous equations is important only near the sur-
face, it is reasonable to use this analytical solution with the boundary val-
ues of A and S appropriately chosen (the full temperature dependence of
these quantities can be still used in the special solution of the inhomoge-
neous two-flux equations)

The analytical solution of the system of Eq. (9) is thus expressed as

F h(x)=−W

A
sinh(Wx)J h(0)+ cosh(Wx)F h(0) (10a)

and

J h(x)= cosh(Wx)J h(0)− A

W
sinh(Wx)F h(0), (10b)

where W =
√

A2 +2AS and J h(0) and F h(0) depend on J h+ (0, t) and
J h− (L, t), the radiative fluxes at the boundaries. For determining these two
quantities, let’s consider the boundary conditions for the present case.

On the front surface the layer is irradiated by a laser pulse of power
E(t). The layer conducts heat internally, but because of the vacuum sur-
roundings, there is no mechanism by which heat can be conducted away
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from the boundary. From JQ(0, t)= 0 it follows that ∂T
/
∂x(0, t)= 0 and

thus J si(0, t)=0. Hence, the radiative balance at the front surface is

E(t)=J+(0, t)= 1
2

[
Fh(0, t)+2σBT 4(0, t)+Jh(0, t)

]
. (11)

The rear surface of the layer is kept at constant temperature T (L, t)=TL

by a thermostat having a reflectivity ρsh. The radiative balance at the rear
surface can be thus written as

J−(L, t)=ρshJ+(L, t)+ (1−ρsh)σBT 4
L (12)

that with

θ = 1−ρsh

1+ρsh

yields the expression,

θF h(L, t)−J h(L, t)=J si(L, t). (13)

Substituting Eqs. (11) and (13) in Eq. (10) calculated at x =L, it follows
that

J h(0)= 2
[
θcosh(WL)+ A

W
sinh(WL)

] (
E −σBT 4

0

)−J si
L

(1+ θ)cosh(WL)+ [
A
W

+ θ W
A

]
sinh(WL)

, (14a)

F h(0)= 2
[
cosh(WL)+ θ W

A
sinh(WL)

] (
E −σBT 4

0

)+J si
L

(1+ θ)cosh(WL)+ [
A
W

+ θ W
A

]
sinh(WL).

(14b)

Equations (1), (2), (5)–(8), (10), and (14) represent the complete system of
equations that allows a solution to the problem of transient energy trans-
fer for the physical system mentioned above.

For the numerical evaluation of Eqs. (10) and (14), one has to take
care of numerical extinction. For WL � 1, these equations may not be
used for the calculation in the present form and the hyperbolic sines and
cosines have to be resolved into the corresponding exponential functions.

It should be noted that the above results have been derived using
the Kubelka–Munk approximation, but the same approach can be applied
with similar results for any two-flux approximation of the radiative
field as, for instance, the Milne–Eddington or the Schuster–Schwarzschild
approximations.
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3. NUMERICAL SOLUTION PROCEDURE

The combined one-dimensional conductive–radiative problem just
described was solved numerically. For convenience Eq. (1) is rewritten as

d(T )cp(T )
∂T (x, t)

∂t
=− ∂

∂x

(
JQ +J si +J h

)
=− ∂

∂x

(
JQ +J si

)
− ∂J h

∂x

with Eqs. (2), (8b), and (9a), it follows that Eq. (1) has the form,

d(T )cp(T )
∂T (x, t)

∂t
=−∂J

∂x
+AF h, (15)

where

J =−khrt (T )
∂T (x, t)

∂x
(16)

and

khrt (T )=k(T )+ 8σB

A+2S
T 3, (17)

which is the classical transient energy equation, where the first term of Eq.
(15) is analogous to Fourier’s law, and the term AFh represents a source
term.

For numerically solving Eq. (15) the investigated layer was divided
into N cells (Fig. 2), the cells indexed with n, with 0 # n # N. Each cell
was assign the temperature calculated at (xn +xn−1)

/
2.

