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On 3-dimensional asymptotically harmonic manifolds

Viktor Schroeder∗ and Hemangi Shah†

Abstract. Let (M, g) be a complete, simply connected Riemannian manifold
of dimension 3 without conjugate points. We show that M is a hyperbolic
manifold of constant sectional curvature −h2

4 , provided M is asymptotically
harmonic of constant h > 0.
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1. Introduction. Let (M, g) be a complete, simply connected Riemannian manifold
without conjugate points. Let SM be the unit tangent bundle of M . For v ∈
SM , let γv be the geodesic with γ′

v(0) = v and bv,t(x) = limt→∞(d(x, γv(t)) − t)
the corresponding Busemann function for γv. The level sets bv

−1(t) are called
horospheres.

A complete, simply connected Riemannian manifold without conjugate points
is called asymptotically harmonic if the mean curvature of its horospheres is a
universal constant, that is if its Busemann functions satisfy ∆bv ≡ h, ∀v ∈ SM ,
where h is a nonnegative constant. Then bv is a smooth function on M for all v
and all horospheres of M are smooth, simply connected hypersurfaces in M with
constant mean curvature h.

For example, every simply connected, complete harmonic manifold without
conjugate points is asymptotically harmonic.

For more details on this subject we refer to the discussion and to the references
in [2]. Important result in this context are contained in [1], [3]. In [2] the following
result was proved:
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Let M be a Hadamard manifold of dimension 3 whose sectional curvatures are
bounded from above by a negative constant (i.e. K ≤ −a2 for some a �= 0) and
whose curvature tensor satisfies ‖∇R‖ ≤ C for a suitable constant C. If M is
asymptotically harmonic, then M is symmetric and hence of constant sectional
curvature.

We prove this result without any hypothesis on the curvature tensor.

Theorem 1.1. Let (M, g) be a complete, simply connected Riemannian manifold of
dimension 3 without conjugate points. If M is asymptotically harmonic of constant
h > 0, then M is a manifold of constant sectional curvature −h2

4 .

2. Proof of the Theorem. The first part of the proof (Lemma 2.1 to Lemma 2.3) is
a modification of the results in [2]. Therefore we recall some notations which were
already used in that paper. Our general assumption is that M is 3-dimensional,
has no conjugate points and is asymptotically harmonic with constant h > 0. For
v ∈ SM and x ∈ v⊥, let

u+(v)(x) = ∇x∇b−v and u−(v)(x) = −∇x∇bv.

Thus u±(v) ∈ End (v⊥). With λ1(v), λ2(v) we denote the eigenvalues of u+(v).
The endomorphism fields u± satisfy the Riccati equation along the orbits of the
geodesic flow ϕt : SM → SM .

Thus if u±(t) := u±(ϕtv) and R(t) := R(·, γ′
v(t))γ′

v(t) ∈ End(γ′
v(t)⊥), then

(u±)′ + (u±)2 + R = 0.

We define V (v) = u+(v)−u−(v) and correspondingly V (t) = V (ϕt(v)) along γv(t).
We also define X(v) = −1

2 (u+(v)+u−(v)) and X(t) = X(ϕt(v)). Then the Riccati
equation for u±(t) yields

XV + V X = (u−)2 − (u+)2 = (u+)′ − (u−)′ = V ′.(1)

Lemma 2.1. For fixed v ∈ SM the map t 	→ det V (ϕtv) is constant.

Proof. Assume that V (t) is invertible, then
d

dt
log det V (t) = tr V ′(t)V −1(t) = tr (XV + V X)V −1(t) = 2 trX = 0.

The last step follows as M is asymptotically harmonic. Thus as long as detV (t) �=
0, it is constant along γv. Therefore det V (t) is constant along γv in any case. �

Lemma 2.2. Let v ∈ SM be such that V (v) = µ Id, for some µ ∈ R, then R(t) =
−h2

4 Id, ∀t.

Proof. Note that if V (v) = µ Id, then V (γ′
v(t)) = h Id for all t, as tr V ≡ 2h and

by Lemma 2.1 the determinant of V is constant along γv(t). Now by equation
(1) V ′ = XV + V X. Hence, along γv, V ′(t) ≡ 0. Thus 2hX = 0 and since we
assume h > 0 we have X = 0 along γv. Therefore, u+(t) = −u−(t). But from the
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definition of V , u+(t) ≡ h
2 Id i.e u+ is a scalar operator. By the Riccati equation

(u+(t))2 + R(t) = 0, i.e. R(t) = −h2

4 Id. �

Lemma 2.3. For every point p ∈ M there exists v ∈ SpM such that R(x, v)v =
−h2

4 x, ∀x ∈ v⊥. In particular, Ric(v, v) = −h2

2 .

