
Abstract. The relevant scale for the study of the
electrical activity of neural networks is a problem of
mathematical and biological interest. From a continu-
ous model of the cortex activity we derive a simple
model of an interconnected pair of excitatory and
inhibitory neural populations that describes the activity
of a homogeneous network. Our model depends on three
parameters that stand for the scale variability of the
network. A bifurcation analysis reveals a great variety of
patterns that arise from the interplay of excitatory and
inhibitory populations provided by synaptic interac-
tions. We emphasize the differences between the dynam-
ical regimes when considering a moderate and a high
inhibitory scale. We discuss the consequences on a
propagating activity.

1 Introduction

Mathematical models in neurophysiology use ordinary
differential equations (ODE) to describe the behavior of
an isolated neuron or a network of synaptically coupled
neurons. The model developed by Hodgkin and Huxley
(1952) is an example of such an ODE system that is
widely used and studied. Using their formalism, a large
number of models have been developed that are based
on the description of specific electrical currents in
cellular structures (Bower and Beeman 1994) or on a
mathematical simplification of complete systems (e.g.,
FitzHugh 1961; Rinzel 1985). In order to analyze
biological measurements such as the mapping of the
cortical activity through optical recording and to
understand the functions of large neuron assemblies,
we are interested in the role of the spatial scale in
modeling neural networks. The construction of a neural
network depends on (i) the characteristics of the

individual neurons and (ii) the network architecture,
i.e., the synaptic interactions. The dynamical behavior of
the network is specified either by an ODE system for
each neuron or by an equation for a neural population
without any reference to the complex behavior of a
single neuron. For neural networks made of a large
number of neurons, the first approach leads to a
complex ODE system that appears to be mathematically
intractable. The second method reduces the complexity
of the problem, but the equations for a neural assembly
are difficult to derive because of the intrinsic nonlinear-
ity of the dynamics.

In this paper, we study a neural networkwhose kinetics
are described by a simplified model motivated by biolog-
ical data from the piriform cortex (Haberly and Price
1978; Ballain et al. 1998). The neuronal density incites us
to describe neuron assemblies through a continuous rep-
resentation. In addition, the connections are given by a
continuous mapping from one point of the network to an
other. Using this approach, the problem is to determine
the relevant scale at which the network presents a com-
plexity of the dynamics at an intermediate stage between
the activity of a single neuron, on the one hand, and the
activity of the total neuronal assembly, on the other.
Moreover, without restrictive assumptions on the con-
nection strengths, it is difficult to obtain interesting
properties on the dynamical behavior of the neural net-
work. To get around these problems, we study subfields
that present a synchronous activity. Motivation for this
approach comes from physiological observations show-
ing rhythmic organization for a large subpart of the net-
work, although single neurons may fire asynchronously.
This consideration leads to a simple model of excitatory-
inhibitory populations described by a set of two nonlinear
ODEs that does not require a precise description of the
network connectivity. Our model may be seen as a mac-
roscopic description with a characteristic scale, which
determines the relevance of neuronal activity for the
biological function of the network.

Macroscopic models are useful in studying collective
behavior of cell assemblies like macroscopic oscillations.
Pioneering work in developing macroscopic models was
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performed by Amari (1971). The model that we derived
is a neural oscillator, which presents some features
similar to macroscopic models already studied (Wilson
and Cowan 1972; Borisyuk and Kirillov 1992). It is
known that neural networks composed of coupled neu-
ral oscillators present synchronous oscillatory activities
(Destexhe 1994; Tonnelier et al. 1999). It is argued that
oscillatory modes may be involved in information cod-
ing (Atiya and Baldi 1989; Chang at al. 1992) or in
information processing (Erdi et al. 1993). Using the
bifurcation theory, we study how oscillatory activities
emerge from the interplay of excitatory and inhibitory
populations provided by synaptic connections. Our
analysis is a first step in the understanding of complex
spatiotemporal behavior in the low-level network con-
sisting of interactive excitatory and inhibitory neurons
(Destexhe 1994).

The paper is organized as follows. In Sect. 2, a
mathematical model of our cortical neural network is
presented. The third section is devoted to the bifurcation
analysis of the synchronous activity and the classifica-
tion of all possible regimes and transitions between
them. The scale-parameter space is partitioned into do-
mains of equivalent behavior bounded by bifurcation
curves. Next, we study a neural network made of neural
oscillators coupled through feedforward connections.
We are interested in oscillatory activity and its propa-
gation driven by synaptic modifications.

2 The model

Neurons receive and emit action potentials. We focus
solely on the synaptic transfer of information from one
neuron to another and ignore chemical or other
information transfer processes. A synaptic current
without delay or dendritic dependences has the form
(see, for example, Abbott and Marder 1989):

Isyn ¼ �ggsðtÞðVpost � VeqÞ

where Veq is the synaptic reversal potential, Vpost is the
potential of the postsynaptic neuron, and �gg is the
maximal conductance of the synaptic current. The
variable s is a dynamic variable in the range 0 � s � 1;
it is the probability that the corresponding channel is in
an open conducting state. In general, s is a function of
the presynaptic potential, Vpre. A number of different
equations are used to model the function sðVpreÞ; it is
either of a predefined form or satisfies a differential
equation. For simplicity, we use a sigmoid-type function
sðtÞ ¼ UðVpreðtÞÞ where U : R! ½0; 1� is a bounded and
increasing function. The coupling of two neurons results
in the equation for the postsynaptic neuron:

dVpost

dt
¼ rðVpostÞðtÞ � �ggUðVpreðtÞÞðVpostðtÞ � VeqÞ

where rðVpostÞ gives the behavior of an isolated neuron.
In the present work, we adopt a simple relaxation
dynamics, i.e., rðVpostÞ ¼ �Vpost=s, where s is the relax-
ation time of the neuronal membrane.

