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Abstract For manifest variables with additive noise and for
a given number of latent variables with an assumed distri-
bution, we propose to nonparametrically estimate the asso-
ciation between latent and manifest variables. Our estima-
tion is a two step procedure: first it employs standard fac-
tor analysis to estimate the latent variables as theoretical
quantiles of the assumed distribution; second, it employs
the additive models’ backfitting procedure to estimate the
monotone nonlinear associations between latent and mani-
fest variables. The estimated fit may suggest a different la-
tent distribution or point to nonlinear associations. We show
on simulated data how, based on mean squared errors, the
nonparametric estimation improves on factor analysis. We
then employ the new estimator on real data to illustrate its
use for exploratory data analysis.

Keywords Factor analysis · Principal component analysis ·
Nonparametric regression · Bartlett’s factor scores ·
Dimension reduction

1 Introduction

Latent variable models are widely used in the social sci-
ences for studying the interrelationships among observed
variables. More specifically, latent variable models are used
for reducing the dimensionality of multivariate data, for as-
signing scores to sample members on the latent dimensions
identified by the model as well as for the construction of
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measurement scales, for instance in educational testing and
psychometrics. They are therefore very important in practi-
cal data analysis.

The simplest latent variable model is factor analysis
(Spearman 1904; Jöreskog 1969; Bartholomew 1984) (FA)
which assumes multivariate normal data. The FA model
states that for a set of manifest variables x that are cor-
related, it is possible to construct a smaller space made
of the latent variables z, such that conditionally on z,
there is no more correlation between the manifest variables.
More precisely, given a vector of observed (manifest) vari-
ables x = (x(1), . . . , x(p))T, it is supposed that there ex-
ists a vector of size q < p of (unobserved) latent variables
z = (z(1), . . . , z(q))T such that the manifest variables x(j)

are linked to the latent variables through the additive noise
model

x(j) | z = ηj (z) + ε(j), j = 1, . . . , p, (1)

with parametric linear associations

ηj (z) = αj0 + αT
j z, (2)

where αj = (αj1, . . . , αjq), j = 1, . . . , p. If the model
holds, i.e., the correlations between the manifest variables
are explained by a smaller number of latent variables,
then the manifest variables are conditionally independent
given the latent ones. This means that ε(j), j = 1, . . . , p,
in (1) are independent, and it is usually assumed that ε =
(ε(1), . . . , ε(p))T ∼ N(0,�) with � = diag(ψ1, . . . ,ψp).
Note that the elements ψj are called uniquenesses, and
the slopes αT

j are called factor loadings. Finally Gaussian
independent distribution is assumed for z ∼ N(0, I ), and
cov(z(l), ε(j)) = 0 for all j and l. Hence the FA model sat-
isfies E[x | z] = α0 + αz and Var(x) = ααT + � , with
α0 = [αj0]T

j=1,...,p and α = [αj ]T
j=1,...,p . The FA model’s
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parameters � and αj can be estimated using the maximum
likelihood estimator (MLE) based on the sample covariance
matrix S of the manifest variables which is supposed to have
a Whishart distribution (Jöreskog 1967). Generalized least
squares estimation is an alternative (Browne 1984). Latent
scores ẑi can also be estimated using for example Bartlett’s
factor scores given by

zi =
(

α′�−1α
)−1

α′�−1xi

with α and � replaced by their estimates (for example, see
Mardia et al. 1979, p. 274).

Applications of FA are numerous. In psychometrics for
instance, FA is used to construct measurement scales: given
the answers to questionnaire items (manifest variables), the
scores of the participants are reduced to scores on the la-
tent variables for a better understanding of the phenomenon
under investigation. Recent publications include Donncha
et al. (2008) who examine the structure of the statistics anx-
iety rating scale among UK psychology students and Boelen
et al. (2008) who study the factor structure of posttraumatic
stress disorder symptoms.