The energy flux Jn flowing from cell n to cell n + 1 is given by two
expressions,

Jn =−khrt,n

δn

/
2

(
T ∗

n −Tn

)=−khrt,n+1

δn+1
/

2

(
Tn+1 −T ∗

n

)
, (18)

where T ∗
n is the temperature at the boundary n/n+1. Eliminating T ∗

n from
Eq. (18),

Jn =−2
khrt,n khrt,n+1

δnkhrt,n+1 + δn+1khrt,n

(
Tn+1 −Tn

)
. (19)

The discrete analogous part of Eq. (15) is thus

∆Tn

∆t
= 1

(dcp)n

1
δn

(
Jn−1 −Jn

)+ 1
(dcp)n

AnF
h
n , (20)

where F h
n is determined from Eq. (10a) at x =xn.
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With the definitions,

Dn = 1
(dcp)nδn

and ηn = 2khrt,n khrt,n+1

δn+1khrt,n + δnkhrt,n+1
.

Eq. (20) reads as

∆Tn

∆t
=Dnηn−1Tn−1 −Dn(ηn +ηn−1)Tn +DnηnTn+1 +qn (21a)

with the source term,

qn = An

(dcp)n
F h

n . (21b)

Equation (21a) is valid for the interior points 2 # n # N −2.
As explained earlier at the boundary n = 0, the temperature gradient

and thus J0 are zero, yielding

∆T1

∆t
=−D1η1T1 +D1η1T2 +q1. (22)

 x10 x Nxn+1n-1 xn

T1

J0

n n+1

J1

Jn-1

Tn

Jn

JN-1

TN

T*1 T*n-1 T*n T*N-1

Tn+1

Jn

JN

N

Jn+1

xN-1

T*n+1

….. …..

N

δ1 δ δ δ

xN-1

Fig. 2. Schematic diagram of the system used for the numerical implementation and its
mesh.
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At the boundary n = N the temperature is kept constant, TN = TL; there-
fore, at the point N −1,

∆TN−1

∆t
=DN−1ηN−2TN−2 −DN−1(ηN−1 +ηN−2)TN−1 +qN−1 (23a)

with

qN−1 =DN−1ηN−1TL + AN−1

(dcp)N−1
Fh

N−1. (23b)

Equations (21)–(23) are assembled into a system expressed by

∆ �T
∆t

=H �T + �q, (24)

where �T (x)= (T1, T2, . . ., TN−1), �q(x)= (q1, q2, . . ., qN−1), and H is a tridi-
agonal matrix of the form,

H =



−D1η1 D1η1 0 0 0
−D2η1 −D2(η1 +η2) D2η2 0 0

0 D3η2 −D3(η2 +η3) D3η3 0
0 0 Dnηn−1 −Dn(ηn +ηn−1) Dnηn

0 0 0 DN−1ηN−2 −DN−1(ηN−1 +ηN−2)






.

The transient temperature distribution in the material was calculated per-
forming an iterative time integration using the formula,

(1−�tmHm) �Tm+1 = �Tm +�tm �qm, (25)

where the index m represents the time. This implicit differencing scheme
is used for its superior numerical stability [9]. Strictly speaking, it would
require the terms ∆tmHm+1 and ∆tm �qm+1, but replacing them by ∆tmHm

and ∆tm �qm causes only deviations proportional to (∆tm)2, negligible for a
sufficiently small time step.

The radiative and conductive fluxes at any time are calculated by Eqs.
(7a) and (2), respectively.

4. SIMULATION: RESULTS AND DISCUSSION

Zirconia was taken as an example of a typical porous material used
for shielding at very high temperatures. A layer of 1 mm thickness sub-
jected to a laser pulse of 5 × 106J·m−2 delivered in 5 × 10−2 s (Fig. 3)
was studied during the heating and cooling stages. The thermophysical
properties used in the calculations are listed in Table I. The material was
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Fig. 3. Power profile of the laser pulse.