We consider two populations of neurons, one excit-
atory and the other inhibitory. Let us denote vðx; tÞ
(uðx; tÞ), the membrane potential of an excitatory
(inhibitory) neuron located at x 2 Xe (x 2 Xi) at time t,
where Xe � R3 (Xi � R3), is the support of the excitatory
(inhibitory) neural population. We note X ¼ Xe [ Xi the
total network. One may interpret Uðvðx; tÞÞ and Uðuðx; tÞÞ
as the instantaneous firing rate associated with the
excitatory and the inhibitory population, respectively.
The excitatory neurons receive three kinds of inputs: (i) a
direct external sensory input, denoted by F ; (ii) excita-
tions from other neurons in Xe; and (iii) inhibitory inputs
from neurons in Xi; conversely, inhibitory neurons are
excited by neurons in Xe only. This situation mimics the
organization of the cortex, particularly the rat olfactory
cortex, which involves two kinds of cell populations: the
pyramidal cells and the inhibitory interneurons (Haberly
and Price 1978). However, our equations can describe
other situations where such loops are involved in the
regulation of the neural activity.

Since there is a continuum of neurons in the two
domains Xe and Xi, the membrane potential of a cell at
position x 2 Xe [ Xi depends on the synaptic influence of
other cells in the network. A spatial conductance func-
tion gðy; xÞ allows us to describe the connectivity from a
cell at position y to a cell at position x. The synaptic
current due to the excitatory-excitatory interaction is
given by

ISynðx; tÞ

¼ ðvðx; tÞ � veqÞ
Z

Xe

gðy; xÞUðvðy; tÞÞdy; for x 2 Xe

This synaptic current is generalized to the other
interactions. The equations governing the time evolution
are specified by a set of coupled nonlinear integrodiffer-
ential equations, namely:

ov
ot
ðx; tÞ ¼ � vðx; tÞ þ F ðx; tÞðueq � vðx; tÞÞ

þ ðuee
eq � vðx; tÞÞ

Z

Xe

gðy; xÞUðvðy; tÞÞdy

þ ðuie
eq � vðx; tÞÞ

Z

Xi

gðy; xÞUðuðy; tÞÞdy ð1Þ

ou
ot
ðx; tÞ ¼ � uðx; tÞ

þ ðuei
eq � uðx; tÞÞ

Z

Xe

gðy; xÞUðvðy; tÞÞdy

where F ðx; tÞ is the external input on x at time t,
g : X� X! Rþ is the positive conductance function
giving the synaptic input weight from y to x, and t
represents a reduced dimensionless time defined as ~tt=s
where ~tt is the actual time. The equilibrium potentials are
parameters that satisfy: ueq ¼ uee

eq ¼ uei
eq > 0, uie

eq < 0 and
juie

eqj < uee
eq. Since we assume that inhibitory neurons
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have synaptic connections with excitatory neurons only,
we have gðy; xÞ ¼ 0 for ðy; xÞ 2 X2

i . One may remark that
the nonlinearity arises from (i) the function U and (ii) its
product with u:eq � v (or u:eq � u).

3 Synchronous activity

3.1 Definition of the problem

We study the dynamics in absence of external stimula-
tion, i.e., F ðx; tÞ ¼ 0. We address the question of how the
dynamical behavior of the network is affected by the
conductance function g. In the first step, we consider
regions in the network that exhibit a synchronous
activity. Therefore, we look for spatially homogeneous
solutions where the neuronal activity does not depend
on space, and we note vðtÞ (uðtÞ) the excitatory
(inhibitory) activity. Moreover, we assume thatR

X gðy; xÞdy does not depend on x (for x 2 Xe or
x 2 Xi). This choice includes the usual interaction
function where the conductance gðy; xÞ depends only
on the difference y � x:

gðy; xÞ ¼ wðy � xÞ

where w is a continuous, bounded, and positive function.
Then (Eq. 1) becomes:

v0ðtÞ ¼ � vðtÞ þ ceeUðvðtÞÞðuee
eq � vðtÞÞ

þ cieUðuðtÞÞðuie
eq � vðtÞÞ ð2Þ

u0ðtÞ ¼ � uðtÞ þ ceiUðvðtÞÞðuei
eq � uðtÞÞ

where:

cee ¼
R

Xe
gðy; xÞdy for x 2 Xe;

cie ¼
R

Xi
gðy; xÞdy for x 2 Xe;

cei ¼
R
Xe

gðy; xÞdy for x 2 Xi :

The above transformation, yielding Eq. 2, allows one to
reduce the infinite dimensional parameter space,
g 2 L1ðX� XÞ, to a three-dimensional parameter space,
ðcee; cie; ceiÞ 2 R3. Under this weak assumption on g, our
study does not impose a specific connectivity of the
network. Since g is positive, (cee; cie; cei) are positive
numbers and the nature of the connections are given by
the sign of ueq (Fig. 1). In fact, we will show that v > uie

eq
(see proposition 1), and therefore the term cieðuie

eq � vÞ,
has an inhibitory effect modulated by UðuÞ.

