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Abstract The applicability limits of the closed-form

solution to the problem of ground response to tunnelling

are sounded out by systematically investigating the effect

of deviations from some of the important assumptions

underlying the closed-form solution. The ground response

curve (GRC) expresses the relationship between tunnel

support pressure and the radial displacement of the tunnel

boundary on the basis of a rotationally symmetric model.

The assumptions underlying rotational symmetry are a

circular tunnel, a hydrostatic and uniform initial stress

field, an isotropic and homogeneous ground and uniformly

distributed support pressure. Deviations from these

assumptions generally necessitate potentially time-con-

suming numerical analyses. The paper revisits the classical

problem of tunnel excavation in a linearly elastic, perfectly

plastic ground obeying the Mohr–Coulomb yield criterion,

and analyses the effects of non-uniformity and anisotropy

of the initial stress field and of a non-circular tunnel

geometry. The results show that the GRC also provides a

reasonably accurate approximation of average tunnel con-

vergence for a wide range of ground conditions that violate

rotational symmetry.

Keywords Tunnelling � Ground response curve � Non-

uniform initial stress field � Anisotropic initial stress field �
Non-circular tunnel geometry

List of symbols

a Tunnel radius

A0 Cross-sectional area of the tunnel

C Depth of cover

D Tunnel diameter

E Young’s modulus of the ground

fc Uniaxial compressive strength of the ground

H Horizontal convergence

k Coefficient of lateral pressure

k0 Normalized stress deviator

lx, lyl, lyu Dimensions of the computational model

S Perimeter of the tunnel cross section

s Tunnel boundary local co-ordinate

u Displacement

uA, uB, uC Radial displacements of characteristic points

uFEM Average radial displacement of excavation

boundary from FEM

uGRC Radial displacement according to the GRC

un Displacement component normal to the tunnel

boundary

ux,axis Horizontal displacement at the tunnel axis

uy,crown Vertical displacement of the tunnel crown

uy,floor Vertical displacement of the tunnel floor

V Vertical convergence

x Co-ordinate

y Co-ordinate

Greek symbols

c Unit weight of the ground

d Normalized difference between the horizontal

and vertical convergence

DA Change of cross-sectional area

eu Error of the GRC

m Poisson’s number

n Normalized local co-ordinate

r0 Initial stress at the tunnel axis

r0
* Transformed initial stress

r0 Average initial stress at the tunnel axis

rH0 Initial horizontal stress
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rV0 Initial vertical stress

rs Support pressure

rs
* Transformed support pressure

ryu Vertical stress at the upper model boundary

u Angle of internal friction

w Dilatancy angle

1 Introduction

The ground response curve (GRC, Panet and Guellec 1974)

is used to assess ground deformations and to analyse the

interaction between ground and tunnel support. The exist-

ing closed-form solutions for the GRC are also useful for

plausibility control with respect to the results of complex

numerical calculations and for estimating the tunnel

deformations occurring before support installation (Ber-

naud and Rousset 1996; Curran et al. 2003; Graziani et al.

2005; Oreste 2009; Svoboda and Mašı́n 2010).

The analytical solutions presented, e.g., by Panet and

Guellec (1974) are based upon a rotationally symmetric

model. The underlying assumptions are a circular and

uniformly supported tunnel, a homogeneous and isotropic

ground, and a hydrostatic and uniform initial stress field.

As the condition of radial symmetry is rarely satisfied in

tunnelling practice, however, researchers have also inves-

tigated ground response under conditions where one or

more of the basic assumptions underlying radial symmetry

are violated.

