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Abstract Dynamic power management has been
adopted in many systems to reduce the power/energy
consumption by changing the system state dynamically.
This paper explores energy efficiency for systems
equipped with PCI-Express devices, which are designed
for low power consumption and high performance,
compared to corresponding PCI devices. We propose
dynamic power management mechanism and a
management policy for energy-efficient considerations.
A case study for a variable-bit-rate local-area-
network device under the PCI-Express specification
is exploited to provide supports for dynamic packet
transmission. Simulation results show that the proposed
mechanism and policy would reduce the system energy
consumption substantially.
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1 Introduction

The designs of high-performance hardware have always
been in a strong demand in the past decades. The per-
formance of microprocessors has been improved dra-
matically, and the improvement process continues for
the following foreseeable future. Recently, the needs
of energy efficiency in various system components trig-
ger the exploring of the tradeoff between the system
performance and the energy consumption. Different
techniques in dynamic power management (DPM) [13],
dynamic voltage scaling (DVS) [24], and dynamic cache
re-sizing are proposed in different contexts and for
different applications. DPM aims at the reducing of
the power consumption dynamically by changing the
system state, and DVS changes the supply voltage of
the electronic circuits dynamically for considerations of
energy-efficiency.

Energy-efficient real-time scheduling has been an ac-
tive research topic in the past decade for DVS systems.
Researchers have proposed various scheduling algo-
rithms to minimize the energy consumption for periodic
hard real-time tasks under different assumptions, e.g.,
[1, 2, 11, 17]. When fixed-priority scheduling is con-
sidered, various energy-efficient scheduling algorithms
were proposed based on heuristics [23, 25, 26, 28, 32].
When energy-efficient scheduling of aperiodic real-
time tasks is considered, energy-efficient scheduling for
uniprocessor environments with a continuous speed
spectrum was explored in [3, 9, 14, 30, 31]. Scheduling
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algorithms were also proposed in the minimization of
the energy consumption when there is a finite number
of speeds for a processor with negligible speed transi-
tion overheads [6–8, 10, 12]. Recent study by Chen and
Kuo [5] provides a comprehensive survey for energy-
efficient scheduling of real-time tasks in DVS systems.

Distinct from the DVS technique to adjust the supply
voltages, the DPM technique changes the system state
dynamically to reduce the power/energy consumption.
In DPM, a device must be in the active state to serve
requests, and it might go to the idle or sleep state to
save energy. Requests might be issued by applications
or respond to external events, such as the arrival of
network packets. Many works on power management
mainly focus on the prediction of the duration of each
idle period and often assumes that the arrival times
of requests cannot be changed [13, 16]. However, the
duration of an idle period can be changed by the
scheduling (or even delaying) of requests in reality.
A common approach is to cluster several short idle
periods into a long one such that a device with DPM
support could be idle or sleep for a long period of time.
There have been some excellent results proposed for
processor DPM support, such as those in [15, 22, 29], or
for the considerations of real-time task scheduling, such
as those in [4, 27].

In reality, most embedded systems and server sys-
tems are with peripheral devices. For battery-driven
embedded systems, the reduction of energy consump-
tion can prolong the lifetime of the battery. For server
systems, the effective use of energy/power can signif-
icantly reduce the power bills. As peripheral devices
often make a significant contribution to the power
consumption of the entire system, it is necessary to
reduce the energy consumption without sacrificing too
much performance. Peripheral Component Intercon-
nect (PCI) Express devices are designed for low power
consumption and high performance, compared to PCI
devices [20]. This paper explores how to achieve en-
ergy efficiency for systems equipped with PCI Express
devices. By applying the interfaces provided by PCI-
Express for control mechanism of functions and para-
meters, such as the supply voltage, the load capacitance,
the frequency, and the transfer link, system design-
ers can balance the energy/power consumption and
performance [19].