The two autonomous, nonlinear, first-order differen-
tial equations (Eq. 2) describe the synchronous activity
of excitatory and inhibitory neural populations and are
similar to, but different from, the Wilson and Cowan
model (1972). The coefficients cee; cie; cei synthesize the
synaptic architecture, and their values are proportional
to the size of the synchronous region, i.e., the number of
cells involved in the synchronous activity. We have
cee � mesðXeÞjjgeejjL1 (and similar expressions for cie
and cei) where mesðXÞ is the measure of X. If we
normalize these coefficients such that cee ¼ 1, for an
arbitrarily chosen domain of reference ðXeÞref , then the

relative difference of volume between ðXeÞref and ðXeÞ
affects in the same manner the value of cee. Therefore,
these coefficients represent the scale of the neuronal
interactions rather than the individual synaptic connec-
tion weights. For cie ¼ 0 and cei ¼ 0, each population
acts as an isolated system that exhibits a trivial behavior.
As cie and cei increase, different complex synchronous
activities emerge depending on the value of cee. In the
following, we analyze how the behavior is affected by
these connections and therefore by the relative depth of
interactions.

3.2 Fixed points and linear stability analysis

We start with simple results on the activities ðv; uÞ and
give some general properties of the excitatory and
inhibitory dynamics. Let us denote cx as a representation
of any of these scales.

Proposition 1 If cx ¼ oð1Þ, the activity is proportional to
cx. If cx � 1, the excitatory (inhibitory) activity is
proportional to uee

eq (uei
eq, respectively). Otherwise, the

activity is bounded by these values.

We shall sketch the proof of this property. The two
nullclines, NLe, NLi, associated with v and u, respectively,
are given by:

NLi : u ¼
ceiuei

eqUðvÞ
1þ ceiUðvÞ

NLe : u ¼ U�1
v� cee/ðvÞðuee

eq � vÞ
cieðuie

eq � vÞ

 !
8>>><
>>>:
Let us define the rectangular domain D 2 R2 as:

D ¼
cieuie

eq

1þ cie
;

ceeuee
eq

1þ cee

" #
� 0;

ceiuei
eq

1þ cei

" #

From the equations of the nullclines, the vector field on
oD is directed inward. Therefore, D is an invariant set of
Eq. 2 and it is easy to show that D is globally attractive.
Moreover one has uee

eqcee=ð1þ ceeÞ ¼ uee
eqcee þ oðceeÞ and

uee
eqcee=ð1þ ceeÞ ¼ uee

eq þ oð1=ceeÞ. Similar expressions are
obtained for cei and cie. We have the following:

Fig. 1. Scheme of connections of the excitatory-inhibitory macro-
scopic model (Eq. 2). v (u) is the activity of the excitatory (inhibitory)
neural assembly. Parameters ðcee; cie; ceiÞ are the weights related to the
connections between populations and depend on the scale of
interactions
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Proposition 2 For all cx, the network admits an odd
number of nondegenerate fixed points. One fixed point out
of two is a saddle node.

A fixed point ðv0; u0Þ is given by the intersection of the
nullclines leading to the resolution of lðvÞ ¼ 0, where
lðvÞ ¼ �vþ ceeUðvÞðuee

eq � vÞ þ cieUðuei
eqceiUðvÞ=ð1þ ceiU

ðvÞÞÞðuie
eq � vÞ. This equation admits at least one real

solution since l is continuous and limx!�1 lðxÞ ¼ þ1,
limx!þ1 lðxÞ ¼ �1. Let J be the Jacobian matrix of
Eq. 2 evaluated at ðv0; u0Þ. We have:

detðJÞ ¼ �l0ðv0Þð1þ ceiUðv0ÞÞ;
trðJÞ ¼ �2� ðcei þ ceeÞUðv0Þ � cieUðu0Þ

þ ceeðuee
eq � v0ÞU0ðv0Þ

The sign of detðJÞ changes from one isolated zero (of
lðvÞ) to the next one (if detðJÞ 6¼ 0). Therefore, two
nonsaddle and nondegenerate fixed points (i.e.,
detðJÞ > 0) are separated by a saddle one (i.e., where
detðJÞ < 0).

3.3 Analytical results for a simplified case

To go further in the analysis of Eq. 2, we take U as the
piecewise linear function defined by:

UðxÞ ¼
0 if x < uth � 1

2k
1 if x > uth þ 1

2k
kðx� uthÞ þ 1

2 elsewhere

8<
: ð3Þ

where the parameter k is the slope of U and uth is
the threshold. We define umin ¼ uth � 1=ð2kÞ and
umax ¼ uth þ 1=ð2kÞ and k such that umin > 0 and
umax < uee

eq. It should be noted that uth is not a free
parameter since a shift of uee

eq; u
ie
eq, and uei

eq allows us to
take uth ¼ 0, but in order to keep the biological
significance of the problem, we do not make this choice.
The analysis carried out in the appendix is summarized
in the following proposition:

Proposition 3 Given the piecewise linear function U
(Eq. 3), the point ð0; 0Þ is a stable node. If cee < umax=
uee � umax, (0,0) is globally attractive. Otherwise, we
distinguish:

– if cei < umin=ðuei � uminÞ ¼ cei;1, then the only bifurca-
tion that appears is a saddle node bifurcation when
cee ¼ umax=ðuee � umaxÞ (a saddle for v < umax and a
stable node for v > umax).