Detournay and Fairhurst (1987) investigated the influ-

ence of a non-hydrostatic stress field for a material obeying

the Mohr–Coulomb failure criterion and determined the

limit coefficient of lateral pressure for which the rotation-

ally symmetric closed-form solution is reasonably accurate

with respect to the extent of the failure zone and radial

displacements. According to Detournay and Fairhurst

(1987), the limit coefficient depends on the ratio of uniaxial

compressive strength to initial stress. Carranza-Torres and

Fairhurst (2000) followed a similar approach in their

investigation into the ground reaction curve under an

assumption of the Hoek–Brown failure criterion. The

assumption of a hydrostatic initial stress field applies more

to deep tunnels, where, as noticed by Eisenstein and

Branco (1991), the variation with depth in the initial

stresses is small in relation to the average stress for the

elevation of the tunnel. The applicability of the GRC to

shallow tunnels was studied by Vermeer et al. (2002) and

Gonzáles-Nicieza et al. (2008). Vermeer et al. (2002) used

an elasto-plastic constitutive model that involves softening,

while Gonzáles-Nicieza et al. (2008) assumed a linearly

elastic material behaviour and investigated the ground

response for different tunnel shapes and a fixed ratio of

horizontal to vertical stress of 0.8. Based on the numerical

results, they determined a series of corrective functions for

estimating radial displacement.

The present paper revisits the question of GRC appli-

cability by means of comparative numerical computations.

More specifically, the paper systematically analyses the

effects of tunnel geometry, anisotropy and non-uniformity

in the initial stress field for a wide range of ground strength

parameters, and shows that the analytical GRC represents a

sufficiently accurate model for most practical purposes.

All numerical calculations have been carried out using

the FEM-code HYDMEC developed at the ETH Zurich.

The assumed constitutive behaviour is isotropic, linearly

elastic and perfectly plastic according to the Mohr–Cou-

lomb failure criterion with the non-associated plastic flow

rule.

Sections 2 to 4 present separate analyses of each of the

assumptions underlying radial symmetry: We start by

investigating the effects of non-uniformity in the initial

stress field and free surface (shallow tunnelling), while

maintaining the assumptions of an isotropic initial stress

tensor and a cylindrical tunnel (Sect. 2); we continue with

the effects of initial stress anisotropy by considering a

cylindrical tunnel in a uniform initial stress field (Sect. 3);

and we close with an investigation into the influence of the

tunnel’s cross-sectional profile (circular, horseshoe or

D-shaped) by assuming that the initial stress field is iso-

tropic and hydrostatic (Sect. 4). Finally, Sect. 5 discusses a

numerical example that violates all three of these

assumptions simultaneously.

2 Shallow Tunnel and Non-Uniform Initial Stress Field

This section investigates the influence of the overburden

C on the convergences of an unsupported cylindrical tunnel

(diameter D), assuming a hydrostatic stress field. The dif-

ference from the analytical GRC is due to the initial stress

gradient (caused by the unit weight c of the ground) and the

existence of a stress-free surface relatively close to the

tunnel.

The stress gradient influences stress distribution in the

vicinity of the opening. In shallow tunnels, the stress dif-

ference between the crown and the invert may be signifi-

cant relative to the average stress prevailing at the tunnel

axis. The boundary effect associated with the free surface

is relevant particularly in the case of a low strength ground,

because plastic stress redistribution around the opening

practically ceases when the plastic zone reaches the ground

surface. As discussed by Anagnostou (2001) and Vermeer

et al. (2002), a minimum support pressure is then necessary

to avoid collapse. At support pressures close to this critical

value, the deformations grow asymptotically to infinity. In

2 R. Schürch, G. Anagnostou

123



the model underlying the analytical GRC (an infinite disc

without body forces), stress redistribution can occur with-

out restraint, and an equilibrium is always possible (the

only exception being that of an unsupported tunnel through

cohesionless ground).

Figure 1 shows the model used for the numerical cal-

culations. The dimensions of the model are lx = lyl =

8D and lyu = C. To reduce computational effort, the ver-

tical symmetry of the system is exploited. The upper model

boundary represents the ground surface, which is consid-

ered to be stress-free (ryu = 0). The lateral far field

boundary is fixed only in the horizontal direction. For the

chosen size of the model, the effects of the far field

boundaries are irrelevant. The initial vertical stress rV0 is

equal to c (D/2 ? lyu - y), while the initial horizontal

stress rH0 = rV0 (i.e. the coefficient of lateral pressure

k = 1). The computational domain was discretized by

3,600 isoparameric, 8-node elements with quadratic dis-

placement shape functions. The finite element model has

14,701 nodes and 21,778 degrees of freedom.