In this work, we propose DPM mechanism for con-
siderations of energy-efficiency. A greedy algorithm
for on-line scheduling is proposed to facilitate the
power management for a device by re-ordering re-
quests and by reducing the numbers of bitrate changes.
We show how to integrate the proposed algorithm
and mechanism into existing system implementations.

A case study is exploited for a variable-bit-rate local-
area-network (LAN) device under the PCI-Express
specification to provide supports for dynamic packet
transmission. The proposed algorithms were evaluated
by extensive simulations over networking traces. The
experimental results show that the proposed mech-
anism and policy would reduce the system energy
consumption substantially. As a result, adopting the
variable-bite-rate mechanism can significantly improve
the energy consumption, compared to the schedule by
staying at the maximum bit-rate, with slight increasing
of response time.

The rest of this paper is organized as follows:
Section 2 presents the system architecture. Section 3
provides the motivation of this work and define the
problem, following the mechanism and the policy in
our energy-efficient design for variable-bitrate devices.
Section 4 presents the simulation results. Section 5 is
the conclusion.

2 System Architecture

The purpose of this section is to provide a summary
of the PCI and PCI-Express specifications and the ar-
chitecture of a system equipped with a variable-bitrate
PCI-Express LAN device. The driver layers of an I/O
system in a typical operating system could be abstracted
as those shown in Fig. 1. The variable bit-rate device
(VBD) driver provides a communication interface be-
tween a targeted PCI-Express device and the operating
system. Driver-Host is a layer that provides a commu-
nication interface between application and the VDB
driver, and Driver-Target is a layer for the communi-
cations between Driver-Host and a PCI-Express device
via the PCI-Express local bus. In this work, we revise
the two existing layers in the VBD driver, i.e., Driver-
Host and Driver-Target. The objective is to propose
a low-power and variable-bitrate design for a typical
PCI-Express LAN device.

2.1 PCI and PCI-Express Specifications

The PCI Local Bus is a high-performance 32-bit or 64-
bit bus with multiplexed address and data lines. The bus
is used for interconnection between highly integrated
peripheral controller components, peripheral add-in
cards, processors, and memory systems. In the PCI
Local Bus Specification, Revision 2.1 [20], states are
defined for all PCI functions, i.e., D0, D1, D2, or D3hot.
Although, state transition and conditions of power
management are defined in the PCI Bus Power Man-
agement Interface Specification [18], how to achieve
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Figure 1 The overview of
a variable-bitrate driver
between the operating system
and devices.

energy efficiency in the hardware (or even software)
implementation is unclear in the specification.

PCI defines a device as a physical load on the PCI
bus. Each PCI device can host multiple functions, and
each device has its own PCI Configuration Space. Since
each PCI function is an independent entity to the soft-
ware, each function must implement its own power
management interface. Each PCI function can be in
one of four power management states, i.e., D0, D1, D2,
and D3. As defined in the PCI Local Bus Specification,
Revision 2.1, all PCI functions must support states D0,
D3hot, and D3cold. Power management states provide
different levels of power savings, and each state is
denoted by a state number. Note that D1 and D2 are
optional power management states. These intermediate
states are intended to provide system designers more
flexibility in balancing power saving, restore time, and
performance. For example, the D1 state would con-
sume more energy than the D2 state; however, the D1
state does provide a quicker restore time, compared to
the D2 state. The D3 state is belonging to a special
category in power management, and a PCI function
could be transmitted from any state into D3 by a
command issued by software code or an action, due
to the physical removing of the power from its host
PCI device. Because of the two different transitions,
the two new D3 states are designated as D3hot and
D3cold, where the subscripts refer to the presence or
absence of Vcc, respectively. Functions in D3hot can
be transmitted to an uninitialized D0 state via software
by writing to the function’s PMCSR register or by
having its Bus Segment Reset (PCI RSTpin) asserted.
Functions in the D3cold state can only be transmitted
to an uninitialized D0 state by reapplying Vcc and by

asserting Bus Segment Reset (RSTpin) to the func-
tion’s host PCI device.

