
J Sign Process Syst (2011) 63:215–225
DOI 10.1007/s11265-009-0395-7

Automatic Synthesis of Parsers and Validation
of Bitstreams Within the MPEG Reconfigurable
Video Coding Framework

Christophe Lucarz · Jonathan Piat · Marco Mattavelli

Received: 23 January 2009 / Revised: 27 April 2009 / Accepted: 15 June 2009 / Published online: 9 July 2009
© 2009 Springer Science + Business Media, LLC. Manufactured in The United States

Abstract Video coding technology has evolved in the
past years into a variety of different and complex
algorithms. So far the specifications of such standard al-
gorithms have been done case by case, providing mono-
lithic textual and reference software specifications, but
without paying any attention to the possibility of fur-
ther improvements of such monolithic standards. The
MPEG Reconfigurable Video Coding (RVC) frame-
work is a new ISO/IEC standard, currently under its
final stage of development aiming at providing video
codec specifications at the level of coding tools instead
of monolithic descriptions. The possibility to select a
subset of standard video coding algorithms to specify
a decoder that satisfies application specific constraints
is very attractive. However, such possibility to recon-
figure codecs requires systematic procedures and tools
capable of describing the new bitstream syntaxes of
such new codecs. Moreover, it becomes also necessary
to generate the associated parsers, capable of parsing
the new bitstreams. This paper further explains the
problem and describes the technologies used to de-
scribe new bitstream syntaxes. Additionally, the paper
describes the methodologies and the tools for the val-
idation of bitstream syntaxes descriptions as well as

C. Lucarz (B) · M. Mattavelli
Microelectronic Systems Laboratory,
École Polytechnique Fédérale de Lausanne,
Lausanne, Switzerland
e-mail: christophe.lucarz@epfl.ch

M. Mattavelli
e-mail: marco.mattavelli@epfl.ch

J. Piat
IETR/INSA Rennes, 35043, Rennes, France
e-mail: Jonathan.Piat@insa-rennes.fr

a systematic procedure for automatically synthesizing
parsers from the bitstream descriptions.

Keywords Reconfigurable video coding · RVC ·
MPEG · Syntax parsing · Dataflow models · CAL

1 Introduction

Video coding has changed a lot since its infancy in the
early nineties. The first original MPEG video coding
standard was released in 1993, and since then MPEG-2,
MPEG-4, Advanced Video Coding (AVC) and Scal-
able Video Coding (SVC) have been developed and
standardized. Each successive codec released by MPEG
has been substantially more complex than the last,
typically yielding twice the compression performance of
its predecessor. Because of this growing complexity, the
textual specification of recent standards (since MPEG-
4) has lost its normative role, being replaced by the ref-
erence software implementation as the true normative
specification. However, whereas this normative specifi-
cation (typically in generic C or C++) is very precise,
it presents a number of limitations. Large portions of
compression technology (i.e. coding tools) are common
across all MPEG standards, yet there is no direct way
to recognize or exploit this commonality. Additionally,
the sequential C/C++ descriptions do not expose the
potential parallelism that is intrinsic to the algorithms
constituting the codecs. They have also become exces-
sively large (in terms of code size), making it extremely
time consuming to transform the sequential reference
software into a VHDL implementation or to map it
onto a multicore platform. In other words, the complex
sequential C/C++ specifications no longer constitute a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150682?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

216 J Sign Process Syst (2011) 63:215–225

good starting point for the implementation processes of
standard video codecs on current and future platforms.
The challenge taken by the Reconfigurable Video Cod-
ing (RVC) framework currently under its final stan-
dardization stage by MPEG is to provide a high level
specification model for direct and efficient software and
hardware synthesis.

1.1 Essential Concepts in RVC

The essential concepts of the RVC framework can be
summarized as follows:

• RVC-CAL [1], a subset of the CAL data flow lan-
guage [2] for describing the Functional Unit. This
language defines the behavior of dataflow compo-
nents called actors, which is a modular component
that encapsulates its own state such that an actor
can neither read nor modify the state of any other
actor. The only interaction between actors is via
messages (known in CAL as tokens) which flow
from an output of one actor to an input of another.
The behavior of an actor is defined in terms of a

set of atomic actions. The execution inside an actor
is purely sequential: at any point in time, only one
action can be active inside an actor. An action can
consume (read) tokens, modify the internal state
of the actor, produce tokens, and interact with the
underlying platform on which the actor is running.