As pointed-out by Poulos and Davis (1974), the closed-

form solution for a linearly elastic halfspace under line

loading shows that ‘‘the displacements in a semi-infinite

mass are only meaningful if evaluated as the displacement

of one point relative to another point, neither point being

located at infinity’’. This is also true for the linearly elastic,

plane strain, shallow tunnel problem (Fig. 2c), because this

is actually a generalization of the line or strip loading

problem (Fig. 2a, b, respectively). For this reason, we

consider vertical convergence V and horizontal conver-

gence H here rather than the absolute displacements:

V ¼ uy;floor � uy;crown; H ¼ 2 ux;axis; ð1Þ

where uy,crown and uy,floor denote the vertical displacements

(upwards positive) of the crown and of the floor, respec-

tively, and ux,axis is the horizontal displacement of the

tunnel wall (inwards positive).

To measure the error eu introduced by the assumption of

rotational symmetry, the deviation of the radial displace-

ment uGRC of the tunnel boundary (obtained from the

closed form solution) from the average radial displacement

uFEM (calculated by the FEM) is taken into account:

eu ¼
uGRC � uFEM

uFEM

; ð2Þ

where

uFEM ¼ 0:25 H þ Vð Þ: ð3Þ

The deviation of the numerical results from rotational

symmetry will be studied by considering the differences in

convergence between the horizontal and vertical directions,

expressed in terms of either the ratio V/H or the normalized

difference d:

d ¼ V � H

0:5 V þ Hð Þ : ð4Þ

All displacement components, including those appearing

in Eqs. 1 to 3, depend on the geometric parameters of the

problem (C, D) and the material constants of the ground

(i.e. the unit weight c, the Young’s modulus E, the

Poisson’s ratio m, the uniaxial strength fc, the friction angle

u and the dilatancy angle w). In general,

u ¼ f C; D; c; E; m; fc; u; wð Þ; ð5Þ

where u denotes the displacement of an arbitrary point in

an arbitrary direction. For dimensional reasons, and due to

a general property of elasto-plastic continua, according to

which the displacements depend linearly on 1/E

(Anagnostou and Kovári 1993), the general Eq. 5 can

also be written in the following way:

Fig. 1 Computational model

Fig. 2 Elastic halfspace a under line loading, b under strip loading,

and c with excavation induced unloading of the tunnel boundary
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E u

r0D
¼ f

fc

r0

;
C

D
; m;u;w

� �
; ð6Þ

where r0 denotes the initial stress at the depth of the tunnel

axis, i.e. r0 = (C ? D/2)c. On account of Eqs. 2, 4 and 6,

the error eu and the convergence difference d depend only

on fc/r0, C/D, m, u and w.

Figure 3a and b shows the error eu and the convergence

difference d, respectively, as a function of the ratio C/D

and the normalized uniaxial ground strength fc/r0. Figure 4

provides a more complete picture of the behaviour of the

model by presenting the deformed tunnel shape and the

extent of the overstressed region in four cases (indicated by

the points A, B, C and D in the diagrams of Fig. 3). Cases

A, B and C illustrate the effect of the uniaxial compressive

strength of the ground (for a fixed depth of cover), while

cases C and D show the effect of depth of cover (for the

same normalized strength fc/r0).

According to Fig. 3a, the smaller the depth of cover and

the lower the strength of the ground, the larger will be the

error introduced by the assumption of radial symmetry.

Due to the asymmetric failure mechanism (Fig. 4, case C),

the deviation between vertical and horizontal convergence

also increases with decreasing overburden and ground

strength. In case C, where C/D = 1 and fc/r0 = 0.5, the

error amounts to 20% (Fig. 2a). Figure 4 shows that in this

case the plastic zone reaches the ground surface. It should

be noted that the calculation failed to reach equilibrium in

case C and, consequently, the actual error eu is even bigger

than indicated by Fig. 3a.

