On 3-dimensional asymptotically harmonic manifolds

Viktor Schroeder* and Hemangi Shah ${ }^{\dagger}$

Abstract

Let (M, g) be a complete, simply connected Riemannian manifold of dimension 3 without conjugate points. We show that M is a hyperbolic manifold of constant sectional curvature $\frac{-h^{2}}{4}$, provided M is asymptotically harmonic of constant $h>0$.

Mathematics Subject Classification (2000). Primary 53C35; Secondary 53C25.

Keywords. Asymptotic harmonic manifold, horospheres.

1. Introduction. Let (M, g) be a complete, simply connected Riemannian manifold without conjugate points. Let $S M$ be the unit tangent bundle of M. For $v \in$ $S M$, let γ_{v} be the geodesic with $\gamma_{v}^{\prime}(0)=v$ and $b_{v, t}(x)=\lim _{t \rightarrow \infty}\left(d\left(x, \gamma_{v}(t)\right)-t\right)$ the corresponding Busemann function for γ_{v}. The level sets $b_{v}{ }^{-1}(t)$ are called horospheres.

A complete, simply connected Riemannian manifold without conjugate points is called asymptotically harmonic if the mean curvature of its horospheres is a universal constant, that is if its Busemann functions satisfy $\Delta b_{v} \equiv h, \forall v \in S M$, where h is a nonnegative constant. Then b_{v} is a smooth function on M for all v and all horospheres of M are smooth, simply connected hypersurfaces in M with constant mean curvature h.

For example, every simply connected, complete harmonic manifold without conjugate points is asymptotically harmonic.

For more details on this subject we refer to the discussion and to the references in [2]. Important result in this context are contained in [1], [3]. In [2] the following result was proved:

[^0]Let M be a Hadamard manifold of dimension 3 whose sectional curvatures are bounded from above by a negative constant (i.e. $K \leq-a^{2}$ for some $a \neq 0$) and whose curvature tensor satisfies $\|\nabla R\| \leq C$ for a suitable constant C. If M is asymptotically harmonic, then M is symmetric and hence of constant sectional curvature.

We prove this result without any hypothesis on the curvature tensor.
Theorem 1.1. Let (M, g) be a complete, simply connected Riemannian manifold of dimension 3 without conjugate points. If M is asymptotically harmonic of constant $h>0$, then M is a manifold of constant sectional curvature $\frac{-h^{2}}{4}$.
2. Proof of the Theorem. The first part of the proof (Lemma 2.1 to Lemma 2.3) is a modification of the results in [2]. Therefore we recall some notations which were already used in that paper. Our general assumption is that M is 3 -dimensional, has no conjugate points and is asymptotically harmonic with constant $h>0$. For $v \in S M$ and $x \in v^{\perp}$, let

$$
u^{+}(v)(x)=\nabla_{x} \nabla b_{-v} \quad \text { and } \quad u^{-}(v)(x)=-\nabla_{x} \nabla b_{v} .
$$

Thus $u^{ \pm}(v) \in$ End $\left(v^{\perp}\right)$. With $\lambda_{1}(v), \lambda_{2}(v)$ we denote the eigenvalues of $u^{+}(v)$. The endomorphism fields $u^{ \pm}$satisfy the Riccati equation along the orbits of the geodesic flow $\varphi^{t}: S M \rightarrow S M$.

Thus if $u^{ \pm}(t):=u^{ \pm}\left(\varphi^{t} v\right)$ and $R(t):=R\left(\cdot, \gamma_{v}^{\prime}(t)\right) \gamma_{v}^{\prime}(t) \in \operatorname{End}\left(\gamma_{v}^{\prime}(t)^{\perp}\right)$, then

$$
\left(u^{ \pm}\right)^{\prime}+\left(u^{ \pm}\right)^{2}+R=0
$$

We define $V(v)=u^{+}(v)-u^{-}(v)$ and correspondingly $V(t)=V\left(\varphi^{t}(v)\right)$ along $\gamma_{v}(t)$. We also define $X(v)=\frac{-1}{2}\left(u^{+}(v)+u^{-}(v)\right)$ and $X(t)=X\left(\varphi^{t}(v)\right)$. Then the Riccati equation for $u^{ \pm}(t)$ yields

$$
\begin{equation*}
X V+V X=\left(u^{-}\right)^{2}-\left(u^{+}\right)^{2}=\left(u^{+}\right)^{\prime}-\left(u^{-}\right)^{\prime}=V^{\prime} \tag{1}
\end{equation*}
$$