• FNL (Functional Unit Network Language) [1], a
language describes the video codec configurations.
FNL is a XML dialect that lists the FUs composing
the codec, the parametrization of these FUs and
the connections between the FUs. FNL allows hi-
erarchical constructions. A FU can be defined as a
composition of other FUs and described by another
FND (FU Network Description).

• BSDL (Bitstream Syntax Description Language)
[3], a language for describing the structure of the
input bitstream. BSDL is a XML dialect that lists
the sequence of the syntax elements with possi-
ble conditioning on the presence of the elements,
according to the value of previously decoded ele-
ments. BSDL is further explained in Section 2.

• A library of video coding tools [4], also called Func-
tional Units (FU) covering all MPEG standards

Figure 1 The reconfigurable
video coding framework.

Abstract Decoder Model (CAL)

Parser

Network
 of
coding
tools

Coded Data
Bitstream Schema

(BSDL)
Decoder Schema

(FNL)

Decoded Data

Parser
Generation

Instantiation

Decoding Solution

Parser

Implementation

MPEG RVC
Video Tool

Library

Video Tool Library
Proprietary

implementation

T
ec

hn
ol

og
y

in
de

pe
nd

an
t

N
o

rm
at

iv
e

T
ec

hn
ol

og
y

de
pe

nd
an

t
N

o
n

 N
o

rm
at

iv
e

Network
 of
coding
tools

J Sign Process Syst (2011) 63:215–225 217

(the “MPEG Toolbox”). This library is specified
and provided using RVC-CAL (a subset of the
original CAL language) as specification language
for each FU.

• An “Abstract Decoder Model” (ADM) is consti-
tuted by the instantiation of a codec configuration
(described using FNL) and the MPEG Toolbox.
Figure 1 depicts the process of instantiating an
“abstract decoder model” in RVC.

• Tools capable to verify and validate the behavior
of the Abstract Decoder Model (Open DataFlow
environment [5]).

• Tools capable to generate automatically software
and hardware descriptions of the Abstract Decoder
Model

1.2 Problem Definition

The RVC framework aims at supporting the devel-
opment of new MPEG standard and new decoding
solutions. The flexibility offered by the standard video
coding library to explore rapidly the design space is
primordial. Defining coding tools and their intercon-
nections becomes a relatively easy task if compared to
the efforts in rewriting (very large) monolithic software
specifications. However, testing new decoding solu-
tions, new algorithms for new coding tools, or new tools
configurations, the bitstream syntax may change from
a solution to another. The consequence is that a new
parser needs to be rewritten for each new bitstream

syntax. The parser FU is the most complex actor in
the MPEG-4 Simple Profile decoder [6] described in [7]
and its behavior needs to be validated with all possible
conforming bitstreams. Validating the parser behavior
and the BSDL schema by hand in general results to
be a burdensome tasks. Moreover, it is certainly not
an appropriate an efficient approach to write parsers
by hand when a systematic solution for deriving such
parsing procedure from the BSDL schema itself can
be developed. Such procedure based on transforming
the BSDL schema by a Extensible Stylesheet Language
(XSL) Transformation is described in the second part
of the paper. In any case, the validation of a bitstream
description (written by hand or automatically gener-
ated) is the necessary preliminary step. Such procedure
is described in the first part of the paper.

The paper is organized as follows: Section 2 gives
an overview of BSDL. Section 3 describes a procedure
for the validation of BSDL schemas. Section 4 reports
how it is possible to automatically generate a parser in
a form compatible with the Abstract Decoder Model
from a BSDL schema by using standard tools (i.e. XSL
Transformation). Section 5 concludes the paper.

2 BSDL, A Language for Defining Bitstream Syntaxes

ISO/IEC MPEG-B Part 5 is the standard that specifies
BSDL [3] (Bitstream Syntax Description Language), a
XML dialect describing generic bitstream syntaxes. For

Figure 2 A BSD and the
corresponding bitstream
schema is BSDL (a, b).