An important issue is the number of latent variables q

which is, in general, unknown and needs to be estimated
in practice; see for instance Bartholomew and Knott (1999)
and Skrondal and Rabe-Hesketh (2004) as general refer-
ences and Conne et al. (2010) for a recent treatment of model
selection in generalized FA. Selection of q is a separate issue
that we do not treat here.

It should also be noted that FA, as a dimension reduction
method, has close links to another well-known dimension
reduction method called principal component analysis. Tip-
ping and Bishop (1999) propose probabilistic PCA which
results as a special case of FA in which the uniquenesses are
all equal, i.e., � = ψI . PCA and its extensions are used in
many applications such as pattern recognition (see e.g. Dry-
den et al. 2009), chemometrics, and biomedical studies.

In practice, a (linear) FA model does not always fit in
a “reasonable way” the data, as may be revealed by di-
agnostic plots. Departures from the assumption are of two
types: functional or structural. The first is concerned with
small model deviations, such as outliers in the data set, that
can be dealt with using robust statistics; see for instance
Yuan and Bentler (1998) and Dupuis Lozeron and Victoria-
Feser (2010) for robust methods in confirmatory FA, Mous-
taki and Victoria-Feser (2006) for robust inference in gen-
eralized linear latent variable models, and Mavridis and
Moustaki (2009) for diagnostic methods for FA with binary
data.

Structural departure from the assumptions is the one we
are interested in. It is concerned with wrong model specifi-
cation, which can take the following forms:

• the latent variables are not normal,
• the relationship between the manifest and the latent vari-

ables is nonlinear,
• a combination of the two.

Since the latent variables are not observed, it is difficult to
distinguish between the two types of violations. Indeed, a
non-normal latent variable could be transformed into a nor-
mal one (by means of the normal quantiles on the corre-
sponding order statistics) and the linear relationship between
the manifest and latent variables changed into a nonlinear
one. In the other case, however, a nonlinear relationship can-
not always be made linear by changing the distribution of
the normal latent variable, unless the transformation from
the nonlinear to the linear relationship is the same across all
manifest variables. Since the choice of the distribution for
the latent variables is arbitrary (at least for the interpretation
of the results, see for instance Bartholomew 1988), it can be
fixed to be normal so that when the FA model does not fit
the data at hand, a more flexible model can be chosen that
allows for nonlinear relationships between the manifest and
the latent variables.

A general framework for (parametric) nonlinear FA is
given by generalized linear latent variable models (GLLVM)
in the spirit of generalized linear models (McCullagh and
Nelder 1989). Bartholomew and Knott (1999) and Mous-
taki and Knott (2000) have set the framework by extend-
ing the work of Moustaki (1996) and Sammel et al. (1997);
see also Skrondal and Rabe-Hesketh (2004). Extensions
of FA to nonlinear relationships have also been proposed
outside this framework by allowing ηj (z) in (1) to take
a (parametric) nonlinear form. Gibson (1960) proposes to
discretize the factors to allow for nonlinear relationships,
while McDonald (1962) (and McDonald 1965; Etezadi-
Amoli and McDonald 1983) propose for ηj (z) a paramet-
ric expansion on orthonormal polynomials of low degree.
Mooijaart and Bentler (1986) further assume that the fac-
tors are random normal variables. Kenny and Judd (1984)
consider for ηj (z) a linear combination of the latent vari-
ables, their pairwise interactions and possible quadratic ef-
fects. Several estimators have then been proposed for the
(parametric) nonlinear FA model, among which we find
product indicator methods (see e.g. Ping 1996; Wall and
Amemiya 2001), two stage least squares (Bollen 1996),
maximum likelihood (see e.g. Klein and Moosbrugger 2000;
Lee and Zhu 2002), and the method of moments (Wall and
Amemiya 2000). A general overview of other (parametric)
nonlinear methods can be found in Yalcin and Amemiya
(2001) who also discuss possible identification problems in
the nonlinear case. Other nonlinear extensions are also pos-
sible, and for example Proust et al. (2006) have proposed a
parametric transformation of the manifest variables together
with a linear form for ηj .
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Fig. 1 Scatter diagram of simulated manifest variables from two Gaussian latent variables and three nonlinear associations (first three) and 3
linear associations (last three). Data simulated using n = 250,p = 6, q = 2