As long as the ground strength and the overburden are

not too low, the effect of the free surface is not great and

the deviation of the closed-form solution from the numer-

ical results is small, despite the underlying assumption of

rotational symmetry. Figure 3 indicates that at C/D-ratios

higher than about 4 (i.e. at depths of 40–50 m for typical

cross sections of traffic tunnels) a tunnel can be considered

deep in the sense that the initial stress gradient and the free

surface do not play an important role anymore.

3 Non-Hydrostatic Initial Stress Field

A cylindrical unlined deep tunnel is considered in a uni-

form but non-hydrostatic initial stress field. Based upon

Anagnostou and Kovári (1993) as before, the following

general relationship connects the displacements with the

parameters of the problem:

Eu

r0D
¼ f

fc
r0

; k; m;u;w

� �
; ð7Þ

where r0 denotes the average initial stress at the tunnel

axis:

r0 ¼
rV0 þ rH0

2
¼ rV0

1þ kð Þ
2

: ð8Þ

Due to the symmetry of the problem, the results

obtained for a specific value k of the lateral stress

coefficient can also be applied to the case with the

coefficient 1/k by rotating the axes by 90� (Carranza-Torres

and Fairhurst 2000). Instead of k, the normalized stress

deviator k0 may also be considered as a measure of the

anisotropy of the initial stress tensor:

k0 ¼ rV0 � rH0j j
0:5 rV0 þ rH0ð Þ ¼ 2

1� kj j
1þ k

: ð9Þ

The computational model of Fig. 1 is considered again,

but with the following differences from the last Section: all

far field boundaries are located at a distance of

lx = lyl = lyu = 8D; the model is initialized with a

uniform stress (rV0, rH0); the initial vertical stress is

prescribed as a boundary condition at the upper boundary

(ryu = rV0). The numerical calculations were carried out

for normalized stress deviators k0 between 0 and 0.66

(i.e., 0.5 \ k \ 2), for normalized compressive strengths

Fig. 3 Shallow unsupported cylindrical tunnel: a error eu of the GRC

and b normalized difference d of vertical and horizontal convergence

as a function of the normalized overburden C/D and of the normalized

ground strength fc/r0
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fc=r0 = 0.2–3 and for the friction angles u of 20�, 30� and

40�. Figure 5 presents the numerical results in the same

manner as in Sect. 2, the only difference being that the

abscissae contains the normalized stress deviator k0 (or,

which is equivalent, the coefficient of the lateral stress k) as

independent parameter. The effect of the friction angle u
(all other parameters remaining constant) is rather small

even in the case of overstressed ground (fc=r0 = 0.2) and it

disappears, of course, if the behaviour is elastic or almost

elastic (fc=r0 [ 0.5).

Let us consider first the special case of linearly elastic

behaviour. In this case the principle of superposition is

valid, i.e. the boundary displacements are equal to the sum

of the displacements caused by the hydrostatic part of the

initial stress and those caused by the purely deviatoric part

of the initial stress. Assuming (for simplicity and without

loss of generality) that k \ 1, the decomposition of the

initial stress into these two parts reads as follows:

rH0

rV0

� �
¼

rV0þrH0

2
rV0þrH0

2

� �
þ � rV0�rH0

2
rV0�rH0

2

� �

¼ r0
1

1

� �
þ � k0

2
k0
2

� �� �
: ð10Þ

The hydrostatic part produces a uniform convergence,

which is proportional to the average initial stress r0. The

deviatoric part produces only antisymmetric deformations,

i.e. the horizontal and vertical convergences have the same

magnitude, but opposite signs, and are proportional to the

normalized initial stress deviator k0 (Eq. 10). This is why in

the case of a high normalized strength the normalized

difference d between the vertical and horizontal

convergences increases linearly with k0 (see the lines for

fc=r0 = 3 in Fig. 5d–f), while the average displacement

error eu of the GRC is equal to zero, independently of the

initial stress deviator k0 (see lines for fc=r0 = 3 in Fig. 5a–c).