– if cei > umin=ðuei � uminÞ, then the system admits two or
four nondegenerate fixed points different from ð0; 0Þ.
The ones that satisfy umin < v < umax and u < umin or
u > umax are saddle fixed points. For cei > umax=
ðuei � umaxÞ ¼ cei;2, the one such that v > umax is a
stable node and the saddle node bifurcation equation is:
ðceeuee

eq þ cieuie
eqÞ=ð1þ cee þ cieÞ ¼ umax.

Figure 2 is the illustration of the saddle node bifurcation
obtained for cei > cei;2. Proposition 3 will be useful in the

study carried out in the next section. First, it shows that
the reversal potentials and the two potentials umin; umax
weighted by the connection parameters monitor the
location of the bifurcations. Moreover, it emphasizes
some specific ranges for the connection parameters. In
particular, we find two characteristic values for cei: cei;1
and cei;2, which give the possible bifurcations that occur
in our model. For instance, if cei < cei;1, only one
bifurcation occurs and no interesting dynamics emerges
from the interplay of excitatory and inhibitory interac-
tions. If uee

eq ¼ uei
eq and k is strong enough, then

bifurcations appear when cee and cie are proportional
to uth=ðuee

eq � uthÞ. It reveals that a nontrivial behavior is
expected when the strenghts of the excitatory and
inhibitory interactions are close. We will elaborate this
point in the following section.

3.4 Bifurcation analysis for a regular function U

In this part, we study Eq. 2 in the regular case where U is
the sigmoid function:

UðxÞ ¼
�
1þ e�kðx�uthÞ

��1
where uth ¼ 30 and k ¼ 0:2. We describe the various
phase portraits of Eq. 2 as the parameters ðcee; cie; ceiÞ
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Fig. 2. Sketch of the nullclines of (Eq. 2) for ceiuei
eq=ð1þ ceiÞ > umax.

The parameters are such that: ðceeuee
eq þ cieuie

eqÞ=ð1þ cee þ cieÞ < umax
(Fig. 2a) and ðceeuee

eq þ cieuie
eqÞ=ð1þ cee þ cieÞ > umax (Fig. 2b). The

dotted lines represent the boundaries between the rectangular domains
where the study was carried out. The fixed points (labeled A, B, C,
and D) are indicated by black circles. The fixed points C and D appear
through a saddle-node bifurcation
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are changing. This allows us to predict qualitatively
the behavior of the model in domains bounded by
bifurcation curves. The previous study made useful
the distinction between cei greater or less than umax=
ðuei

eq � umaxÞ (�0.48). Then we focus on two specific
values of cei that we report as a moderate and a high
inhibitory scale, respectively. Our analysis does not
capture the codimension three bifurcations that appear
as cei continuously increases. We will discuss this point
further. In Figs. 3 and 5, we show the corresponding
bifurcation curves in the plane ðcee; cieÞ for the two
conditions specified above. In Figs. 4 and 6, we illustrate
the representative phase diagrams for some relevant
domains of Fig. 3 and Fig. 5, respectively. For details on
the mathematical definitions, the reader is referred to
Guckenheimer and Holmes (1983) and Kuznetsov
(1995). The computation of local bifurcations has been
carried out using the software program AUTO (Doedel
1981). Computation of global bifurcations were per-
formed using a specific algorithm: the continuation of
homoclinic orbit are obtained by computing the split
function. Other numerical results were performed using
the classical fourth-order Runge-Kutta method.

First, we comment on Fig. 3. We consider nine do-
mains that define a partition of the ðcee; cieÞ plane where
the dynamical system presents a structural stability.
First we note that, (i) in domains I, II, and IV, we have a
single fixed point (a sink in I and IV and a source in II);
(ii) in domain III (=IIIa [ IIIb), a source, a saddle, and
a sink; (iii) in domain V, two sinks and a saddle; (iv) in
domain VI, three sinks and two saddles; and (v) in do-
main VII (= VIIa [ VIIb), two sinks, two saddles, and a
source. We list the bifurcations obtained from the
numerical analysis. The curve BX gives the exact condi-
tion of bifurcation of type X , and Xi stands for a point,
indexed by an integer i, related to a bifurcation of type
X :

1. On the curve ðSN1; SN2Þ, denoted by BSN1, and on the
curve ðSN3; . . . ; SN7Þ, denoted by BSN2, a saddle node
bifurcation occurs. These saddle node bifurcations
correspond to the coalescence and the disappearance
of two equilibria as one crosses (i) from domain V to
domains I or IV or (ii) from domain III to domains II
or IV, and (iii) from domains VI or VII to domains V
or III. On ðSN1;HSN1Þ we have a source and a saddle
node characterized by a zero and a negative eigen-
value; on ðHSN1; SN2Þ and on ðSN4; SN7Þ, a sink and a
saddle-node characterized by a zero and a negative
eigenvalue; on ðSN3; SN4Þ a sink and a saddle node
characterized by a zero and a positive eigenvalue; on
ðSN4; SN5;H2Þ two sinks, a saddle, and a saddle node
characterized by a zero and a positive eigenvalue; on
ðH2; SN6;HSN2Þ two sinks, a saddle, and a saddle node
characterized by a zero and a negative eigenvalue; and
on ðHSN2; SN4Þ a sink, a saddle, a source, and a saddle
node characterized by a zero and a negative eigen-
value.