The PCI-Express specification was designed to trade
performance for energy consumption. PCI-Express
adopts control mechanism of functions to do power
management. According to the system workload and
performance metrics, a PCI-Express device might dy-
namically adjust its supply voltage, transfer link, or
frequency to satisfy the system requirements. To apply
DPM to a PCI-Express device, a power manager (PM)
is required in the system to decide the state changes
of the device. PM wakes up a device to serve requests
and shuts it down to save power. However, any state
transition incurs overheads in both energy consumption
and latency. Consequently, a device should be shut
down only if it can sleep long enough to compensate
the performance and energy overhead.

In particular, PM provides the following services
[19]:

1. Mechanism to identify power management capabil-
ities of a given function.

2. The ability to turn a function into a certain power
management state.

3. Notifications of the current power management
state of a function.

4. The option to wake up the system on a specific
event.

In addition to the power management of functions,
PM also provides Link power management so that
the PCI-Express physical link could let a device get
to an active state, i.e., an initial state, or enable state
transition. PCI-Express Link states are not visible di-
rectly to legacy bus drivers but are derived from the
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power management states of the components residing
on those links. The link states defined in the PCI-
Express specification are L0, L0s, L1, L2, and L3. The
larger the subscript is, the more the power saving.
PCI-Express components are permitted to wake up
the system by using wake-up mechanism, followed by
a power management event message. Even when the
main power supply of a device is turned off, a system
with the corresponding PCI-Express device might be
waken up by providing the optional auxiliary power
supply (Vaux) needed for the wake-up operation.

2.2 Variable-Bitrate PCI-Express LAN Devices

A system device is, in general, an integration of several
application-specific integrated circuits (ASICs). In chip
designs, the supply voltage (Vcc) usually supplies volt-
age to each component or function, as shown in Fig. 2a,
where one purpose in the combination of ASICs is
to reduce power consumption [21]. ASIC2 and ASIC3
might be merged or redesigned into an integration cir-
cuit (IC) because of changes in the design. For example,
when several passive units, such as ASIC1 and the rest
in Fig. 2a, have some dependent relationship or control
sequence, the supply voltage circuits can be changed, as
shown in Fig. 2b, in which the supply voltage of ASIC1
comes from the integrated IC (ASIC4) of ASIC2 and
ASIC3.

This paper revises the existing architecture of LAN
card devices based on the PCI-Express specification
[19]. It should not only manage state transition for pow-
er management but also save power. A typical design
block diagram of a PCI-Express LAN device is shown
in Fig. 3a. From right to left in the IN port in Fig. 3a, the

components are the physical layer (PHY), the global
media access control (GMAC) layer, and the first-in-
first-out reception buffer (Rx FIFO). PHY translates
the protocol between the signal layer and the PHY. The
GMAC layer translates the protocol between different
interfaces. On the other hand, from left to right in
Fig. 3a in the OUT port in Fig. 3a, we have a transmis-
sion queue and first-in-first-out transmission buffer (Tx
FIFO). Our proposed architecture is shown in Fig. 3b.
To reduce the power consumption of the GMAC and
PHY layers, we design a control unit to control each
function unit or component. Take the LAN card as an
example: About a half (IN or OUT transport) of the
power consumption is required when only one direction
transmission occurs. There are two advantages in this
architecture: First, a new control unit for Vcc supply is
created, and different voltage supplies could be given
to different units based on different needs (if the hard-
ware is properly implemented), e.g., state/frequency
changes. Secondly, the new architecture separates IN
and OUT into two functions, such as LINK_IN and
LINK_OUT in Fig. 3b.

The power consumption of the proposed VBD LAN
device is summarized in Table 1. When the bit-rate of
the device changes from 1000 Mb (1 Gb) to 100 Mb,
the state transition will take about 860 mJ. When the
bit-rate of the device changes from 100 to 10 Mb, state
transition will take about 322 mJ. The state transition
overhead between different D states could be consid-
ered negligible, since it takes less than 10 mW power
consumption with negligible timing overhead.