In general, the error eu of the GRC increases with the

initial stress deviator k0 and with the degree of overstress-

ing, i.e., with decreasing values of normalized strength

fc=r0 (Fig. 5a–d). The effect of strength on the error eu is

nevertheless small at fc=r0—ratios lower than 1. In the case

of overstressed ground (0.2 \ fc=r0 \ 1) and high k0 val-

ues, the error eu reaches 20–30% (the maximum value

applies to k0 = 2/3, which corresponds either to a very low

or to a very high lateral pressure coefficient k of 0.5 or 2,

respectively). For the range k = 0.7–1.5 suggested by

Carranza-Torres and Fairhurst (2000), Fig. 5 shows that the

maximum error eu amounts to just 15%. These results agree

with Detournay and Fairhurst (1987), according to which

the closed-form, rotationally symmetric solution approxi-

mates reasonably well to the extent of the overstressed

region and the magnitude of the average convergence if

k [ 0.6 (or, equivalently, if k0\ 0.4). The validity of these

results was also confirmed by Carranza-Torres and Fair-

hurst (2000) for the case of a material obeying the Hoek–

Brown failure criterion.

As expected, the difference d between the horizontal and

vertical convergence increases with the initial stress devi-

ator k0, but its sign depends on the normalized strength

fc=r0, i.e. on the degree of overstressing. The reasons for

this are well understood since Detournay (1983): In the case

of an elastic or almost elastic response, the greatest con-

vergence occurs in the direction of the maximum unloading,

i.e. in the direction of the highest principal initial stress (this

is the horizontal direction in the example of Fig. 6a, where

Fig. 4 Shallow unsupported cylindrical tunnel: deformed tunnel shape and extent of the overstressed region for four cases indicated by the

points A B, C and D in Fig. 3 (parameters like Fig. 3, displacement values for D = 10 m, E = 100 MPa, r0 = cD (C/D ? 0.5), c = 25 kN/m3)
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k = 2). This changes in the case of low normalized strength

fc=r0, because the ground becomes more overstressed and

experiences larger plastic deformations in the zones of high

initial tangential stress (above the crown and beneath the

floor in the example of Fig. 6b), thus squeezing more in the

direction of the lowest initial stress (i.e. in the vertical

direction in the example of Fig. 6b).

The greatest convergence differences d between the

horizontal and vertical directions occur either in the case of

a practically elastic response (which is not problematic

from an engineering point of view) or in the case of heavily

overstressed ground (which is rather rare). Apart from

these cases, the normalized difference between the vertical

and horizontal displacement is less than 50%.

4 Non-Circular Tunnel Cross Section

Next we investigate the influence of the tunnel shape, while

maintaining the homogeneity and isotropy of the initial

stress field. More specifically, we compare the conver-

gences of a horseshoe-shaped or D-shaped profile (Fig. 7b,

c, respectively) to those of the reference case (a circular

cross section, Fig. 7a), for which the GRC is valid in a

strict mathematical sense. Figure 7 shows the deformed

tunnel cross section, the plastic zone and the distribution of

the plastic strain along the symmetry axis beneath the

invert for a given parameter set (material constants, tunnel

size and initial stress) and for the three shapes. The very

small plastic strains developing in the zone immediately

beneath the flat invert (Fig. 7b, c) are due to out-of-plane

plastic flow.

Due to the non-uniform displacements in a non-circular

excavation boundary, we treat the change in the cross-

sectional area DA of the tunnel as an overall measure of

convergence. Neglecting second order terms,

DA ¼
Z
S

unds; ð11Þ

Fig. 5 Deep cylindrical tunnel in non-hydrostatic initial stress field:

a–c Error eu of the GRC and d–f, normalized difference d of vertical

and horizontal convergence for u = 20�, 30� and 40� as a function of

the normalized initial stress deviator k0 and of the normalized

compressive strength of the ground fc=r0
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where S, s and un denote the perimeter of the tunnel cross

section, the local co-ordinate and the displacement com-

ponent normal to the tunnel boundary, respectively

(Fig. 7c).

