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■ Summary A role of oxidative
stress in atherosclerosis lies on ex-
perimental results carried out in
vitro and in animal models. In hu-
mans, the supplementation with
the antioxidant vitamin E has given
in some cases supportive results
and in others no effects. From in
vitro studies, a large amount of
data has shown that α-tocopherol
(the major component of vitamin
E) regulates key events in the cellu-
lar pathogenesis of atherosclerosis.
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We first described the inhibition of
protein kinase C (PKC) activity by
α-tocopherol to be at the basis of
the vascular smooth muscle cell
growth inhibition by this com-
pound. Subsequently, PKC was rec-
ognized to be the target of α-toco-
pherol in different cell types,
including monocytes,
macrophages, neutrophils, fibro-
blasts and mesangial cells. Inhibit-
ing the activity of protein kinase C
by α-tocopherol results in different
events in different cell types: inhi-
bition of platelet aggregation, of ni-
tric oxide production in endothe-
lial cells, of superoxide production
in neutrophils and macrophages as
well as impairment of smooth
muscle cell proliferation. Adhesion
molecule expression and inflam-
matory cell cytokine production
are also influenced by α-toco-

pherol. Scavenger receptors, partic-
ularly important in the formation
of atherosclerotic foam cells, are
also modulated by α-tocopherol.
The oxidized LDL scavenger recep-
tors SR-A and CD36 are down reg-
ulated at the transcriptional level
by α-tocopherol. The relevance of
CD36 expression in the onset of
atherosclerosis has been indicated
by the protection against athero-
sclerosis by CD36 knockout mice.
In conclusion, the effect of α-toco-
pherol against atherosclerosis is
not due only to the prevention of
LDL oxidation but also to the down
regulation of the scavenger recep-
tor CD36 and to the inhibition of
PKC activity.
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Angelo Azzi The role of α-tocopherol 
in preventing disease

Atherosclerosis protection by vitamin E 
is seen in several animal studies

Hypercholesterolemia can lead to enhanced plasma
oxidized LDL concentration and impaired endothelial
function. Vitamin E can prevent some of these events 
by a number of mechanisms. In cholesterol-fed rabbits
[1, 2], vitamin E fully prevented cholesterol-induced
atherosclerotic lesions. In Watanabe rabbits, vitamin 
E added to the food inhibited LDL oxidation and 
caused a reduction of the atherosclerotic area [3]. In
contrast, New Zealand White rabbits, fed a 1 % choles-
terol diet and 10.000 IU/kg α-tocopheryl acetate,showed

significantly more intima atherosclerotic proliferation
[4].

In atherosclerosis-susceptible apolipoprotein E
knockout mice, vitamin E deficiency, created by disrup-
tion of the α-tocopherol transfer protein gene, increased
the severity of atherosclerotic lesions in the proximal
aorta [5].

In a different study [6],male monkeys were given nat-
ural vitamin E during 3 years and their carotid arteries
thickness was monitored by ultrasound analysis. Vita-
min E was found to significantly inhibit the progression
of the disease in both cases when the animals received
the treatment at the beginning of the experiment, and
when atherosclerosis had already started.EJ
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The effect of α-tocopherol in animals may not be
only due to its antioxidant properties. Probucol, a pow-
erful inhibitor of atherosclerosis in a number of animal
models actively increased atherogenesis in LDLR-/-
mice, even though it provided a very strong antioxidant
protection of LDL [7]. Reduction of atherosclerosis by
Probucol observed in some animal models is thus due to
intracellular events which are absent in mice or to dif-
ferences in the metabolism of probucol. A dissociation
of atherogenesis from aortic accumulation of lipid hy-
dro(pero)xides in Watanabe heritable hyperlipidemic
rabbits has been also shown [8].

An extensive literature coverage of the subject is not
appropriate at this time, but the cited studies show that
antioxidants may be proatherogenic or antiatherogenic
in different animal models and that LDL oxidation does
not constantly correlate with atherogenic events.

Vitamin E protects humans against a number 
of disorders

Vitamin E deficiency is associated with a precise ail-
ment: cerebellar ataxia. Mutations of the α-TTP gene
lead to reduced α-tocopherol concentrations in plasma
and tissues that ultimately lead to a severe syndrome
named ataxia with vitamin E deficiency (AVED) [9].Fol-
lowing a vitamin E therapy, some of the neurological
symptoms of AVED may regress in some patients [10,
11]. Furthermore, vitamin E supplementation has
shown beneficial effects for a number of disorders, in
particular atherosclerosis, ischemic heart disease, and
development of different types of cancer [12–14]. It ap-
pears evident that the biological role of vitamin E needs
to be rediscussed, since its simple antioxidant function
is not sufficient to explain all the effects shown by the
molecule.