Even though PCI-Express LAN devices provide
hardware mechanism for low power design, system de-
signers have to determine how to dynamically adopt

ASIC 3

ASIC 1

Vcc & Control

ASIC 2

(a) Three ASICs before integration

ASIC 4

ASIC 1

Vcc & Control

Vcc & Control

(b) Integration with new Vcc support

Figure 2 Low-power ASICs designs (a, b).
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Figure 3 The block diagram
of new LAN devices in which
all control and voltage supply
belong to the “Control &
Vcc” unit (a, b).
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(a) A normal block diagram for PCI-Express
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Control & Vcc

(b) Separation of IN/OUT into two LINK components

the bit-rate changes or mode changes. For example, to
reduce the energy, we can turn off the device when
it is idle, but turning the device on later will consume
energy. Therefore, the decision to change the mode or
change the bit-rate mush be done carefully. Section 3
will present our proposed algorithms to decide when
and how to change the bit-rate or mode.

3 An Energy-Efficient Design for Variable-Bitrate
PCI-Express Devices

This section shows an energy-efficient design for
variable-bitrate devices. we first describe the problem
definition and provide an example. Secondly, we pro-
pose mechanism for state transition on the variable-

Table 1 Parameters in
different LAN bit-rate
settings.

LAN speed (Megabit/Sec) Transmission mode Current (mA) Power (mW)

1000 Mb (1 Gb) Normal Run (Functional test) 350.9 1157
Link Up (Idle) 314.5 1137
Link Down 139.2 459

100 Mb Normal Run (Functional test) 147.7 487
Link Up (Idle) 131.8 434
Link Down 120.5 398

10 Mb Normal Run (Functional test) 116.4 384
Link Up (Idle) 95.3 314
Link Down 87.5 298
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bitrate device. Thirdly, we design a policy to make
variable-bitrate device work properly.

3.1 Problem Definition

Suppose that we are required to transmit 300 Mb of
data from a host computer via a PCI-Express LAN
device to another computer in 50 s. Let the actual data
transmission rate in the networking environment be
0.1 times of the network transmission bit-rate.

There are several alternatives in executing the data
transmission: We might choose to transmit data in 1 Gb,
as shown in the first item in Fig. 4. Three seconds are
used to transmit data, and 1 s is used to have state
transition of the device to the idle state. The rest of
46 s is for the device to stay at the “Down” state.
Another alternative is to transmit data at 100 Mb for
30 s and then let the device go into the idle state.
The device would stay at the “Down” state for the
rest 20 s, as shown in the second item in Fig. 4. The
other alternative is intelligently exploit the flexibility
in the switching of bit-rates. For example, we could
do bit-rate adjustments, as shown in the third item in
Fig. 4. In terms of the energy consumption, the third
alternative is the best among the presented alternatives,
and the first is the worst. The third could save more
than 20% of the total energy consumption, compared
to the first. More than 10% saving of the total energy
consumption could be achieved by the third alternative,
compared to the second case. Note that it is not feasible
to transmit the data at 10 Mb because we could not
finish it in 50 s. The example shows the advantage of
adaptive adjustments of transmission bit-rates in energy
consumption and provides a motivation for our work.
Note that it is infeasible to have an optimal schedule
unless the future is predictable.

This paper explores the management of state tran-
sition and transmission-bit-rate adjustments for the
scheduling of requests. Each request to the device

under considerations is characterized by three parame-
ters: its Input/Output type, start-time, and request size.
Our objective is to minimize the energy consumption
in servicing the requests such that the task response
time is acceptable. In the following subsections, we shall
propose state transition mechanism based on existing
system implementations and the PCI-Express speci-
fication. We will then propose a policy in the man-
agement of state transition and transmission-bit-rate
adjustments with the considerations of the scheduling
of requests.

3.2 A Time-Slice-Based Transition Algorithm:
The Basic Approach

The main data structure in the variable-bitrate driver
is a queue. When a new request arrives, the request is
inserted into the queue with the specification of its own
transmission direction, starting time, and request size.
This queue will be processed by applying the shortest-
job-first order for better performance since it tends to
minimize the average response time of requests. Each
request is associated with a status variable to record
its service status. A request is removed from the queue
after its service is completed.