Lemma 2.1. For fixed $v \in S M$ the map $t \mapsto \operatorname{det} V\left(\varphi^{t} v\right)$ is constant.
Proof. Assume that $V(t)$ is invertible, then

$$
\frac{d}{d t} \log \operatorname{det} V(t)=\operatorname{tr} V^{\prime}(t) V^{-1}(t)=\operatorname{tr}(X V+V X) V^{-1}(t)=2 \operatorname{tr} X=0
$$

The last step follows as M is asymptotically harmonic. Thus as long as $\operatorname{det} V(t) \neq$ 0 , it is constant along γ_{v}. Therefore det $V(t)$ is constant along γ_{v} in any case.
Lemma 2.2. Let $v \in S M$ be such that $V(v)=\mu \mathrm{Id}$, for some $\mu \in \mathbb{R}$, then $R(t)=$ $\frac{-h^{2}}{4} \mathrm{Id}, \forall t$.

Proof. Note that if $V(v)=\mu \mathrm{Id}$, then $V\left(\gamma_{v}^{\prime}(t)\right)=h$ Id for all t, as $\operatorname{tr} V \equiv 2 h$ and by Lemma 2.1 the determinant of V is constant along $\gamma_{v}(t)$. Now by equation (1) $V^{\prime}=X V+V X$. Hence, along $\gamma_{v}, V^{\prime}(t) \equiv 0$. Thus $2 h X=0$ and since we assume $h>0$ we have $X=0$ along γ_{v}. Therefore, $u^{+}(t)=-u^{-}(t)$. But from the
definition of $V, u^{+}(t) \equiv \frac{h}{2}$ Id i.e u^{+}is a scalar operator. By the Riccati equation $\left(u^{+}(t)\right)^{2}+R(t)=0$, i.e. $R(t)=\frac{-h^{2}}{4}$ Id.
Lemma 2.3. For every point $p \in M$ there exists $v \in S_{p} M$ such that $R(x, v) v=$ $\frac{-h^{2}}{4} x, \forall x \in v^{\perp}$. In particular, $\operatorname{Ric}(v, v)=\frac{-h^{2}}{2}$.

Proof. Since $T S^{2}$ is nontrivial, an easy topological argument shows, that for every $p \in M$ there exists $v \in S_{p} M$ such that the two eigenvalues of $V(v)$ coincide. Thus $V(v)=\mu \mathrm{Id}$. The result now follows from Lemma 2.2.
Lemma 2.4. For all $v \in S M$ we have $\operatorname{Ric}(v, v) \leq \frac{-h^{2}}{2}$.
Proof. The Riccati equation for $t \mapsto u^{+}(t)$ implies $\left(u^{+}\right)^{\prime}+\left(u^{+}\right)^{2}+R=0$. Hence, $\operatorname{tr}\left(u^{+}\right)^{2}+\operatorname{tr} R=0$. Thus, $\operatorname{Ric}(v, v)=-\left(\lambda_{1}{ }^{2}(v)+\lambda_{2}{ }^{2}(v)\right)$. By hypothesis $\lambda_{1}(v)+$ $\lambda_{2}(v)=h$, hence $\lambda_{1}{ }^{2}(v)+\lambda_{2}{ }^{2}(v) \geq \frac{h^{2}}{2}$. Consequently, $\operatorname{Ric}(v, v) \leq \frac{-h^{2}}{2}$.
Lemma 2.5. The sectional curvature K of M satisfies $K \leq-\frac{h^{2}}{4}$.
Proof. Let $p \in M$, and let v be the vector in Lemma 2.3. Take $e_{1}=v$, and let e_{2} and e_{3} be unit vectors orthogonal to e_{1} so that $\left\{e_{1}, e_{2}, e_{3}\right\}$ forms an orthonormal basis of $T_{p} M$. Then $\left\{e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}\right\}$ forms an orthonormal basis of $\Lambda^{2} T_{p} M$. We want to show that the curvature operator, considered as map $R: \Lambda^{2} T_{p} M \rightarrow$ $\Lambda^{2} T_{p} M,\langle R(X \wedge Y), V \wedge W\rangle=\langle R(X, Y) W, V\rangle$ is diagonal in this basis.