2. On the curve ðH1;H2Þ, denoted by BH , one of the sinks
becomes nonhyperbolic, having a pair of pure imag-
inary eigenvalues with a nonzero imaginary part. This
is a Hopf bifurcation, and a limit cycle emerges,
surrounding the considered fixed point. On BH , this
Hopf bifurcation is supercritical, leading to a stable
limit cycle in domains II, IIIa, and VIIa.

3. At the point H2 (approximately ð8:064::; 2:074::Þ)
there are two sinks, a saddle, and a doubly degenerate
fixed point with a zero eigenvalue of multiplicity two.
This bifurcation is called a Bogdanov-Takens bifur-
cation.

4. We note that the phase portraits in domain III near
BH and near ðSN4; SN3Þ are not topologically equiva-
lent since the former has a limit cycle while the latter
does not. An additional bifurcation is present, causing
the vanishing of the limit cycle through a saddle
connection. We split III into two subdomains, IIIa
and IIIb. We note BSC1 the bifurcation curve, which
intersects BSN1 at SC1 and BSN2 at SC2. On BSC1 we
have a homoclinic orbit of the hyperbolic saddle
point; this saddle connection breaks the limit cycle as
one crosses BSC1 from IIIa to IIIb. Moreover, on the
curve ðSN1; SC1Þ and ðSC3; SC2Þ we have saddle node
bifurcations on a limit cycle that exists in II, IIIa, and
VIIa.
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Fig. 3. The bifurcation diagram of (Eq. 2) for cei ¼ 10. This value
satisfies: cei > umax=ðuei

eq � umaxÞ, which corresponds to one of the
cases of proposition 3. The other parameters are: uee

eq ¼ uei
eq ¼ 100;

uie
eq ¼ �20. Figure 3b is an enlargement of Fig. 3a
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5. As previously observed, an additional bifurcation
curve is present in domain VII; therefore, we split this
domain into VIIa and VIIb. The curve BSC2 is tangent
to BH and BSN2 at H2 and intersects BSN2 at SC3. On
BSC2 we have a homoclinic orbit of a hyperbolic
saddle point; this saddle connection breaks the limit
cycle surrounding the source as one crosses from VIIa
to VIIb.

Note that in Sect. 3 we found a linear approximation
of the BSN1 equation: cie ¼ ðuee

eq � umaxÞ=ðumax � uie
eqÞceeþ

umax=ðuie
eq � umaxÞ. Moreover the previous study gives the

approximate position of the saddle points and the
relative position of fixed points. One of the main
differences with the piecewise linear case is that the
resting state can disappear (through a saddle node
bifurcation) or lose its stability (through a Hopf
bifurcation).

Figure 4 gives the stable or unstable manifolds of the
fixed points in the relevant domains IIIa, IIIb, V, VI,
VIIa, and VIIb.

We now turn to Fig. 5, which corresponds to the
second choice for the parameter cei, i.e., a moderate
inhibitory scale. We split the ðcee; cieÞ space into six

domains and number each domain according to the
choice made in Fig. 3: (i) in domains I, II, and IV, we
have one fixed point (a sink in I and IV and a source in
II); (ii) in domain III, a sink, a saddle, and a source; and
(iii) in domain V (Va [ Vb), two sinks and a saddle.
However, in domain III, the location of the sink and the
source is the reverse of that obtained in domain III of
Fig. 3. The bifurcations obtained are:

1. On the curve ðSN1; SN2Þ, denoted by BSN1, and on the
curve ðSN3; SN4Þ, denoted by BSN2, a saddle node
bifurcation occurs. On ðSN1;HSN1Þ we have a source
and a saddle node characterized by a zero and a
negative eigenvalue; on ðHSN1; SN2Þ and on ðH2; SN4Þ
we have a sink and a saddle node characterized by
a zero and a negative eigenvalue; and on ðSN3;H2Þ
we have a sink and a saddle node with a zero and
a positive eigenvalue. Moreover, on the curve
ðSN1;HSN1Þ the saddle node bifurcation occurs on the
limit cycle.

2. On the curve ðH1;H2Þ, denoted by BH , one of the sinks
becomes nonhyperbolic through a Hopf bifurcation,
with a pair of eigenvalues with zero real part and
nonzero imaginary part. On ðH1;HSN1Þ a stable limit

Fig. 4. The stable and unstable
manifolds of the fixed points of
Eq. 2 for cei ¼ 10 (cf. Fig. 3) and
for different values of ðcee; cieÞ.
According to Fig. 3, parameters
belong to the domain IIIa
(10,4.5) (Fig. 4a), IIIb (10,3)
(Fig. 4b), V (10,0.5) (Fig. 4c), VI
(9.2,3.75) (Fig. 4d), VIIa (9.1,3.5)
(Fig. 4e), VIIb (8.5,2.2) (Fig. 4f).
The other parameters are given in
Fig. 3
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cycle emerges, surrounding the considered fixed
point (supercritical Hopf bifurcation). Conversely, on
ðHSN1;H2Þ an unstable cycle occurs and the Hopf
bifurcation is subcritical.