Based upon Anagnostou and Kovári (1993),

Eun

r�0a
¼ f1

r�s
r�0
; m;u;w;

s

a

� �
; ð12Þ

where a is a characteristic length (here taken equal to the

radius of a circle having the same cross sectional area as

the tunnel cross section under consideration), while r�s and

r�0 are Caquot’s (1934) transformations of the support

pressure rs and of the initial stress r0, respectively:

r�s ¼ rs þ
c

tan u
¼ rs þ

1� sin u
2 sin u

fc;

r�0 ¼ r0 þ
c

tan u
¼ r0 þ

1� sin u
2 sin u

fc:
ð13Þ

From Eqs. (11) and (12) we obtain the following

dimensionless expression:

E

r�0

DA

A0

¼ 1

p

Z
S=a

f1

r�s
r�0
; m;u;w; n

� �
dn ¼ f2

r�s
r�0
; m;u;w

� �
;

ð14Þ

where A0 denotes the cross sectional area (A0 = pa2) and

n = s/a. For fixed values of the material constants m, u and w,

Eq. (14) represents a generalized GRC because it connects the

overall convergence EDAð Þ= r�0A0

� �
with the normalized

support pressure r�s=r
�
0. In the special case of a circular cross

section, the displacement distribution is uniform (un is equal to

the radial displacement uGRC and does not depend on the co-

ordinate s): S = 2pa and DA/A0 = 2uGRC/a.

Fig. 6 Deep unsupported cylindrical tunnel in non-hydrostatic initial

stress field: deformed tunnel cross section and extent of the plastic

zone for a high and for a low strength of the ground (displacement

values for D = 10 m, E = 1 GPa, r0 = 2.5 MPa)

Fig. 7 Deep tunnel in hydrostatic initial stress field: considered tunnel cross sections of equal area, deformed cross section, extent of the plastic

zone and plastic strain distribution (rs*/r0* = 0.2)

Applicability of the GRC to Tunnelling Problems 7
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The quantification of the functional relationship (14) is

based upon a parametric study on the computational model

of Fig. 1, lx = lyl = lyu = 8D, rV0 = rH0 = r0 and

ryu = r0. The numerical calculations were carried out for

m = 0.25 and for friction angles u of 20�, 30� and 40�.

Figure 8a, b shows the generalized convergence and the

normalized difference between vertical and horizontal

convergence, respectively, as functions of the ratio rs
*/r0

*

for the tunnel shapes and friction angles under consider-

ation. The vertical convergence V is equal to the change in

the height of the cross section, while H denotes the change

of tunnel width half way up the cross section (Fig. 7, point

A).

According to Fig. 8a, the differences in the response

curves of the shapes investigated are rather small. The

analytical solution underestimates the convergence partic-

ularly in the case of the horseshoe-shaped cross section.

This is due to the statically favorable shape of a circular

cross section, for which the GRC is valid in a strict

mathematical sense.

Figure 8b shows that at high normalized support pres-

sures (rs
*/r0

* [ 0.5), the difference d between the horizontal

and vertical convergence is constant and equal to its

maximum value (d = 90% for the horseshoe section and -

13% for the D-shaped section). At such higher support

pressures, however, the response is linear and the defor-

mations are small and not so important from the standpoint

of practical design (within the elastic range, cf. Fig. 8a).

With decreasing support pressure rs
*/r0

* the difference

between the horizontal and vertical convergence also

decreases (up to zero for the D-shaped section and up to

40% for the horseshoe-shaped section at rs
*/r0

* = 0.2). The

‘‘homogenization’’ of the deformations at low support

pressures is due to the extended plastification of the ground

around the opening. As seen in Fig. 7, the shape of the

plastic zone is independent from the tunnel shape at low

support pressures.