From Lemma 2.3 we see $R\left(e_{2}, e_{1}\right) e_{1}=\frac{-h^{2}}{4} e_{2}, \quad R\left(e_{3}, e_{1}\right) e_{1}=\frac{-h^{2}}{4} e_{3}$. Thus $K\left(e_{1}, e_{2}\right)=K\left(e_{1}, e_{3}\right)=\frac{-h^{2}}{4}$ and $K\left(e_{2}, e_{3}\right) \leq \frac{-h^{2}}{4}$ as $\operatorname{Ric}\left(e_{3}, e_{3}\right) \leq \frac{-h^{2}}{2}$, where $K(v, w)$ denotes the sectional curvature of the plane spanned by v and w. We will prove below that

$$
\begin{equation*}
\left\langle R\left(e_{1}, e_{3}\right) e_{3}, e_{2}\right\rangle=0 \text { and }\left\langle R\left(e_{1}, e_{2}\right) e_{2}, e_{3}\right\rangle=0 \tag{2}
\end{equation*}
$$

Assuming this for a moment, it follows that $R\left(e_{1} \wedge e_{3}\right) \perp \operatorname{span}\left\{e_{1} \wedge e_{2}, e_{2} \wedge e_{3}\right\}$ and $R\left(e_{1} \wedge e_{2}\right) \perp \operatorname{span}\left\{e_{1} \wedge e_{3}, e_{2} \wedge e_{3}\right\}$. Hence,

$$
R\left(e_{1} \wedge e_{2}\right)=\frac{-h^{2}}{4} e_{1} \wedge e_{2} \text { and } R\left(e_{1} \wedge e_{3}\right)=\frac{-h^{2}}{4} e_{1} \wedge e_{3}
$$

Since $e_{1} \wedge e_{2}$ and $e_{1} \wedge e_{3}$ are eigenvectors of R, also $e_{2} \wedge e_{3}$ is an eigenvector and we obtain

$$
R\left(e_{2} \wedge e_{3}\right)=K\left(e_{2}, e_{3}\right) e_{2} \wedge e_{3}
$$

Thus the curvature operator is diagonal in the basis $\left\{e_{1} \wedge e_{2}, e_{1} \wedge e_{3}, e_{2} \wedge e_{3}\right\}$ and all eigenvalues are $\leq \frac{-h^{2}}{4}$, which proves the result.

It remains to show (2). Consider for $t \in(-\varepsilon, \varepsilon)$ the vectors $v_{t}=\cos t e_{1}+\sin t e_{2}$. Then,

$$
\begin{array}{r}
f(t):=\operatorname{Ric}\left(v_{t}, v_{t}\right)=K\left(v_{t}, e_{3}\right)+K\left(v_{t},-e_{1} \sin t+e_{2} \cos t\right) \\
=K\left(e_{1}, e_{2}\right)+\sin ^{2} t K\left(e_{2}, e_{3}\right)+\cos ^{2} t K\left(e_{1}, e_{3}\right)+\sin 2 t\left\langle R\left(e_{1}, e_{3}\right) e_{3}, e_{2}\right\rangle .
\end{array}
$$

By Lemma $2.4 f(0)=\operatorname{Ric}(v, v)=\frac{-h^{2}}{2}$ is maximal and hence $f^{\prime}(0)=0$. This implies the first equation in (2). If we replace e_{2} by e_{3} in the above computation we obtain the second equation.

Finally we come to the
Proof of Theorem 1.1. Lemma 2.5 implies that $K_{M} \leq \frac{-h^{2}}{4}$. By standard comparison geometry we obtain $\lambda_{1}(v) \geq \frac{h}{2}$ and $\lambda_{2}(v) \geq \frac{h}{2}$. Now $\lambda_{1}+\lambda_{2}=h$ implies that $\lambda_{1}=\lambda_{2}=\frac{h}{2}$. Hence, $u^{+}(v)$ is a scalar operator and therefore $R(x, v) v=\frac{-h^{2}}{4} x, \forall v$ and $\forall x \in v^{\perp}$. Thus, $K_{M} \equiv \frac{-h^{2}}{4}$.
3. Final Remark. We expect that the result holds also in the case $h=0$, i.e. if all horospheres are minimal. Our argument, however, uses $h>0$ essentially in the proof of Lemma 2.2.

References

[1] G. Besson, G. Courtois, and S. Gallot, Entropies et rigidités des espaces localement symétriques de courbure strictement négative, Geom. Funct. Anal. 5, 731-799 (1995).
[2] J. Heber, G. Knieper, and H. Shah, Asymptotically harmonic spaces in dimension 3, Proc. Amer. Math. Soc. 135, 845-849 (2007).
[3] G. Knieper, Spherical means on compact Riemannian manifolds of negative curvature, Differential Geom. Appl. 4, 361-390 (1994).

Viktor Schroeder, Institut für Mathematik, Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich.
e-mail: vschroed@math.unizh.ch
Hemangi Shah, School of Mathematics, Tata Institute of Fundamental Research Dr. Homi Bhabha Road, Mumbai - 400005, India.
e-mail: hema@math.tifr.res.in

Received: 4 October 2007

[^0]: *Supported by Swiss National Science Foundation.
 ${ }^{\dagger}$ The author thanks Forschungsinstitut für Mathematik, ETH Zürich for its hospitality and support.