<NALUnit>
<startCode>00000001</startCode>
<forbidden0bit>0</forbidden0bit>
<nalReference>3</nalReference>
<nalUnitType>20</nalUnitType>
<payload>5 100</payload>

</NALUnit>
<NALUnit>
<startCode>00000001</startCode>
<!-- and so on... -->
</NALUnit>

<element name="NALUnit"
bs2:ifNext="00000001">

<xsd:sequence>
<xsd:element name="startCode" type="avc:hex4" fixed="00000001"/>
<xsd:element name="nalUnit" type="avc:NALUnitType"/>
<xsd:element ref="payload"/>

</xsd:sequence>
<!-- Type of NALUnitType -->
<xsd:complexType name="NALUnitType">

<xsd:sequence>
<xsd:element name="forbidden_zero_bit" type="bs1:b1" fixed="0"/>
<xsd:element name="nal_ref_idc" type="bs1:b2"/>
<xsd:element name="nal_unit_type" type="bs1:b5"/>

</xsd:sequence>
</xsd:complexType>

<xsd:element name="payload" type="bs1:byteRange"/>

(a) Bitstream Syntax Description (BSD) fragment of an MPEG-4 AVC bitstream

(b) BS schema fragment of MPEG-4 AVC codec

218 J Sign Process Syst (2011) 63:215–225

instance the description using BSDL of MPEG-4 AVC
[6] bitstreams, represents in a compact form all the
possible bitstream structures that conforms to MPEG-4
AVC syntax. A Binary Syntax Description (BSD) is a
unique instance among all possible instantiations of a
BSDL description. Such description represents a sin-
gle MPEG-4 AVC encoded bitstream. It is no longer
constituted by a BSDL schema, but by a XML file
containing the data of the bitstream. Figure 2a shows
a BSD associated to the corresponding BSDL schema
shown in Fig. 2b.

An video bitstream is composed by a sequence of
binary elements of the syntax having different lengths.
Some elements are composed by a single bit, whereas
others may contain several bits. The Bitstream Schema
(in BSDL) indicates the length of such binary elements
in a human and machine-readable format (hexadeci-
mal, integers, strings . . .). For example, hexadecimal
values are used for start codes as shown in Fig. 2a.
The XML formalism allows organizing the description
of the bitstream in a hierarchical structure. The Bit-
stream Schema (in BSDL) can be specified at different
levels of granularity. It can be fully customized to the
application requirements [8]. BSDL was originally con-
ceived and designed to enable adaptation of scalable
multimedia contents in a format-independent manner
[9]. In the RVC framework, BSDL is used to fully
specify and describe video bitstream syntaxes. Thus,
BSDL schemas must specify all the elements of syntax,
from the top hierarchy level down to the lowest level of
syntax elements. Before the adoption of BSDL in the
RVC framework, the existing BSDL descriptions were
used to described scalable contents only at the high
level of hyerarchy. Figure 2a is an example of BSDL
description for MPEG-4 AVC video.

The choice of the language describing the syntax
of bitstream is discussed in [8]. As result, BSDL has
been preferred over Flavor and XFlavor [10, 11] for the
following reasons:

– it is a stable language already defined by an inter-
national standard [3];

– in XFlavor, the bitstream is described with a set
of classes, in the object-oriented paradigm (C++
or java). The parsing is accomplished by the C++
or Java code generated from the Flavor descrip-
tion. The object-oriented paradigm is not used by
the RVC framework. Thus, the XML-based BSDL
description of the bitstreams has been preferred
because it does not introduce a change of paradigm
within the same framework.

– the XML-based description of BSDL better in-
teracts with the XML-based representation of the

configuration of RVC decoders (FU Network De-
scriptions) and the XML-based infrastructure of
the existing tools.