In this paper we propose an additive nonparametric esti-
mation of the associations ηj , j = 1, . . . , p, in (1) between
latent and manifest variables. In some ways, we extend the
work of McDonald (1962) who considered polynomials of
high degrees. A nonparametric approach provides a more
flexible extension to not only the parametric linear case (2),
but also to the parametric nonlinear extensions. Nonpara-
metric techniques allow to fit data better without impos-
ing too strong of a structure whether linear or nonlinear.
The nonparametric estimation can be used for exploratory
data analysis to assess the linearity of ηj , the Gaussianity
of the data, hence to help practitioners choose a correct la-
tent variable model that can then be estimated in a paramet-
ric fashion. The nonparametric estimation is challenging in

latent variable modeling since the latent variables are not
observed. Nonparametric extensions to settings using latent
variables have been proposed such as in mixed linear models
Ghidey et al. (2004) or generalized mixed linear models Hall
et al. (2008); see also Ramsay and Silverman (2005). The
methodology described in Sect. 2 is simple and fast to com-
pute. It is based on additive nonparametric regression which
is a well established research field (see Hastie et al. 2001 for
an overview). We evaluate its advantage in terms of mean
squared errors compared to the standard (parametric linear)
FA on a Monte Carlo simulation study in Sect. 3. Finally
we illustrate the method on a data set made of psychological
measurements and show that a nonparametric approach can
give another insight to the data analysis in Sect. 4.
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Fig. 2 Parametric linear (dashed lines), nonparametric (solid lines) and true (dotted lines) association between latent and manifest variables. Data
simulated using n = 250,p = 6, q = 2



Stat Comput (2012) 22:647–659 651

2 Nonparametric estimation

The classical FA model assumes that the associations be-
tween latent and manifest variables are monotone in a linear
way. This might not be true and cause severe bias in the es-
timation of the latent variables and the associations between
latent and manifest variables. For example, consider the set-
ting in which we have p = 6 manifest and q = 2 latent vari-
ables; out of the six associations, the first three are nonlinear,
but additive and monotone, as defined by (4) in Sect. 3, in-
cluding an elbow, exponential, cubic and step functions. The
last three are linear with loadings defined by (5). We gener-
ate n = 250 observations per manifest variables from this
model. We then look at the scatter diagram of the manifest
variables in Fig. 1: it is clear that the relationship between
the first three manifest variables is not linear, while linear as-
sociations seem to be true for the last three. Without knowl-
edge of the true nonlinear model, it is however unclear if
an underlying latent structure can explain the observed rela-
tionships.

In such a situation, a FA would not be able to capture the
underlying relationship between the manifest and the latent
variables. To illustrate the danger of linear parametric esti-
mation on our simulated data, the plots of Fig. 2 represent
with dashed curves the estimated associations assuming lin-
earity: while the fit is good for the six linear associations, the
nonlinear ones are badly estimated. A clear improvement is
observed with the solid curves that represent the nonpara-
metric estimate we are proposing: we cannot only see the
linear associations, but the nonlinear ones are clearly rec-
ognizable as elbow, step, cubic and exponential trends. Sec-
tion 3 quantifies the advantage of using our nonparametric
estimator on a Monte-Carlo simulation.