3. At the point H2 (approximately ð0:919::; 0:961::Þ)
there are a sink and a doubly degenerate fixed point
characterized by a zero eigenvalue of multiplicity two;
this is a Bogdanov-Takens bifurcation.

4. There exists a fourth bifurcation curve, denoted by
BSC, which is tangent to BH and which intersects
BSN2 at H2. This curve splits domain V into domains
Va and Vb. On BSC we have a saddle node loop. An
unstable limit cycle emerges as one enters domain Va.

The stable and unstable manifolds of fixed points in
domains III, Va, and Vb are depicted in Fig. 6.

The analysis of the two bifurcation diagrams (Fig. 3
and Fig. 5) shows that there are values of parameters for

which a stable limit cycle exists. This situation is related
to the existence of a synchronous oscillatory activity in
our network. Depending on the interaction strength, this
cycle coexists with two or four fixed points that are
stable nodes or saddle points. These oscillatory patterns
exhibit long-lasting oscillations when parameters ap-
proach the saddle connection curve or the saddle node
on a limit cycle curve. For other parameter values, the
activity converges to an equilibrium corresponding to a
resting steady state, when v < uth, or an excited state,
when v > uth. When the resting steady state has a low
activity, the system is said to be excitable, and,
depending on the bifurcation that occurs, the excitability
is referred as class I or II (Rinzel and Ermentrout 1989;
Izhikevich 2000). As previously observed, large values of
cei (greater than umax=ðuei

eq � umaxÞ) give birth to non-
trivial behavior: the bifurcation diagram is comprised of
nine regions for cei ¼ 10 and seven regions for cei ¼ 0:4.
An important qualitative difference is the destabilization
of the excited state when cei ¼ 0:4 (Fig. 5, region III).
This situation may be quite surprising since the inhibi-
tory population is less excited, but it is explained by the
relative difference between cie and cee. Moreover, we
observe that numerous stable patterns of synchronous
activities are obtained for sufficiently strong excitatory
interactions combined with a moderate inhibitory
interaction (regions VI and VII).

Our study of the isolated neural oscillator does not
provide a complete description of its bifurcation struc-
ture as cei varies. An analysis of codimension three
bifurcations as cei continuously varies remains to be
done. However, we have obtained a sequential descrip-
tion of the dynamical regimes for a high and a moderate
value of cei.

4 Excitation of neural oscillators

We have studied the dynamical regimes of isolated
populations. To go further in the analysis we consider
the behavior of Eq. 2 under a constant excitatory input.
This situation mimics the effects of a global homoge-
neous input on the synchronous activity of the network.
We denote is as the external input applied to the
excitatory population. Equation 2 becomes

v0ðtÞ ¼ �vðtÞ þ ðceeUðvðtÞÞ þ isÞðuee
eq � vðtÞÞ

þ cieUðuðtÞÞðuie
eq � vðtÞÞ

u0ðtÞ ¼ �uðtÞ þ ceiUðvðtÞÞðuei
eq � uðtÞÞ

ð4Þ

The transformation: ~ccee ¼ cee þ is and ~UUðxÞ ¼
ðceeUðxÞ þ isÞ=~ccee, yields for the excitatory population

v0ðtÞ ¼ �vðtÞ þ ~ccee
~UUðvðtÞÞðuee

eq � vðtÞÞ
þ cieUðuðtÞÞðuie

eq � vðtÞÞ

while the inhibitory one remains unchanged. Then the
dynamical behavior of Eq. 4 is similar (but not identical)
to those of an isolated region with a more reactive
transfer function for the excitatory population since
~UUð0Þ ¼ ðceeUð0Þ þ isÞðcee þ isÞ. We consider the case
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Fig. 5. The bifurcation diagram of Eq. 2 for cei ¼ 0:4; this value
satisfies umin=ðuei

eq � uminÞ < cei < umax=ðuei
eq � umaxÞ and corresponds

to one of the cases of proposition 3. The other parameters are similar
to those used in Fig. 3. Figure 5b and 5c are enlargements of Fig. 5a
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where parameters belong to domain I of the above
bifurcation diagrams (Figs. 3 and 5). Then there exists a
stable fixed point ðv0; u0Þ, and the system is excitable. In
Fig. 7, we draw the bifurcation diagram where is is
the bifurcation parameter. Specifically, we depicted the
two cases, cei ¼ 10 and cei ¼ 0:4, which correspond
to Fig. 7a and 7b, respectively. The curve labeled CH
represents the L2 norm of the cycle that emerges through
a Hopf bifurcation, labeled H1;H2 for Fig. 7a and H for
Fig. 7b. Although the systems Eq. 2 and 4 are not
identical, it is possible, through a homeomorphism, to
identify the dynamical behavior obtained from Eq. 4
with those depicted in Figs. 4 and 6.

In Fig. 7a, for is 2 ½0;H1�, the system converges to the
low-activity fixed point (domain I). At is ¼ H1 the fixed
point loses its stability through a supercritical Hopf
bifurcation, which gives birth to a stable limit cycle. For
is 2 ½H1;H2� the system oscillates; this situation corre-
sponds to domain II. The limit cycle disappears at the
second Hopf bifurcation point, H2, but the activity re-
mains low. At is ¼ LP1 a pair of fixed points appears, far
from the low-level-activity fixed point. One of the fixed
points is stable and corresponds to a high-level activity,
and the other is a saddle point. At is ¼ LP2 the saddle
point and the low-level-activity point merge, and for
is > LP2 the system is in high activity. As is increases, the
transition is summarized by the following graph:
I ! II ! I ! V ! IV .