3 BSDL Bitstream Schema Validation

Before generating parsers from bitstream schemas, it
must be guaranteed that the schemas are correct, i.e.
the schema correctly reflects the structure of the com-
pressed data which is sent in it. If there is no validation
procedure, that guarantees that the bitstream is exactly
structured as the schema describes it, the generated
parser may not be able to parse the bitstream. Thus, a
validation procedure is necessary. Figure 3 summarizes
the overall method for the validation of bitstreams
schemas. Two tools are involved in the validation of
such schemas: the BintoBSD parser creates a Binary
Syntax Description (BSD) from a particular bitstream
and its corresponding Bitstream Schema (BS). The
reference decoder implementation outputs the refer-
ence BSD, representing the correct structure of the
data contained in the bitstream. The validation of the
BSDL schema consists in comparing the reference BSD
(generated by the reference decoder implementation)
and the BSD generated by the BintoBSD parser from
the Bitstream Schema. If the two BSD are identical,
it means that the bitstream correspond to the schema
under evaluation. If such procedure is repeated on
a set of input bitstreams which are composed by all
components of BSDL schema, the schema is considered
as correct.

3.1 The Case of Unsized Elements of Syntax

In several cases, the size in bits of a syntax element
is not known neither at compile-time nor at run-time

<xml>

Video
Coding

Bistreams

<schema>
 ...
</schema>

BSDL schema

<xml>
 ...
</xml>

<xml>
 ...
</xml>

Multimedia data
Metadata

Binary
to BSDL

Diff
Metadata

Reference
decoder

Implementation

begin
 ...
end

ECMA script

+

-

BS Description 1...n

BS Description 1...n

Figure 3 Illustration of the Bitstream Schema validation
procedure.

J Sign Process Syst (2011) 63:215–225 219

(e.g. Variable Length Codes). The size in bits of the
syntax element is known only during the decoding
process of such syntax element. The validation process
implies the generation of a BSD from a given bitstream.
It means that the size of every syntax element must be
determined. For the elements whose size is known a
priori, generating the BSD is straightforward. Con-
versely, for the elements whose size is not known a
priori, a parsing algorithm has to be implemented in
order to determine the size of such elements of syntax.
For the validation process, such parsing algorithms are
written in Javascript and are linked to the bitstream
schema (in BSDL) by means of the bs1:codec and
bs1:script BSDL constructs. Data types with the at-
tribute bs1:codec in a bitstream schema are decoded
using ECMAScript and the implementation is embed-
ded in the bitstream schema via the bs1:script BSDL
construct. The procedure enables the specification of
parsing algorithms in a bitstream schema that can be
used by BintoBSD, thus enabling the processing of data
structures that cannot be determined only by BSDL
constructs.

Figure 4a shows an example of declaration of
an user-defined element (“expGolomb”) for which a
Javascript parsing algorithm is necessary for decoding
it. The code of the parsing algorithm in Javascript
decoding the “ExpGolomb” syntax element is provided
in Fig. 4b.

The BintoBSD tool searches the bs1:script element,
class or file (respectively) for a function (or method)
with the signature BintoBSD(). The tool calls this script
to generate the element value to which the bs1:codec
attribute is attached. BintoBSD() function returns a
string containing the lexical value of the element and
modifies the Xpath variables contained in the BS
schema—Xpath is standardized as an extended feature

in [3]. The number of bits of the elements is consumed
and the process of generation of the BS description
can continue. Entropic decoders such as CAVLC and
CABAC in MPEG4-AVC requires some contextual
values from the already decoded bitstream informa-
tion. The implementation of BintoBSD provides the
ECMAScript with functions enabling to:

– evaluate Xpath expression inside the BS schema,
– evaluate Xpath expression inside the outputted BS

description,
– modify Xpath variable values.

Therefore Xpath and ECMAScript provide the way to
resolve these contextual values.

The bs1:script component defines the local name
of the datatype, which inherits the target namespace
of the schema document. The bs1:codec attribute can
then reference this implementation via the URI of the
datatype, which is obtained by adding the local name as
fragment identifier to the namespace.