5 An Example with Several Deviations from Rotational

Symmetry

The aim of this example is to show that the GRC makes a

reasonable job of approximating the numerically computed

relationship between boundary displacements and support

pressure, even if all of the assumptions underlying rota-

tional symmetry are violated simultaneously. The example

Fig. 8 Deep tunnel in hydrostatic initial stress field: a normalized

average convergence, and b normalized difference between vertical

and horizontal convergence as a function of the dimensionless relief

coefficient rs*/r0* and of the friction angle u for the tunnel cross

sections of Fig. 7

Fig. 9 Shallow unsupported non-cylindrical tunnel in non-hydro-

static initial stress field: considered cross section, equivalent circular

cross section, extent of the plastic zone and deformed profile

8 R. Schürch, G. Anagnostou
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considers the top heading of a shallow tunnel (D = 12 m,

C = 30 m, Fig. 9) in a non-hydrostatic initial stress field

(with a lateral pressure coefficient of k = 0.7). The FEM

calculation was carried out using the computational model

of Sect. 2. To obtain the relationship between displacement

and support pressure, the stresses prevailing at the exca-

vation boundary were reduced proportionally to their initial

value. The GRC was calculated on the basis of an

‘‘equivalent’’ circular cross section (indicated by a dashed

line in Fig. 9).

Figure 9 shows the extent of the plastic zone and the

deformed tunnel shape after complete unloading (an

unsupported tunnel). Figure 10 shows the analytically

computed GRC as well as the numerically calculated radial

displacements of three characteristic points (denoted by uA,

uB and uC in Fig. 9) as a function of the normalized support

pressure rs/r0. Specifically for the GRC, which assumes

uniform support, the absolute value of the support pressure

rs is also given. According to Fig. 10, the differences

between the analytical solution and the numerical values are

very small for the tunnel crown and the wall (points A and

B). The closed-form solution produces a significant under-

estimate only of the heave of the flat floor (point C). Fig-

ure 11 shows, for the special case of an unsupported

opening, the difference between analytical (GRC) and

numerical displacement (A, B and C) in relation to the effect

of a variation of the ground parameters according to Kovári

(1986). The error introduced by the simplifying assumptions

of the GRC is acceptable bearing in mind the sensitivity of

the predictions with respect to the material constants.

6 Conclusions

The GRC approximates well to average tunnel conver-

gence, even when the underlying assumption of rotational

symmetry is violated to a considerable extent. The devia-

tion between the analytical and numerical results is small

compared to the uncertainties related to the assumptions

concerning initial stress field and ground parameters

(Fig. 11).

According to Sect. 2, overburdens of more than 40 m

may be considered large in the sense that the effects of the

non-uniformity of the initial stress field and the existence

of the free surface can be neglected. Section 3 confirms

earlier results from the literature, according to which the

deviation between the analytical and numerical results is

small for the usual values of the lateral pressure coefficient

(k = 0.7–1.5) and for uniaxial compressive strengths

fc \ r0. This is true even in the case of non-circular tunnel

cross sections and overstressed ground (rs
*/r0

* \ 0.2, Sect. 4)

or even if all assumptions underlying the GRC are violated

simultaneously within certain limits (Sect. 5).

It should be emphasized that these conclusions as to the

predictive quality of the rotational symmetric model are

true only with respect to average convergence and do not

apply to the loading and stresses developing in a lining.

Deviations from rotational symmetry lead to qualitatively

different stressing of the lining because bending moments

and shear forces develop in addition to the axial forces. In

such cases, particularly if the tunnel has a non-circular

cross section or a non-uniform support, numerical calcu-

lations are indispensable for assessing the lining.

Fig. 10 Shallow non-cylindrical tunnel in non-hydrostatic initial

stress field: GRC and radial displacement of points A, B and C

(Fig. 9) as a function of the normalized support pressure rs/r0 and of

the support pressure rs

Fig. 11 Shallow unsupported non-cylindrical tunnel in non-hydro-

static initial stress field: Sensitivity of the closed-form solution (GRC)

for the radial displacement with respect to the material constants E, u,
c and w and comparison with the radial displacement of the points A,

B and C (Fig. 9)
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Kovári K (1986) Rock deformation problems when using full-facing

cutting equipment in rock, part 2. Tunnel 4/86, 289–298,

Bertelsmann Fachzeitschriften GmbH Gütersloh
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