Protection against human atherosclerosis has
been observed in subjects taking high vitamin E
quantities with the diet

A study of 16 European populations showed a strong in-
verse correlation between plasma concentrations of vit-
amin E and the risk of cardiovascular disease death [15].

In a case control study, the EURAMIC, α-tocopherol
and β-carotene had no protective effect [16] although a
large prospective cohort study (Nurses’ Health Study)
revealed that those who obtained vitamin E from sup-
plements had a relative risk of nonfatal myocardial in-
farction or death from coronary disease of 0.54 [17].

Arterial imaging studies

The arterial wall thickness (IMT) can be measured non-
invasively by ultrasound and consequently the extent of
atherosclerosis at early, sub-clinical stages can be evalu-
ated [18, 19]. In the EVA trial it was shown that higher
red blood cell vitamin E was correlated with lower thick-
ening of the arterial wall [20].

Also in the Kuopio Ischemic Heart Disease Study [21]
a very significant inverse correlation between the pro-
gression of carotid artery narrowing and vitamin E
plasma levels was found. The Antioxidant Supplementa-
tion in Atherosclerosis Prevention study (ASAP) has an-
alyzed the effect of vitamin E and C on 3-year progres-
sion of carotid atherosclerosis [22]. Atherosclerotic
progression, measured by IMT, was reduced by 74 % in
the male population receiving both vitamins. No effect
on the arterial wall thickness has been found in the fe-
male group.

Using data from the Cholesterol Lowering Athero-
sclerosis Study (CLAS) [23], less carotid IMT progres-
sion was found for high supplementary vitamin E users
when compared with low vitamin E users [24]. However,
in the Study to Evaluate Carotid Ultrasound changes in
patients treated with Ramipril and vitamin E (SECURE),
showed no differences in atherosclerosis progression
rates between patients on vitamin E and those on
placebo, whereas treatment with ramipril showed a ben-
eficial effect [25].

Although it appears from the majority of this type of
studies that vitamin E protects against carotid thicken-
ing, more complex results are provided by the SECURE
trial and by the ASAP trial.

Controlled intervention trials

The classical Alpha-Tocopherol beta Carotene (ATBC)
trial, the Linxian China trial, the Cambridge Heart
Antioxidant Study (CHAOS) in England, and Gruppo
Italiano per lo Studio della Sopravvivenza nell’ Infarto
Miocardico (GISSI) in Italy have given contrasting re-
sults.

The CHAOS study, a secondary prevention trial that
enrolled subjects with established heart disease [26],
showed that vitamin E administration resulted in 77 %
reduction in the risk for nonfatal myocardial infarction.
However, the results of the GISSI trial (11.324 patients
who had survived a myocardial infarction) did not reach
statistical significance for the group given vitamin E [27,
28]. A re-evaluation of the data [29–31] suggested more
recently that cardiovascular mortality was significantly
reduced by vitamin E in GISSI and the effect on overall
survival showed a very favorable trend. The Linxian
China Study tested four micronutrients on overall mor-
tality and cancer mortality [32]. The subjects’ small but
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significant reductions in total and cancer mortality were
observed in subjects receiving β-carotene, vitamin E,
and selenium.

The ATBC trial tested the effects of vitamin E, β-
carotene, and both micronutrients together in heavy
smokers [33]. The subjects on vitamin E experienced
32 % lower risk of prostate cancer and a 41 % lower mor-
tality from prostate cancer [34]. A statistically signifi-
cant benefit was not found for either micronutrient on
heart disease [35]. It should be noticed that, like the
Linxian study, the ATBC trial used a much smaller dose
of syntetic vitamin E than the CHAOS and the GISSI
studies.

In the Heart Outcomes Prevention Evaluation study
(HOPE) [36], primary outcomes, defined as myocardial
infarction, stroke or cardiovascular disease death, did
not differ after vitamin E administration.

In the Secondary Prevention with Antioxidants of
Cardiovascular Disease in Endstage Renal Disease
(SPACE) [37], a 46 % reduction was attained in the pri-
mary endpoint (myocardial infarction, ischemic stroke,
peripheral vascular disease, and unstable angina.