For instance, ECMAScript datatypes may be used
to enable a BSDL parser to process Variable Length
Codes, such as Huffman codes or Arithmetic-coded
values (Fig. 4b). An ECMAScript implementation may
be referenced by bs1:codec in the following ways:

– the value of bs1:codec is a URL that resolves to a
Bitstream Schema, with a fragment identifier cor-
responding to the value of an id attribute on a
bs1:script element;

– the value of bs1:codec is a URL that resolves to an
ECMAScript file, with a fragment identifier corre-
sponding to the name of a class within that file;

– the value of bs1:codec is a URL that resolves to an
ECMAScript file, with no fragment identifier.

Figure 4 Call and example
of a parsing algorithm in
Javascript (a, b).

<xsd:complexType name="expGolomb">
<xsd:simpleContent>

<xsd:extension base="xsd:unsignedInt">
<xsd:attribute ref="bs1:codec" default="expGolomb.js"/>

</xsd:extension>
</xsd:simpleContent>

</xsd:complexType>

function BintoBSD() {
var nBits = 0;
var ret = 0;

while ((ret = read(1)) == 0) nBits++; //read 0's
if (ret == -1) throw "userType Error";
ret = read(nBits); //read the rest
if (ret == -1) throw "userType Error";
return ((1 << nBits) - 1 + ret) + ""; //toString

};

(a) Call of a Javascript function inside BSDL.

(b) Example of a Javascript function: ExpGolomb

220 J Sign Process Syst (2011) 63:215–225

Figure 5 Block diagram
of the XSL Transformation
process.

BSDL to CALML process

BSDL Schema

4. Creation of the priorities

CALML parser actor

header

Actions

Finite
State

Machine

Priorities

3. pre-processing
Intermediate

Tree

Templates

1. Creation of the
header

2. Creation of the action(s)
relative to each syntax

element

3'. Creation of the Finite
State Machine (FSM)

4 Synthesis of Parsers from Bitstream Descriptions

The bitstream structure is described in BSDL, a XML
dialect (Section 2). The bitstream first needs to be val-
idated (Section 3). XSL Transformation is a language
used for the transformation of XML documents into
other XML documents. CAL can be also represented
in a XML format: CALML. Thus, XSL Transforma-
tions are appropriate procedures to convert a bitstream
schema written in BSDL into a parser in CALML.
The difficulty of the transformation remains in the fact
that a description (the schema) is converted into an
executable: the bitstream schema (in BSDL) describes
in the XML formalism the sequence of syntax elements
constituting the bitstream. There is no indication on
how to parse them. The parser is an executable that
processes these elements of syntax. The challenge is
to develop transformations such that the resulting ex-
ecutable (the parser) is capable of handling all the legal
combinations of the BSDL constructs constituting the
schema.

Furthermore, the generated CALML executable
code can be used as direct input to the hardware and
software code generators [12, 13]. Thus, direct synthesis
of parsers into hardware or software implementations
can be performed.

Figure 5 illustrates the different steps of the XSL
Transformation process.

The BSDL to CALML transformation is composed
by four main steps. At each step of the process, the
BSDL schema is analyzed and only some parts are
transformed according to the step. For the step 1, 2, 3
and 4, CALML templates are used to create the final
CALML parser. These templates are filled according to
each syntax element.

The first step in the transformation is the cre-
ation of the header of the parser actor in CALML.
It consists of adding constant values, initialized vari-
ables, input and output ports and the signature of the
actor.

The second step is the creation of the actions for each
syntax element of the BSDL schema. One or several
actions can be created for each syntax element. Follows
an non-exhaustive list of cases:

– If the syntax element is simple (fixed sized element,
without any condition on its existence), only one
action is created

– If the syntax element presents some conditions
on its existence, three actions will be created: the
first action tests if this element exists, the second
action consumes the tokens relative to this syn-

Figure 6 Simple example
of BSDL description.

<xsd:element name="bitstream_root">
<xsd:complexType>

<xsd:sequence>
<xsd:element name="firstelement" type="bs1:b1" rvc:port="A"/>
<xsd:element name="secondelement" type="bs1:b2" rvc:port="B"/>
<xsd:element name="thirdelement" type="bs1:b3" rvc:port="C"/>
<xsd:element name="fourthelement" type="bs1:b4" rvc:port="D" />

</xsd:sequence>
</xsd:complexType>

</xsd:element>

J Sign Process Syst (2011) 63:215–225 221

Figure 7 Example of source
code: action for decoding
“firstelement” syntax
element.