We exploit the idea of time slice for the servicing of
requests to a VBD. The operating time of a device is
divided into fixed time slices (of a specified length T)
such that both the bit-rate and the power management
state of the device are required to remain unchanged
within each time slice. The rationale behind the time-
slice idea is to reduce the number of bit-rate switchings
to save energy consumption when requests are inter-
leaved with short inter-arrival time. Another incentive
is to keep the device working when some request fin-
ishes before the expiration of the time slice so that
any immediately incoming request within the time-slice
period would be serviced instantly.

Let Dc and Fc be the device state and the bit-rate
state of the device, respectively. Fb ,1 denotes the actual

Case1000Megabits:
(Work):3sec (Idle):1sec (Down):46sec

Total energy consumption: 1157 * 

* * * 

* * 3 + 1137 1 + 459 46 = 25722 (mJoule)

Case 100 Megabits :
(Work):30sec (Idle):1sec (Down):19sec

Total energy consumption: 487 30 + 434 1 + 398 19 = 22606 (mJoule)

Case Variable-Bitrate :
100Mb(W):1sec 1G(W):3sec 100Mb(W):1sec 10Mb(W):1sec 10Mb(I):1sec 10Mb(D):43sec

Total energy consumption: 487 1 + 1157 3 + 487 1 + 384 1 + 314 1 + 298 43 + 860 2 + 322 1 = 19999 (mJoule)

Figure 4 An example in the transmissions of 300 MB of data in 50 s by a PCI-Express LAN device.
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bit-rate in the previous time slice, where Fb ,2 is the
actual bit-rate in the time slice before the previous
time slice. Initially, let Dc = D0, Fc =100 Mb, and
Fb =1 Mb, regardless of what the network transmission
bit-rate is. At the starting of each time slice, Fc and Dc

are set as the actual device transmission bit-rate and the
device state in the previous time slice, respectively, and
Fb = Fc. The device transmission bit-rate (referred to
as the bit-rate) and the state is checked up, as shown
in Algorithm 1. Fc could be one of the three bit-rates
10, 100, and 1000 Mb. Dc could be one of the three
states: D0 (working state), D1 (idle state), and D3 (link
down state, also abbreviated as Dmin). Given a variable
bit-rate LAN device, let the minimum transmission bit-
rate Fmin and the maximum transmission bit-rate Fmax

be 10Mb and 1Gb, respectively.

Algorithm 1 A Time-Slice-Based Transition Algorithm
Input: (Fc, Dc, Fb ,1, Fb ,2)
Output: The setting of the state Dc and the bit-rate Fc

for this time slice
if the device is not working then

if Fc > Fmin then
Downgrade Fc with one degree

else
if Dc > Dmin then

Downgrade Dc with one degree
end if

end if
else

if (Fc can be upgraded with one degree and Fc <
Fmax) then

Upgrade Fc with one degree
else

if the Fb ,1 < Fb ,2 then
Downgrade Fc with one degree

else
Fc remains

end if
end if

end if

We adopt a greedy algorithm to set up the bit-
rate and the state of a device at the starting of each
time slice. The basic idea is as follows: If the device

is not working, and the current transmission bit-rate
Fc is higher than the minimum bit-rate Fmin, then we
downgrade the bit-rate. If the current device state Dc

is higher than the minimum device state Dmin, then we
turn the device into a deeper power saving state. On
the contrary, if the device is working (in default, the
device will recover to the D0 state), and the bit-rate
could be upgraded, then we shall pull the device bit-
rate to a higher level for the performance considera-
tions. If Fb ,1 < Fb ,2, then the upgrading of the bit-rate
would not improve the performance. As a result, we
downgrade Fc with one degree. When we downgrade
(upgrade) Fc with one degree, we mean that we move
down (up) the bit-rate to the next level of the avail-
able bit-rate settings. Similarly, when we downgrade
(upgrade) Dc with one degree, we mean that we move
down (up) the state to the next level of the available
D-state settings.