Table I. Thermophysical Properties of Zirconia

T (K) cp(J· kg−1· K−1) [10] k(W· m−1· K−1)[11]

300 456 1.4
400 517 1.4
500 549 1.4
600 569 1.5
700 584 1.5
800 596 1.5
900 605 1.5

1000 614 1.5

assumed to have a density of 5.6 × 103 kg· m−3, an absorption coefficient
A = 3.0 × 102 m−1, and a scattering coefficient S = 1.2 × 104 m−1 corre-
sponding to a reflectivity ρ = 0.8 of the infinitely thick layer. The optical
thickness of the investigated layer was thus WL= 2.7. A semitransparent
layer was chosen for the discussion here in order to make the relationship
of the different radiant fluxes visible on the same diagrams for the whole
layer. The model and the algorithm, however, work equally well for opti-
cally thick layers.

The thermostat keeping the rear surface at a constant temperature
TL = 300 K was assumed to have a reflectivity ρsh = 0.2. The initial tem-
perature of the layer was assumed to be 300 K. The calculations were
performed with an equally spaced grid of δn =5.0×10−7 m. The total tran-
sient time of 5 s was investigated, the time grid consisting of more than
20,000 points and their spacing being denser for the heating stage than the
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cooling phase. In all the following figures, only representative time points
are shown.

Results for the temperature profile in the layer as a function of time
are shown in Fig. 4. During heating (Fig. 4) the temperature of the layer
progressively increases, reaching its maximum when all the laser power is
delivered. During cooling (Fig. 4b) the value of the surface temperature
decreases monotonically. In the interior the temperature still increases for
some time, because of the heat redistribution in the layer.

In Fig. 5 the temperature profile of the front surface is shown as a
function of time. After the laser is switched off (t = 0.05 s), the material
slowly cools down, and after 4 s, the front temperature reaches a constant
value of 300 K.

The calculated conductive heat flux is presented in Fig. 6. As already
discussed above, its value is equal to zero at the front surface and rises
inside the material. During heating (Fig. 6a) it reaches its maximum value
at about 1/5 of the layer thickness, then decreases, until close to the rear
surface where it slightly increases again. During the cooling phase (Fig.
6b), the shape of the curves changes with time. First, the local minimum
close to the rear surface levels out, then slowly the maximum in the first
part of the curve also disappears, while simultaneously the heat flow at the
rear surface increases. At approximately 1.6 s the curve shows a monotoni-
cally decreasing behavior with position. After this time the heat flow keeps
its monotonically decreasing shape.

In Fig. 7 the quantity F h, proportional to the volumetric heat source,
is reported. It monotonically increases and decreases during heating and
cooling, respectively.

The calculated radiative fluxes are shown in Fig. 8. During heating
(Fig. 8a) Jrad reaches its maximum value at the front surface and decreases
monotonically with position. During cooling (Fig. 8b) the layer is divided
into two zones, a zone where the radiative flow is negative (the flow is
directed towards the front surface) and a zone where it is positive. The
points where Jrad =0 move with time to the rear surface. After about 2 s,
the total flow is negative.

In Fig. 9 the radiative and conductive fluxes are compared at two rep-
resentative times. It can be seen that during heating (Fig. 9a) radiation is
the dominant mode of energy transfer while during cooling (Fig. 9b) the
dominant mode is conduction. The negative values of Jrad/JQ in the first
half of the layer are due to the fact that in this zone the radiative flux is
directed towards the front surface.
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Fig. 4. Transient temperature distribution: (a) heating, during the laser pulse and (b)
cooling, after the laser has been switched off.
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Fig. 5. Transient temperature of the front surface. Temperature reaches its maximum
value at 50 ms, when the laser pulse ends.