<Action>
<QID name="firstelement.read">
<ID name="firstelement"/>
<ID name="read"/>
</QID>
<Input kind="Elements" port="bitstream">
<Decl kind="Input" name="b"/>
<Repeat>
<Expr kind="Var" name="BS1_B1_LENGTH"/>

</Repeat>
</Input>
<Output port="A">
<Expr kind="Var" name="b"/>
<Repeat>
<Expr kind="Var" name="BS1_B1_LENGTH"/>
</Repeat>

</Output>
</Action>

Figure 8 Example of source
code: Finite State Machine
of the parser.

<Schedule kind="fsm" initial-state="root.firstelement_exists">

<Transition from="root.firstelement_exists" to="root.secondelement_exists">
<ActionTags>
<QID name="firstelement.read">
<ID name="firstelement"/>
<ID name="read"/>

</QID>
</ActionTags>

</Transition >

<Transition from="root.secondelement_exists" to="root.thirdelement_exists">
<ActionTags>
<QID name="secondelement.read">
<ID name="secondelement"/>
<ID name="read"/>

</QID>
</ActionTags>

</Transition >

[...]
</Schedule>

Figure 9 The data flow
network composed by the
VLD table decoding
processes implemented as a
Functional Unit and the
bitstream parser.

VLD Table B-16BSDL Parser

Block Expand

run

value

last

run

value

last

out

finish

bitsbits

ack

bitstream

Parser FU which parses the

XML-based description

FU in the network

of FU, taken in the

Video Tool Library

Implementation in CAL of

the .js files which decode

the elements of syntax

222 J Sign Process Syst (2011) 63:215–225

tax element and action is created for jumping to
the next syntax in case of this element does not
exists.

– If the syntax element must be repeated several
times, three actions are created. An action is

needed to check if this element needs to be re-
peated, an action which consumes the token of the
syntax element and an action which is used to jump
to the next syntax in case of the element must be
not repeated anymore.

Figure 10 Example of
generated code in case of
unsized syntax element.

<Action>
<QID name="dct_dc_size_L.read">

<ID name="dct_dc_size_L"/>
<ID name="read"/>

</QID>
<Input kind="Elements" port="bitstream">

<Decl kind="Input" name="b"/>
</Input>
<Output port="size_L">

<Expr kind="Var" name="b"/>
</Output>
<Stmt kind="Assign" name="bit_number">

<Expr kind="BinOpSeq">
<Expr kind="Var" name="bit_number"/>
<Op name="+"/>
<Expr kind="Literal" literal-kind="Integer" value="1"/>

</Expr>
</Stmt>

</Action>
<Action>

<QID name="dct_dc_size_L.notFinished">
<ID name="dct_dc_size_L"/>
<ID name="notFinished"/>

</QID>
<Input kind="Elements" port="size_L_f">

<Decl kind="Input" name="f"/>
</Input>
<Guards>

<Expr kind="BinOpSeq">
<Expr kind="Var" name="f"/>
<Op name="="/>
<Expr kind="Literal" literal-kind="Integer" value="0"/>

</Expr>
</Guards>

</Action>
<Action>

<QID name="dct_dc_size_L.finish">
<ID name="dct_dc_size_L"/>
<ID name="finish"/>

</QID>
<Input kind="Elements" port="size_L_f">

<Decl kind="Input" name="f"/>
</Input>
<Input kind="Elements" port="size_L_data">

<Decl kind="Input" name="data"/>
</Input>
<Guards>

<Expr kind="BinOpSeq">
<Expr kind="Var" name="f"/>
<Op name="="/>
<Expr kind="Literal" literal-kind="Integer" value="1"/>

</Expr>
</Guards>
<Stmt kind="Assign" name="dct_dc_size_L">

<Expr kind="Var" name="data"/>
</Stmt>

</Action>
[...]
<Transition from="dct_dc_size_L1_exists" to="dct_dc_size_L1_result">