3.3 A Revised Algorithm

The purpose of this subsection is to further improve the
time-slice-based transition algorithm with the consider-
ations of the bit-rate of the three time slices ahead of
the current time slice: The revised version of the algo-
rithm is referred to as the variable bit-rate algorithm.
Let t denote the starting time of the current time slice.
We shall determine the device state Dc and the bit-
rate state Fc of the device. Let DRx and ARx denote
the set bit-rate and the actual bit-rate of the device
in the x-th time slice ahead of the current time slice,
respectively, as shown in Fig. 5. Note that even if we
set the bit-rate of a device at a value, the actual bit-rate
might be lower because the device and the environment
might not allow such as a bit-rate. The variable bit-rate
algorithm is a greedy algorithm based on the idea of the
time-slice-based transition algorithm.

The revised algorithm will refer to only three recent
time slices, and is applied only when the previous three
time slices at time t are in the Normal Run. Note
that it is possible to refer to more than 3 time slices
to make a decision for setting the bit-rates. However,
checking the previous three time slices can report quite
representative results to see the network situation at
this moment. If the network is with low performance,

Figure 5 The notations of
the bit-rates of the time slices
ahead of the current time
slice.

t

Set bit-rate : DR3
Actual bit-rate : AR3

DR2
AR2

DR1
AR1

Set bit-rate :
Actual bit-rate :

Set bit-rate :
Actual bit-rate :
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Figure 6 The flowchart of the
variable bit-rate algorithm.

Min Bit-rate
current frequency=10

one should not use high bit-rate due to the significant
energy/power waste. If more than three time slices
are referred, the decision must be made carefully, as
the transmission history might not be useful for the
moment. Some factors, like aging, should be taken into
considerations. Here, we will present our solution by
referring three time slices.

The rules in the upgrading and downgrading of the
bit-rate for the variable bit-rate algorithm are defined
as follows:

1. The state and the bit-rate of the device remain
as the same as their corresponding ones in the

Figure 7 The flowchart of the
variable bit-rate algorithm.
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SB: 10Mb

AB: 5Mb

SB: 100Mb

AB: 30Mb

SB: 1000Mb

AB: 50Mb

SB: 100Mb

AB: 25Mb

SB: 100Mb

AB: 30Mb

SB: 100Mb

AB: 30Mb

SB: 100Mb

AB: 30Mb

Figure 8 An example for the revised algorithm, where SB and AB stand for the set bit-rate and the actual bit-rate of a time slice,
respectively.

previous time slice if any of the following two
conditions is satisfied:

The device is working, DR2 > DR3, and DR1 <

DR2.
The device is working, and DR2 = DR1.

2. Downgrade the transmission bit-rate Fc if any of
the following two conditions is satisfied:

The device is not working, and DR1 > minimum
transmission bit-rate.
The device is working, and AR1 < DR2.

3. Downgrade the device state Dc if both of the fol-
lowing two conditions are satisfied:

The device is operating at the minimum trans-
mission bit-rate.
The current state is over the minimum device
state.

4. Upgrade the transmission bit-rate Fc if the follow-
ing condition is satisfied:

The device is working, DR1 is lower than the
maximum device bit-rate, and AR1 > DR2.

5. Upgrade the device state Dc if the following condi-
tion is satisfied:

The device is not working, but a new request
arrives.

The flowchart of the rules is illustrated in Fig. 6, where
work_ f lag = 0 means that the device is not working;
otherwise, it is working.