The MRC/BHF Heart Protection Study Collaborative
Group 2001 has carried out a randomized trial of cho-
lesterol-lowering therapy and of antioxidant vitamins in
20.536 people at increased risk of coronary heart disease
death. They have shown that statins can reduce the risk
of heart attack or stroke by up to one third but vitamin
C and/or vitamin E were without evident benefit. [Con-
gress of the American Heart Association Scientific Ses-
sions, 2001, November 11–14. Anaheim, California].

Of the most important intervention studies, CHAOS
and SPACE are consistent with each other and a careful
analysis of the GISSI study reveals that α-tocopherol
supplementation resulted in significant effects. However
the HOPE and the MRC/BHF Heart Protection Study
Collaborative Group have given decisive negative out-
comes. It is clear that the selection of the population, the
amount of tocopherol, the ability of being absorbed, the
genotypic and nutritional aspects of the population
studied may be important in the understanding of the
present discrepancies.

Selective uptake of vitamin E into the body

Vitamin E is taken up together with dietary lipids in the
proximal part of the intestine. The tocopherols are re-
assembled together with lipids and apolipoproteins 
into chylomicrons. Chylomicron lipolysis, facilitated 
by lipoprotein lipase, allows part of vitamin E to be
distributed to tissues [38]. Chylomicron remnants
deliver the other part of α-tocopherol to the liver, where,
specifically recognized by the 32 kDa α-tocopherol
transfer protein (α-TTP), is incorporated into VLDL,
and then transported and delivered to peripheral cells

[39]. The plasma phospholipid transfer protein (PLTP)
facilitates the exchange of tocopherol between LDL and
HDL [40].

The scavenger receptor SR-B1 promotes the uptake of
HDL tocopherol into type II pneumocytes [41], into cells
constituting the blood brain barrier [42] and into the
liver, where it is again specifically recognized by α-TTP,
recycled and secreted in VLDL [43]. α-TTP gene muta-
tion results in low serum and cell α-tocopherol. Thus, in
the two factors needed for realizing an adequate level of
α-tocopherol in the body are dietary availability and the
expression of liver α-TTP. Relative affinities of toco-
pherol analogs for α-TTP, calculated from the degree of
competition for the α form, are as follows: α-tocopherol,
100 %, β-tocopherol, 38 %; δ-tocopherol, 9 %; ä-toco-
pherol, 2 %; α-tocopherol acetate, 2 %; α-tocopherol
quinone, 2 % [44]. Some of the eight different side-chain
isomers of racemic tocopherol are excluded from the
plasma and secreted with the bile [45, 46].

Tocopherol binding proteins in tissues

α-TTP is expressed in the liver, in some parts of the
brain [47], in the retina [48], lymphocytes and fibro-
blasts [49] as well as in the labyrinthine trophoblast re-
gion of the placenta. The latter may play an important
role in supplying the vitamin to the fetus, and explains
the fetal resorption occurring in rats fed a vitamin E de-
ficient diet [50].

It is still unclear how many other α-tocopherol bind-
ing proteins exist, and which mechanism regulates α-to-
copherol transfer and its concentration in peripheral
cells. Recently, a novel tocopherol binding protein has
been identified, the 46 kDa tocopherol associated pro-
tein (TAP) [51]. Ubiquitously expressed, TAP may be
specifically involved in the intracellular transport of to-
copherol, for example between membrane compart-
ments and the plasma membrane,similar to the yeast se-
cretory protein (sec14). Being provided with GTPase
activity TAP may regulate functions, such as phospho-
lipid/tocopherol signalling, phospholipid/tocopherol
secretion or adjusting the tocopherol composition of
membranes.

A 15 kDa tocopherol binding protein (TBP), which
preferentially binds α-tocopherol, may be responsible
for intracellular distribution of α-tocopherol [52, 53].

Molecular properties of α-tocopherol

■ Antioxidant and non-antioxidant functions

It is common believe that phenolic compounds like vit-
amin E exert only a protective role against free radical
damage and that vitamin E is the major hydrophobic
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chain-breaking antioxidant that prevents the propaga-
tion of free radical reactions in membranes and lipopro-
teins.

The antioxidant properties of vitamin E are well
known [54] especially in connection with the prevention
of LDL oxidation [55] although the correlation between
LDL oxidation and atherosclerosis is not always evident
[56, 57]. Alternative studies have suggested that α-toco-
pherol protection against LDL oxidation may be sec-
ondary to the inhibition of protein kinase C (PKC). This
enzyme is responsible for triggering the release of reac-
tive oxygen species with consequent lipid oxidation [58,
59].