We turn now to Fig. 7b. Three bifurcations occur as
is increases. At is ¼ LP1 a pair of fixed points appears far
from the low-activity fixed point. One of the fixed points
is a source and the other is a saddle point. At is ¼ LP2,
the stable fixed point and the saddle point merge
through a saddle node bifurcation. At point H a

supercritical Hopf bifurcation occurs, which gives birth
to a stable limit cycle when is is close to H and is < H .
As is approaches LP2, the period increases and becomes
unbounded at LP2. Therefore, the cycle disappears
through a saddle node bifurcation on the limit cycle. As
is increases, the transition is summarized by the graph:
I ! III ! II ! IV .

We end this section with a remark that will be useful
in the next section. A fixed point ðv0ðisÞ; u0ðisÞÞ is a
solution of lðv; isÞ ¼ 0 with lðx; yÞ ¼ �xþ ðceeUðxÞ
þyÞðuee

eq � xÞþ cieUðceiuei
eqUðxÞ=ð1þ ceiUðxÞÞÞðuie

eq � xÞ.
We have:

v00ðisÞ ¼ �
lxðv0ðisÞ; isÞ
lyðv0ðisÞ; isÞ

¼ 1

detðJÞ ð1þ ceiUðv0ðisÞÞÞðuee
eq � v0ðisÞÞ

Moreover, u0 ¼ ceiuei
eqUðv0Þ=ð1þ ceiUðv0ÞÞ is an increas-

ing function of v0. Then the two coordinates of a
nonsaddle fixed point are increasing functions of is,
while a saddle fixed point has coordinates that decrease
with respect to is.

As we have shown, an increasing input yields a
transition between the different dynamical regimes. We
now use the specific transition low-activity stable state
! oscillations! high-activity stable state to discuss the
propagation of an activity in the network.

4.1 Propagating activity

In this section, we address the question of the propagation
of an excitatory activity in a chain of connected neural

Fig. 6. The stable and unstable
manifolds of the fixed points of
Eq. 2 for cei ¼ 0:4 (cf. Fig. 5) and
for different values of ðcee; cieÞ.
According to Fig. 5, ðcee; cieÞ
belongs to III (2.5,8) (Fig. 6a),
Va (11,35.6) (Fig. 6b), Vb (1.1,1)
(Fig. 6c). The other parameters
are listed in Fig. 3. To be per-
fectly clear, all the manifolds are
not represented
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oscillators. We consider a one-dimensional system with
homogeneous feedforward connections between the
excitatory pools. If we label the connection strength cr,
then the input current applied to the kth neural oscillator is
given by is;k ¼ crUðvk�1Þðuee

eq � vkÞ. Since an isolated
neural oscillator stands for the synchronized activity
of a population, our network mimics the activity of
synchronous regions connected through a feedforward
arrangement. The study of such a network appears to be
relevant for biological models of cortical neural networks
(Aertsen et al. 1998; Diesmann et al. 1999). It has been
shown that the network supports travelingwave solutions
like pulse waves and front waves (Tonnelier 2002). Here
we focus our attention on traveling oscillatory activities
driven by synaptic modifications.

We consider parameters such that an isolated region
is in domain I (excitable regime) of the bifurcation dia-
grams depicted in Figs. 3 and 5. For cr close to 0, the
implicit function theorem ensures the existence of a
stable low-level activity for the network denoted by
fðv0;k; u0;kÞgk¼1::n. For the region k, the quantity
crUðv0;k�1Þ is similar to is and from the previous study
we have v0;k > v0;k�1 and u0;k > u0;k�1, k ¼ 2 . . . n. Then,
as cr increases, each neural oscillator covers the bifur-
cation diagram depicted in Fig. 7a or 7b. For a large
network or for strong enough cr, an index k� exists such
that, for k < k�, each neural oscillator is in a low-level
activity. For k > k�, neural oscillators present an oscil-
latory activity or are in a stable high level of activity.
The boundary between high and low levels of activities is
comprised of oscillatory neurons. This qualitative
description is in agreement with numerical simulations
and allows a distinction between the two media related
to Fig. 7a and 7b, respectively. For a large excitatory-
inhibitory interaction, i.e., large cei, oscillations appear
through a Hopf bifurcation with a given frequency,
while for small interaction strengths oscillations appear
through a saddle node bifurcation with an arbitrarily
small frequency. If we adopt a moderately slow
increasing process on the synaptic strength cr such that
cr is an increasing function of time, our network sup-
ports a traveling wave with an oscillatory wave front.
Note that the propagation of the activity is induced by

increasing the connection strength between oscillators.
The traveling wave happens only once and connects a
stable low-level activity to a stable high-level activity.
The oscillatory front presents two distinct mechanisms
for the emerging frequency that could be used as a
macroscopic feature of the media that allows one to
distinguish between a large or small inhibitory scale.

5 Discussion

Two difficulties appear in modeling large and realistic
neural networks: (i) the size of the neural population
and (ii) the unknown connectivity of the network. We
overcome this problem by considering regions that
present synchronous activity. One expects that the
synchronous activity of a neural network will play an
important role in understanding more complex activities
such as asynchronous states or spatiotemporal chaos.