The operating of the device is shown in Fig. 7. The
device starts at the initial state and does various
function test and diagnostic analysis. Flags work_
f lag, previous_direction, current_direction, previous_
bitrate, and device_bitrate denote the working status
(i.e., working or not working), the status of the previous
time slice (i.e., read or write), the status of the current
time slice (i.e., read or write), the set bit-rate of the pre-
vious time slice, and the set bit-rate of the current time
slice, respectively. If the device is not working, then
call the variable-bit algorithm; otherwise, the request at
the front of the queue is selected for data transmission.
current_direction is set as the transmission direction
of the request, i.e., read or write. If the direction is

not changed, then invoke the variable-bit algorithm;
otherwise, the transmission direction is changed by a
hardware setting action. Note that circuits for “IN” and
“OUT” are separated, as shown in Fig. 3b, where terms
of “frequency” and “bit-rate” are used for the same
meaning. The hardware setting action would activate
a different circuit and de-activate the original circuit
for the service of the previous request. The selected
request will be executed by the newly activated circuit.
The entire operating of the device will go back to the
checking state of the device working status.

The variable bit-rate algorithm provides a frame-
work for the adjustment of the state and the bit-rate
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Figure 9 Power consumption and energy consumption in
different bit-rate settings (a, b).



66 J Sign Process Syst (2010) 59:57–69

 2.59e+07

 2.595e+07

 2.6e+07

 2.605e+07

 2.61e+07

 2.615e+07

 2.62e+07

 2.625e+07

 2.63e+07

 2.635e+07

 85600  85800  86000  86200  86400

T
ot

al
 e

ne
rg

y 
co

ns
um

pt
io

n 
(m

J)

Time line (sec)

t=1sec

t=2sec

t=3sec
t=4sec

t=5sec

Figure 10 The energy consumption of the VBD strategy in
different settings of time slices.

of a device. The algorithm could be further improved
by considering the tradeoff between the power con-
sumption and the required bit rate. Take Table 1 as an
example. The first column of the table shows the three
available bit-rates of a variable-bit-rate LAN device,
and the second column shows the three available states
for each bit-rate, e.g., the Normal Run state being as
D0 of the bit-rate 1000 Mb. The third column and
the fourth column show the current and the power
of each corresponding state for a given bit-rate. We
should further improve the conditions in the upgrad-
ing and downgrading of states/bit-rates by considering
the tradeoff between the energy consumption and the
bit-rate, i.e., the performance. For example, since the
power ratio between 1 Gb and 100 Mb at the Normal
Run state is 2.376, there is no point to move to 1 Gb
from 100 Mb if the transmission bit-rate required for
a transmission does not need to be 2.376 times faster.
Another consideration is on the limitation on the actual
transmission bit-rate in the reality. When a device could
not reach the transmission bit-rate as being set by the
algorithm, the maximum transmission bit-rate should
be set accordingly. Such a setting action could be done
dynamically as the policy requires, e.g., once per few
hours.

To illustrate the above algorithm, we will use an
example for demonstration, as shown in Fig. 8. Suppose
that we are required to transmit 200 Mb of data from
a host computer via a PCI-Express LAN device to
another computer. The time slice is 1 s. We assume that
at the beginning the device is in the Link Up mode

at bit-rate 10 Mb. Therefore, the device is turned to
the Normal Run at time 1 s with 10 Mb. The actual
bit-rate for the device is 5 Mb. Then, at 2 s, we will
change to bit-rate 100 Mb (with actual bit-rate 30 Mb)
by Algorithm 1. Then, at 3 s, we will change to bit-rate
1000 Mb (with actual bit-rate 50 Mb) by Algorithm 1.
As 50 < 100 Mb, we change the bit-rate to 100 Mb (with
actual bit-rate 25 Mb) at 4 s. At 5 s, as the first condition
stands, for the rest of scheduling of the transmission,
the device will be set to transmit at bit-rate 100 Mb with
actual bit-rate 30 Mb.

4 Performance Evaluation

The proposed algorithm was evaluated over a trace
collected at an FTP server for 2 weeks. The arrival
times of transmission requests were translated into
their start times in the trace. The range of time slices
varied from 1 to 5 s. The power consumption values
of a bit-rate transition, a D state transition, and data
transmissions are as shown in Section 2. Three different
strategies were simulated: Setting of the transmission
bit-rate fixed at 1 Gb but with possible state transi-
tions (denoted to as 1 Gb), Setting of the transmission
bit-rate fixed at 100 Mb but with possible with state
transition (denoted to as 100 Mb), and our proposed
variable-bit-rate algorithm (denoted to as VBD).