The non-antioxidant properties of tocopherol have
been indicated by several experiments in which the four
tocopherol analogues had effects that could not be cor-
related with their anti-oxidant capacity. Furthermore,
the selective uptake and transport of α-tocopherol ap-
pears to represent the evolutionary selection of a mole-
cule with unique functions not shared by other antioxi-
dants.

■ Effects of α-tocopherol at cellular level

PKC inhibition was found to be at the basis of the vas-
cular smooth muscle cell growth arrest induced by α-to-
copherol [60–62]. It occurs at concentrations of α-toco-
pherol close to those measured in healthy adults [63].
β-Tocopherol, per se ineffective, prevents the inhibitory
effect of α-tocopherol. The mechanism involved is not
related to the radical scavenging properties of these two
molecules, which are essentially equal [64]. This phe-
nomenon has been confirmed in a number of different
cell types, including monocytes, macrophages, neu-
trophils, fibroblasts and mesangial cells [65–72]. α-To-
copherol, but not β-tocopherol, inhibits thrombin-in-
duced PKC activation and endothelin secretion in
endothelial cells [73]. It inhibits also PKC dependent
phosphorylation and translocation of the cytosolic fac-
tor p47(phox) in monocytes, with consequent impair-
ment of the NADPH-oxidase assembly and of superox-
ide production [58].

In vitro studies have shown that inhibition of recom-
binant PKC by α-tocopherol is not caused by a toco-
pherol-protein interaction. In addition, α-tocopherol
does not inhibit PKC expression. Inhibition of PKC ac-
tivity by α-tocopherol occurs at the cellular level by pro-
ducing dephosphorylation of the enzyme,whereby β-to-
copherol is much less potent [74]. Dephosphorylation of
PKC occurs via the protein phosphatase PP2A, which has
been found to be activated by the treatment with α-to-
copherol [74–76].

■ Transcriptional regulation by α-tocopherol

Upregulation of α-tropomyosin expression by α-toco-
pherol, and not by β-tocopherol occurs via a non-an-
tioxidant mechanism [77, 78]. In human skin fibroblasts
the age-dependent increase of collagenase expression
can be reduced by α-tocopherol [79]. The liver α-toco-
pherol transfer protein (αTTP) and its mRNA are mod-
ulated by dietary vitamin E [80]. Scavenger receptors are
particularly important in the formation of atheroscle-
rotic foam cells [81] and disruption of CD36 protects
against atherosclerotic lesions. In smooth muscle cells
and monocytes/macrophages, the oxidized LDL scav-
enger receptors SR-A and CD36 are down regulated at
the transcriptional level by α-tocopherol but not by β-
tocopherol [82–84].

■ Inhibition of monocyte-endothelial adhesion

α-Tocopherol enrichment of monocytes, as well as neu-
trophils, decreases adhesion to human endothelial cells
both in vivo and in vitro [85, 86] and depends on the ex-
pression of adhesion molecules [87–89].

■ Inhibition of platelet adhesion and aggregation

α-Tocopherol inhibits aggregation of human platelets
by a PKC-dependent mechanism both in vitro and in
vivo [68, 90] and delays intra-arterial thrombus forma-
tion [91]. The studies reported above are consistent with
the conclusions of Iuliano et al. [92] that circulating LDL
accumulates in human atherosclerotic plaques and that
such accumulation by macrophages is prevented by α-
tocopherol in vivo. The protection by α-tocopherol may
not be due only to the prevention of LDL oxidation, but
also to the down regulation of the scavenger receptor
CD36 and to the inhibition of PKC activity.

Despite a general agreement on the α-tocopherol in-
hibitory action at PKC level, the expression of several
genes, such as CD36 [83], SR class A [93], collagenase
[79], and ICAM-1 [88], appears to be regulated by α-to-
copherol in a PKC independent way. Furthermore, a
number of observations, such as PP2A [74] and diacyl-
glycerol kinase [94] activation, 5-lipoxygenase [95]
(Jialal et al. 2001) and cyclooxygenase (Wu et al. 2001)
inhibition, still lack a mechanistic explanation.

Conclusions

From the study reported above three relevant conclu-
sions can be derived. 1) It seems improbable that the ef-
fects of α-tocopherol, relevant to the protection against
atherosclerosis, as described at a biomolecular and ani-
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mal level, do not have a counterpart in the prevention of
the human pathology. 2) The basis for the contradictory
results obtained by similar clinical trials, carried out in
different countries and by different research groups, is
still obscure. 3) More adequate trial conditions on se-

lected populations are needed to see protective effects of
α-tocopherol against human atherosclerosis.
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