Our macroscopic description of a synchronous region
is given by a neural oscillator that mimics the activity of
a pair of interacting excitatory and inhibitory neural
populations. Parameters of our model stand for the
extension of the synaptic interactions and the size of
the population itself. An idealized nonlinearity (i.e., a
piecewise linear transfer function) allowed us to obtain
some analytical expressions for the bifurcations that
may appear. For a regular function U, numerical simu-
lations enabled us to find all the dynamical behaviors
through a bifurcation analysis. Using bifurcation dia-
grams (Figs. 3 and 5) one estimates the importance of
the different scale parameters ðcee; cie; ceiÞ. Depending on
the relative strength of these parameters, a large number
of dynamical behaviors are encountered: oscillations,
excitability, coexistence of fixed points, and a limit cycle.
However, we only computed two projections of a gen-
eral three-dimensional diagram. Further studies will be
performed to reveal the codimension three bifurcations
that yield the appearance of the new regions (regions VI,
VIIa, and VIIb in Fig. 5) as cei increases from a mod-
erate value (cei ¼ 0:4) to a high value (cei ¼ 10).

We have found some properties already reported for
the Wilson-Cowan oscillator (Borisyuk and Kirillov
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1992): (i) long-lasting oscillations, (ii) coexistence of
stable fixed points and a stable limit cycle, and (iii)
global bifurcations. Moreover, our macroscopic model
has some basic properties of excitable cells already de-
scribed by Rinzel and Ermentrout (1989). In particular,
our model presents type I and type II mechanisms for
excitability. Type II, where a single globally stable fixed
point exists, is found in domain I of the two bifurcation
diagrams (Figs. 3 and 5). Type I excitability, where three
fixed points exist (a source, an asymptotically stable
resting point, and a saddle point whose stable manifold
acts as a threshold separatrix), is encountered in domain
III of the bifurcation diagram depicted in Fig. 5 and is
locally present in domain VII of Fig. 3.

From the study of an isolated neural oscillator we
derived some properties of an excited neural oscillator.
We showed that the features of the oscillations are
monitored by the excitatory-inhibitory scale. Consider-
ing a feedforward arrangement of neural oscillators and
adopting a synaptic modification, an oscillatory activity
propagates in the network. The emerging frequency of
the front could be used to predict the strength of the
inhibitory interactions.

6 Appendix

We investigate the intersections of the nullclines and
split the phase space into rectangular domains bounded
by the following equations: v ¼ umin; v ¼ umax; u ¼ umin;
u ¼ umax. We rigorously analyze the intersections of the
nullclines and the stability of fixed points in the domains
outside the square ½umin; umax� � ½umin; umax�. In this
square, intersection and stability analysis do not lead
to tractable expressions.

1. For v < umin: the NLi equation is given by u ¼ 0, and
the NLe equation is v ¼ 0 (for u < umin). Then ð0; 0Þ is
the only fixed point in this region and the square
centered at the origin with sides of length 2umin be-
longs to the domain of attraction of ð0; 0Þ.

2. For v > umax: the NLi equation is given by u ¼ ceiuei
eq=

ð1þ ceiÞ and NLe by:

for u < umin : v ¼
ceeuee

eq

1þ cee

for u > umax : v ¼
ceeuee

eq þ cieuie
eq

1þ cee þ cie

These nullclines exist if their equations satisfy
v > umax. In the domain umin < u < umax, NLe is
a decreasing function. When ðceeuee

eq þ cieuie
eqÞ=

ð1þ cee þ cieÞ ¼ umax, and for ceiuei
eq=ð1þ ceiÞ > umax,

a new fixed point ðumax; ceiuei
eq= ð1þ ceiÞÞ appears.

When ðceeuee
eq þ cieuie

eqÞ=ð1þ cee þ cieÞ > umax, this new
fixed point splits into two new ones. The stability of
the new fixed points is given by studying the Jacobian
matrix. Since the vector field is not differentiable at
umax, we distinguish the Jacobian matrix on the right
and on the left of umax (denoted by Jþ and J�,
respectively). We have

Jþ ¼ �1� cee � cie 0

0 �1� cei

� �

J� ¼
�1� cie � cee þ kceeðuee

eq � umaxÞ 0

k
ceiuei

eq

1þcei
�1� cei

 !

Since we have �1� cie � cee þ kceeðuee
eq � umaxÞ > 0,

the bifurcation gives rise to a stable node (v > umax)
and to a saddle (v < umax), as expected from propo-
sition 2. It is a saddle node bifurcation (Fig. 2).

3. For umin < v < umax: NLi is a strictly increasing func-
tion. The NLe equation is given by solving a second-
degree polynomial:

for u < umin;
P1ðvÞ ¼ v2 þ ð 1

kcee
� umin � uee

eqÞvþ uee
equmin ¼ 0

for u > umax;
P2ðvÞ ¼ v2 þ ð1þcie

kcee
� umin � uee

eqÞvþ uee
equmin

� cieuie
eq

kcee
¼ 0

For umin < u < umax, NLe is strictly increasing, but
precise conditions for its existence do not lead to a
tractable expression. Note that for large k, the NLe
equation is: v ¼ uth þ oð1Þ, in both domains u < umin
and u > umax. We do not perform the stability analysis
of the fixed point in the domain ½umin; umax� �
½umin; umax�. Numerical simulations show that a Hopf
bifurcation appears in this region.
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