Figure 9 shows the power consumption under the
1 Gb strategy, the 100 Mb strategy, and the VBD
strategy with a 1-s time slice. As astute readers might
point out, the 1 Gb strategy always had a larger power
consumption for most of the time, compared to other
strategies. With the VBD strategy, the power consump-
tion was usually smaller, but there did exist some peaks
in the experiments because of switchings of the bit-rate.
(Note that the power consumption in the switching of
states was negligible.) Figure 9b shows the total energy
consumption of the three strategies under comparisons.
The VBD strategy clearly outperformed the other two
strategies. The relationship between the energy con-
sumption and the time line was almost linear for each of
the three strategies although they had different slopes.
The gap between the VBD strategy and others was
getting bigger as time went by. By the end of the experi-
ments, the VBD strategy could save roughly 30% of the
energy consumption, compared to the 1 Gb strategy.
Compared to the 100 Mb strategy, the VBD strategy

Table 2 The average
response time in different
durations of a time slice.

Time slice (second) N/A(1 Gb) 1 s 2 s 3 s 4 s 5 s

Average response 0.206 0.646 0.653 0.658 0.664 0.679
time (s)
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could save roughly 15% of the energy consumption.
The trace for the experiments were for 2 weeks!

Figure 10 shows the experimental results of the VBD
strategy by varying the duration of a time slice from 1
to 5 s. In the experiments, the VBD strategy with 3-s
time slice is better than that with others. The difference
between any two of the total energy consumption of the
five lines was, in fact, less then 1%. The determination
of time-slice durations in the experiments was done by
a series of experiments and observations. We found
that the durations adopted in the experiments were
the best for the trace under simulation. However, we
must point out that a bad decision for a time-slice
duration would not ruin the proposed VBD strategy
too much. It was based on the observation in which the
performance of the VBD strategy did not change a lot
for the five durations. Even if the duration was set as
infinity, the VBD strategy became the 1 Gb strategy.
The determination of time slice could be determined
by profiling tools.

In general, the VBD strategy payed the price at a
worse response time, compared to the 1 Gb strategy.
The average response time of the VBD strategy with
different durations of a time slice and the 1 Gb strategy
are shown in Table 2. Although the average response
time of the VBD strategy was worse than that of the
1 Gb strategy, the delay in the transmission of a file was
not bad because the delay was only for the transmission
of the last piece of the file (when a file was broken into
pieces for transmissions).

5 Conclusion and Future Work

In this paper, we design a prototype of a variable-
bit-rate local-area-networking device over the PCI-
Express specification. A case study is done over a
variable-bit-rate local-area-networking (LAN) device
under the PCI-Express specification in energy-efficient
designs. A greedy on-line scheduling algorithm is
developed to minimize the energy consumption with
tolerable performance degradation. We propose the
concept of time slice to adjust the transmission bit-rate
or the idle time of the device. A feasible mechanism
is presented based on the implementations of existing
systems. The proposed algorithm and mechanism were
evaluated by simulations over emulated devices. The
experimental results show that the proposed algorithm
could reduce from 15% to 30% energy consumption
roughly, compared to a typical PCI-Express LAN card
with normal PM functionality. The increasing of the
average response time of requests was reasonable in the
experiments.

Energy efficiency has been a highly critical design
issue in hardware and software designs. For the future
work, we shall further extend the static time-slice ap-
proach to a dynamic one to further improve the power
saving of the system. The concept and methodology
proposed in this work could also be extended to the
energy-efficient management designs of complicated
devices, such as many VGA, USB, ATAPI and SATA
devices. Such management designs could be imple-
mented by either software or hardware, and there is
always a tradeoff in terms of cost and performance.
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