We now describe our methodology that is based on the
additive model framework (Hastie and Tibshirani 1986,
1990). The idea consists of allowing the model to go be-
yond a rigid parametric linear model. To avoid the curse of
dimensionality in high dimension, we assume an additive
model, which offers a compromise between flexibility and
estimation efficiency (Stone 1985). Additive models assume
that the multivariate association has the special additive
structure

ηj (z) = αj0 +
q

∑

l=1

ηjl(z
(l)),

where ηjl are univariate functions, pq in total, that will be
estimated nonparametrically. They can then be plotted, as
in Fig. 2, to visualize the univariate trends. Additive mod-
els have the advantage that they can be plotted on one-
dimensional graphs and can be interpreted. As opposed to
the standard additive model regression problem, not only

the ηjl but also the latent variables z are unknown in FA. To
develop a nonparametric estimator in this challenging set-
ting, the additional assumption we make is that the associa-
tions ηjl between manifest and latent variables are mono-
tone. This enables one to use any estimator of the latent
scores that respects this monotonicity as a starting point for
estimating the latent variables. More precisely, given esti-
mated latent scores ẑ

(l)
i , l = 1, . . . , q , i = 1, . . . , n based

on a standard FA model, their order can be used to es-
timate the quantile by taking Gaussian theoretical quan-
tiles. They are then used as regressors in a monotone ad-
ditive model framework to estimate ηjl in a nonparamet-
ric fashion. If the relationships between the manifest and
latent variables are monotone, then the FA model provides
a linear approximation of these relationships and the factor
scores provide an ordering of the observations on the latent
space.

Hence, the nonparametric estimation of the relationship
between the manifest and latent variables we propose uses
the ordering of the latent scores for constructing normalized
scores with the normal quantiles transformation that pre-
serves this ordering. We then use these normalized scores as
covariates. In other words, to fit a monotone additive latent
variable model nonparametrically, we propose the following
two step estimator:

1. Compute the latent scores as if the associations were lin-
ear. Assuming the associations are monotone, this pro-
vides an estimate of the order o1, . . . , on between (true)
latent scores z

(q)

1 , . . . , z
(l)
n , such that the ith order statis-

tics is z
(l)
[i] = z

(l)
oi

. Using these estimated orders ôi , fix the
estimated latent variables as the theoretical quantiles of
the assumed latent variable distribution, e.g., the standard
normal �:

z̃
(l)
i = �−1(ôi/(n + 1)); (3)

2. Estimate the nonlinear associations using backfitting
with a univariate isotone nonparametric estimator. For
additive model regression, various estimators have been
proposed based on splines (Buja et al. 1989; Fried-
man and Silverman 1989; Wood 2000) or wavelets (see
Sardy and Tseng 2004 and references therein). To con-
strain monotonicity here, we use the isotone func-
tion of the EBayesThresh library in R. The com-
plexity of this least squares fit with monotonicity con-
straint is O(n). Note that, although isotone belongs
to the EBayesThresh library, it has nothing to do
with thresholding and empirical Bayes, but is rather
based on the pool adjacent violator algorithm. Mam-
men and Yu (2007) studied some properties of iso-
tone regression with backfitting, which is the procedure
we are proposing here. In particular they show conver-
gence of the algorithm for given predictors; our pre-
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Fig. 3 Root MSE of prediction ratio of the parametric linear relative to
the nonparametric estimator of the association between latent and man-
ifest variables. Data simulated using respectively n = 250,500,1000

and p = 6, q = 2, 200 samples. The boxplots for (x(2), z(2)) have been
upper truncated at 10 living out respectively 8, 6 and 1 root MSE
ratios
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Fig. 4 Scatter diagram of the selective attention data

dictors here are the quantiles (3) obtained from esti-
mating the latent variables with FA, and are considered
fixed.