<ActionTags>
<QID name="dct_dc_size_L.read">

<ID name="dct_dc_size_L"/>
<ID name="read"/>

</QID>
</ActionTags>

</Transition>
<Transition from="dct_dc_size_L1_result" to="dct_dc_size_L1_exists">

<ActionTags>
<QID name="dct_dc_size_L.notFinished">

<ID name="dct_dc_size_L"/>
<ID name="notFinished"/>

</QID>
</ActionTags>

</Transition>
<Transition from="dct_dc_size_L1_result" to="next syntax element">

<ActionTags>
<QID name="dct_dc_size_L.finish">

<ID name="dct_dc_size_L"/>
<ID name="finish"/>

</QID>
</ActionTags>

</Transition>

J Sign Process Syst (2011) 63:215–225 223

– If the parser actor needs to communicate with an
external actor to parse this syntax element, then
several actions are created for establishing a com-
munication protocol between these two actors (see
Section 4.1).

The third step consists of building the Finite State
Machine (FSM) of the final CALML parser. A pre-
liminary sub-step is performed in order to build an
intermediate tree which is a more convenient repre-
sentation of the initial tree so that it is then easier to
perform the transformation for building the FSM. The
process consists of obtaining a flatten representation of
the relations between all the actions in order to have
a better view on how the actions follows from each
others.

Finally, the last step is to set the priorities between
actions in case there exist more than one fireable action
at a given state of the actor.

Figure 6 shows a simple example of BSDL descrip-
tion. The bitstream is composed of four elements: the
first element is a 1-bit long element and is an output on
port A of the parser. The second element is 2-bits long
and is an output on port B, the third element is 3-bits
long and is an output on part C and the fourth element
is 4-bits long and is an output on port D. Figure 7
shows the example of the CALML code generated for
decoding the first syntax element. Figure 8 illustrates
how the scheduling of the actions is defined inside the
parser.

4.1 The Case of Unsized Elements of Syntax

As seen in the previous section, the parser is not only
a simple actor that “demultiplexes” the raw data con-
tained in the bitstream, but also executes parsing al-
gorithms to decode some sections of the bitstream.
Unfortunately, automatizing the generation of these
algorithms in CAL is complex because the bitstream
schema is only a list of elements of syntax contained
in the bitstream and does not indicate how to decode
them. Such procedure is related to the semantic of the
element and need to be known by the parser. The
mechanism set up in the RVC framework consist of
establishing a communication between the parser and
external FUs which provide the implementation capa-
ble of decoding these sections of the bitstream. This is
the case when decoding Variable Length Codes (VLC)
elements for which VLD tables are the associated
decoding procedures are embedded in library compo-
nents that correspond to the semantic of the unsized el-
ement. Figure 9 illustrates the CAL network composed
by the synthesized parser and the external CAL actors

(i.e. FUs) performing the decoding of unsized syntax
elements.

During the validation phase, these algorithms were
implemented in Javascript. In the code generation
phase, these algorithms are implemented in FUs writ-
ten in CAL. Currently, these FUs are not generated au-
tomatically and have to be written manually. However,
in case of the Variable Length Decoding, a systematic
procedure has been developed in order to generate
these FUs in CAL directly from the VLD tables. The
reader can refer to [14] for further details of this
process.

A communication protocol need to be defined in
the parser in order to communicate with the external
FU capable of decoding the unsized elements of syn-
tax. Each time a syntax element is determined by the
parser, the parser fires a xxxx.read action. When
the parser finds an unsized syntax element (e.g. vari-
able length codes), the parser fires a set of actions
which are necessary to communicate with the external
Functional Units: xxxx.read to read the bit from
the input port and to send the bit the the FU imple-
menting the parsing algorithm, and xxxx.finished /
xxxx.notfinished to decide if the parsing algo-
rithm is terminated or not and if the parser must send
an additional bit. An example of code is shown on
Fig. 10. The example illustrates the case of Variable
Length Decoding.