Proof. Since TS2 is nontrivial, an easy topological argument shows, that for every
p ∈ M there exists v ∈ SpM such that the two eigenvalues of V (v) coincide. Thus
V (v) = µ Id . The result now follows from Lemma 2.2. �

Lemma 2.4. For all v ∈ SM we have Ric(v, v) ≤ −h2

2 .

Proof. The Riccati equation for t 	→ u+(t) implies (u+)′ + (u+)2 + R = 0. Hence,
tr(u+)2 + trR = 0. Thus, Ric(v, v) = −(λ1

2(v) + λ2
2(v)). By hypothesis λ1(v) +

λ2(v) = h, hence λ1
2(v) + λ2

2(v) ≥ h2

2 . Consequently, Ric(v, v) ≤ −h2

2 . �

Lemma 2.5. The sectional curvature K of M satisfies K ≤ −h2

4 .

Proof. Let p ∈ M , and let v be the vector in Lemma 2.3. Take e1 = v, and let e2
and e3 be unit vectors orthogonal to e1 so that {e1, e2, e3} forms an orthonormal
basis of TpM . Then {e1∧e2, e1∧e3, e2∧e3} forms an orthonormal basis of Λ2TpM .
We want to show that the curvature operator, considered as map R : Λ2TpM →
Λ2TpM , 〈R(X ∧ Y ), V ∧ W 〉 = 〈R(X, Y )W, V 〉 is diagonal in this basis.

From Lemma 2.3 we see R(e2, e1)e1 = −h2

4 e2, R(e3, e1)e1 = −h2

4 e3. Thus
K(e1, e2) = K(e1, e3) = −h2

4 and K(e2, e3) ≤ −h2

4 as Ric(e3, e3) ≤ −h2

2 , where
K(v, w) denotes the sectional curvature of the plane spanned by v and w. We will
prove below that

〈R(e1, e3)e3, e2〉 = 0 and 〈R(e1, e2)e2, e3〉 = 0.(2)

Assuming this for a moment, it follows that R(e1 ∧ e3) ⊥ span{e1 ∧ e2, e2 ∧ e3}
and R(e1 ∧ e2) ⊥ span{e1 ∧ e3, e2 ∧ e3}. Hence,

R(e1 ∧ e2) =
−h2

4
e1 ∧ e2 and R(e1 ∧ e3) =

−h2

4
e1 ∧ e3.

Since e1 ∧ e2 and e1 ∧ e3 are eigenvectors of R, also e2 ∧ e3 is an eigenvector and
we obtain

R(e2 ∧ e3) = K(e2, e3) e2 ∧ e3.

Thus the curvature operator is diagonal in the basis {e1 ∧ e2, e1 ∧ e3, e2 ∧ e3} and
all eigenvalues are ≤ −h2

4 , which proves the result.

It remains to show (2). Consider for t ∈ (−ε, ε) the vectors vt = cos te1+sin te2.
Then,

f(t) := Ric(vt, vt) = K(vt, e3) + K(vt, −e1 sin t + e2 cos t)
= K(e1, e2) + sin2t K(e2, e3) + cos2t K(e1, e3) + sin 2t 〈R(e1, e3)e3, e2〉 .
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By Lemma 2.4 f(0) = Ric(v, v) = −h2

2 is maximal and hence f ′(0) = 0. This
implies the first equation in (2). If we replace e2 by e3 in the above computation
we obtain the second equation. �

Finally we come to the

Proof of Theorem 1.1. Lemma 2.5 implies that KM ≤ −h2

4 . By standard compar-
ison geometry we obtain λ1(v) ≥ h

2 and λ2(v) ≥ h
2 . Now λ1 + λ2 = h implies that

λ1 = λ2 = h
2 . Hence, u+(v) is a scalar operator and therefore R(x, v)v = −h2

4 x, ∀v

and ∀x ∈ v⊥. Thus, KM ≡ −h2

4 .

3. Final Remark. We expect that the result holds also in the case h = 0, i.e. if
all horospheres are minimal. Our argument, however, uses h > 0 essentially in the
proof of Lemma 2.2.
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