The pq estimated functions corresponding to the esti-
mated latent variables scores, possibly with confidence in-
tervals, can then be visualized. The confidence intervals
can be computed using the bootstrap (Efron and Tibshirani
1993) as is done for the FA model for instance by Ichikawa
and Konishi (1995). This enables the data analyst to check
whether Gaussian and linear associations is an appropriate
model, or if such assumptions of the standard FA model
are strongly violated. If the relationship is not linear, then
either the assumed latent variables distribution and/or the
linearity assumption are wrong. Interestingly, if the asso-
ciations ηjl(·) are identical and strictly increasing for all
j (i.e., ηl := ηjl), a linear fit can be achieved by bend-
ing the corresponding estimated latent variable according to

ž
(l)
i = η−1

l (z̃
(l)
i ).

Finally, in latent variable models, the identification prob-
lem is an important issue (see for instance Yalcin and
Amemiya 2001). The estimation method we propose inher-
its the identification problems of the parametric linear FA
model since the latter provides the (transformed) latent vari-
ables scores that are then used as fixed covariates in the
nonparametric regression. To avoid multiple solutions in FA
models, it is well-known that a rotation, such as the varimax
rotation, can be used for the factor loadings matrix.

3 Simulation

In this section, we illustrate the advantage of using a non-
parametric estimator on simulated data. We consider the set-
ting in which we have p = 6 manifest and q = 2 latent vari-
ables; out of the six associations, the first three are nonlinear
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Fig. 5 Scatter diagram of the log-transformed selective attention data

according to

η1(z
(1), z(2))

= {3z(1) · 1(z(1) < 0) + 30z(1) · 1(0 ≤ z(1))} − 5 exp(z(2))

= η11(z
(1)) + η12(z

(2))

η2(z
(1), z(2))

= {−50 · 1(z(1) < 0) + 20 1(0 ≤ z(1) < 2)

+ 100 · 1(2 ≤ z(1))} + 0

= η21(z
(1)) + η22(z

(2))

η3(z
(1), z(2))

= 2(z(1))3 + 5 exp(z(2))

= η31(z
(1)) + η32(z

(2)),

(4)

where 1(·) is the indicator function which takes the value of
one if the argument is true and zero otherwise. Note that the
associations are additive and monotone but nonlinear, with
nonlinear terms like an elbow function η11, two exponential
functions η12 and η32, a cubic term η31 and a step func-
tion η21. They have been scaled to have comparable signal
to noise ratio. The other three associations are linear with
loadings values

α = [αjl]j=4,...,6,l=1,2 =
⎡

⎣

−0.91 4.02
12.08 3.74

−10.00 0.21

⎤

⎦ . (5)

In order to study the performance of the nonparametric
estimator and compare it to the parametric linear one, we
simulate 200 samples of size n = 250 from the nonlinear
FA model with p = 6 manifest variables and q = 2 latent
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Fig. 6 Scatter diagram of normalized versus raw Bartlett’s factorial scores for the psychology example

variables associated using the relationships given in (4) and
with the loadings given in (5). We estimate the mean squared
errors (MSE) taking the average over the samples of the
squared differences between the estimated associations (ei-
ther nonparametric or parametric linear) and the true asso-
ciations. Figure 3 presents the boxplots of the ratio of the
root MSE between the parametric linear and nonparametric
estimates for increasing sample sizes n = 250, n = 500 and
n = 1000. The horizontal line is set to the value of one, so
that ratios above this line denote a better estimation with the
proposed nonparametric method than with the parametric
linear one. For the nonlinear associations (first three rows)
the root MSE ratios show a better performance for the non-
parametric estimator the larger the sample size n. For exam-
ple, with (x(1), z(1)), the median root MSE ratio goes from
3.55 with n = 250, to 4.95 with n = 500 and up to 6.27 with
n = 1000. For the linear associations (last three rows), the
performance of the parametric linear estimator is better, and
the root MSE ratio remains generally stable across sample
sizes. For example, with (x(6), z(1)), the median root MSE

ratio is 0.887 with n = 250, 0.876 with n = 500 and 0.898
with n = 1000. As far as running time is concerned, the aver-
age CPU time of the nonparametric estimator is 1.0,1.4,2.2
for n = 250,500,1000, respectively, which tends to show
a linear association with the number n of observations. We
conclude that the gain of using the isotone additive nonpara-
metric estimator is important when some associations are
potentially nonlinear.