5. CONCLUSIONS

A new approach for solving the transient equation of energy trans-
fer for a conductive and radiative medium has been presented. The prob-
lem of an infinitely extended, conductive and radiative layer subjected
to a laser pulse on one face and kept at constant temperature on the
other one has been treated. The radiative field is described with the
two-flux approximation, and the solution of the radiative transfer equation
is expressed as the sum of a special solution of the full, inhomogeneous
equation plus a solution of the homogeneous equation (the equation with-
out the source term). The special solution, for which an explicit expression
is derived in terms of the temperature field, is dominant in the interior of
the participating medium and takes into account the source term, while
with the second contribution, the boundary conditions for the spectral
radiance can be matched.

With this method, a considerable reduction of the expense for the
numerical calculation is achieved. In fact, it essentially amounts to numer-
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Fig. 6. Conductive flux in the layer: (a) heating, during the laser pulse and (b) cooling,
after the laser has been switched off.
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Fig. 7. F h, quantity proportional to the source strength in the differential equation, Eq.
(15): (a) heating, during the laser pulse and (b) cooling, after the laser has been switched
off.
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Fig. 8. Net radiative flux in the layer: (a) heating, during the laser pulse and (b) cooling,
after the laser has been switched off.
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ically solving a heat conduction problem with a temperature-dependent
thermal conductivity and a volumetric source term.

The newly developed model has been implemented in a computer
code, and the transient energy transfer for a thin layer of zirconia sub-
jected to laser heating has been simulated.
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NOMENCLATURE

A absorption coefficient, m−1

cp specific heat, J· kg−1·K−1

d density, kg·m−3

E(t) laser energy, J·m−2

F J+ + J−, auxiliary flux quantity, W·m−2

Fh auxiliary flux quantity, solution of the
homogeneous equation, W·m−2

F si auxiliary flux quantity, solution of the
inhomogeneous equation, W·m−2

J+, J− radiative fluxes in the + and – directions,
W·m−2

J h flux quantity, solution of the
homogeneous equation, W·m−2

J si flux quantity, solution of the
inhomogeneous equation, W·m−2

JQ conductive flux, W·m−2

Jrad radiative flux, W·m−2

k thermal conductivity, W·m−1·K−1

L thickness of the plane layer, m
S scattering coefficient, m−1

t time, s
T absolute temperature, K
�tm tm − tm−1, step for time integration, s
δn xn −xn−1, space grid step at point n, 0 � n � N, m
ρ reflectivity of the medium
ρsh reflectivity of the thermostat
σB Stefan–Boltzmann constant, W·m−2·K−4



Transient Radiative and Conductive Heat Transfer in Ceramic Materials 999

REFERENCES

1. R. Siegel and J. R. Howell, Thermal Radiation Heat Transfer, 4th Ed. (Taylor and Fran-
cis, New York, 2002), pp. 625–662.

2. R. Siegel, J. Heat Transfer 120:4 (1998).
3. R. Siegel, Int. J. Eng. Sci. 36:1701 (1998).
4. O. Hahn, F. Raether, M. C. Arduini-Schuster, and J. Fricke, Int. J. Heat Mass Transfer

40:689 (1997).
5. L. K. Matthews, R. Viskanta, and F. P. Incropera, J. Solar Energy Eng. 107:29 (1985).
6. H. Tan, L. Ruan, X. Xia, Q. Yu, and T. W. Tong, Int. J. Heat Mass Transfer 42:2967

(1999).
7. R. G. Siddall, Proc. 4th Symp. Flames and Industry (Imperial College, London, The Insti-

tute of Fuel, 1972), pp. 169–177.
8. W. W. Wendlandt and H. G. Hecht, Reflectance Spectroscopy (John Wiley, New York,

1966), pp. 55–65.
9. W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes in

C, 2nd Ed. (Cambridge University Press, 1996), pp. 734–747.
10. J. P. Coughlin and E. G. King, J. Am. Chem. Soc. 72:2262 (1950).
11. V. Y. Checkhovskoy and A. M. Banaev, in Heat and Mass Transfer, Vol. VII, A.V. Likov,

ed. (“Nauka I. Tekhnika,” URSS, Minsk, 1968), p. 591.