4 Application

The data come from a large study in psychology (de Rib-
aupierre et al. 2003) aimed at the study of selective attention
(Dempster and Brainerd 1995) and processing speed (Salt-
house 1996). Within this study and for the purpose of illus-
trating our method, we have selected 8 variables measured
on 544 participants. The first two variables (NP1 and NP2)
are median response times in milliseconds for two condi-
tions of a negative priming task (Tipper and Cranston 1985),
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Fig. 7 Nonparametric (solid line) and parametric linear (dashed line) estimated relationships between the latent and the manifest variables of the
psychology example

the third and fourth variables (IS1 and IS2) are median re-
sponse times in milliseconds for two conditions of an in-
tegrated stroop task, and the fifth and sixth variables (DS1
and DS2) are median response times in milliseconds for
two conditions of a dissociated stroop task (MacLeod 1991).
These six variables are supposed to measure indirectly and
at different levels the selective attention of the subjects. The
last two variables (Let and Sig) are the total time in sec-
onds for completing two tasks for respectively a comparison

of letters and a comparison of signs (Salthouse 1991). They
are supposed to measure indirectly and at different levels
the processing speed of the subjects.

The scatter of the data is given in Fig. 4. The data clouds
do not really fit into ellipsoids, hence the multivariate nor-
mality of the manifest variables, implied by the multivariate
normality of the latent variables and the linearity of the con-
ditional mean, does not look like a reasonable assumption,
so that standard FA should not be employed here. In such
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Fig. 8 Nonparametric (solid line) and parametric linear (dashed line) estimated relationships between the latent and the manifest variables of the
psychology example (log-transformed)

situation, an alternative is to hunt for a good transformation
of the variables. With measures taken on the time scale, one
can resort to a log-transformation of the manifest variables.
The scatter diagram of the log-transformed data is given in
Fig. 5. The data clouds are now more in conformity with the
normality assumption and a comparison between a classical
FA and our nonparametric approach will confirm whether
the former model is suitable. It should be noted that the ap-
proach we adopt here is an exploratory data analysis in that

the fit of the different models are assessed graphically rather
than quantified with a goodness-of-fit measure, which in the
present case is an open research area. The aim is to inves-
tigate whether a given parametric model is reasonable for a
given dataset.

So we estimate a parametric linear and nonparametric
FA on both the original and the log-transformed data. In
Fig. 6 are presented the scatter plots of the normalized ver-
sus raw Bartlett’s factorial scores, i.e., z̃

(l)
i versus ẑ

(l)
i . With
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this example, we see the normalization has an effect on the
transformed latent scores, suggesting that the type of non-
linear relationship might be the same across manifest vari-
ables. Figures 7 and 8 show the plots of the parametric linear
(dashed lines) and nonparametric (solid lines) estimated as-
sociations between each manifest and latent variable on the
original and on the log-transformed data: when the data are
not transformed, the associations are overall nonlinear and
similar for all pairs of manifest/latent variables. This sug-
gests that the same transformation can be used for the latent
variables or for the manifest variables. When the data are
log-transformed, the relationships become linear for some
associations, but not quite linear for a few of them. Hence
in this example, the isotone additive fit shows that a log-
transformation may not be suitable yet.

5 Conclusion

FA models are very widely used in many disciplines. They
suppose linear associations between manifest and latent
variables, a hypothesis that can be violated in practice. In
this paper we extend FA models to monotone additive la-
tent variable models and propose a procedure for estimating
nonparametrically the nonlinear relationships between man-
ifest and latent variables. The resulting analysis assesses the
FA model and can possibly propose transformations then ap-
propriately fit a parametric nonlinear model. Moreover, it is
possible to extend the method to the more general frame-
work of GLLVM, which is the scope of future research.
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