5 Conclusion

Syntax parsing is a complex component of video coding
technology. The complexity derive from the fact that
the bitstream is composed of a large number of hi-
erarchical elements of syntax. The presence of some
elements is conditioned by the value of other elements
of syntax previously decoded and processed. Writing
a new parser each time the syntax of the bitstream
changes is a burdensome tasks for designers. It is
often the case when developing new standards and
new coding tools within MPEG. Thus, this paper pre-
sented a solution to the problem based on a systematic
methodology for the validation of bitstream schemas
(in BSDL) describing the syntax of bitstreams. The pa-
per provides a proof of concept of the methodology—
starting from the validation of the BSDL schema and
the automatic generation of CALML parsers—based
on fully tested and proven standards (BSDL, XSL
Transformation. . .). After these two stages (validation
and generation), the CALML parser needs to be trans-
formed in CAL form so as to be integrated within the

224 J Sign Process Syst (2011) 63:215–225

Abstract Decoder Model that specify a decoder con-
figuration in the MPEG Reconfigurable Video Coding
(RVC) framework.

References

1. ISO/IEC FDIS 23001-4 (2009). MPEG systems technologies—
part 4: Codec configuration representation. Maui.

2. Eker, J., & Janneck, J. (2003). CAL language report. ERL
Technical Memo UCB/ERL M03/48.

3. International Standard ISO/IEC FDIS 23001-5 (2005).
MPEG systems technologies—part 5: Bitstream syntax de-
scription language (BSDL).

4. ISO/IEC FDIS 23002-4 (2009). MPEG video technologies—
part 4: Video tool library. Maui.

5. Sourceforge (2009). Open dataflow sourceforge project.
http://opendf.sourceforge.net/.

6. ISO/IEC14496 (2004). Coding of audio-visual objects.
7. Lucarz, C., Mattavelli, M., Thomas-Kerr, J., & Janneck, J.

(2007). Reconfigurable media coding: A new specification
model for multimedia coders. In IEEE workshop on signal
processing systems (pp. 481–486).

8. Thomas-Kerr, J., Janneck, J., Mattavelli, M., Burnett, I.,
& Ritz, C. (2007). Reconfigurable media coding: Self-
describing multimedia bistreams. In IEEE workshop on sig-
nal processing systems SiPS 2007. Shanghai, China, 17–19
April 2007.

9. Thomas-Kerr, J., Burnett, I., Ritz, C., Devillers, S.,
De Schijver, D., & Van de Walle, R. (2007). Is that a fish in
your ear? A universal metalanguage for multimedia. IEEE
Multimedia, 14(2), 72–77.

10. Eleftheriadis, A. (1997). Flavor: A language for media repre-
sentation. In ACM int’l conf. on multimedia (pp. 1–9).

11. Hong, D., & Eleftheriadis, A. (2002). XFlavor: Bridging bits
and objects in media representation.

12. Janneck, J. W., Miller, I. D., Parlour, D. B., Mattavelli, M.,
Lucarz, C., Wipliez, M., et al. (2008). Translating dataflow
programs to efficient hardware: An MPEG-4 simple profile
decoder case study. In Design, automation and test in Europe
(DATE). Munich, Germany.

13. Wipliez, M., Roquier, G., Raulet, M., Nezan, J.-F., &
Déforges, O. (2008). Code generation for the MPEG recon-
figurable video coding framework: From CAL actions to C
functions. In IEEE international conference on multimedia &
expo (ICME). Hannover, Germany.

14. Li, J., Ding, D., Lucarz, C., Keller, S., & Mattavelli, M. (2008).
Efficient data flow variable length decoding implementation
for the MPEG reconfigurable video coding framework. In
IEEE workshop on signal processing systems. Washington
DC.

Christophe Lucarz received his M.Sc. degree in Electrical En-
gineering from the Institut National des Sciences Appliquées
(INSA Lyon, France) in 2006. He is currently a researcher at
the “Multimedia Architectures Research Group” at the Ecole
Polytechnique Fédérale de Lausanne (EPFL - Switzerland) and
is working towards his Ph.D. degree. His research topic is
about high level design space exploration of complex digital
systems. It includes application programming (dataflow models),
the scheduling/partitioning problem (combinatorial optimiza-
tion) and the implementation issue (code generation). He is also
taking part in the MPEG ISO/IEC standardization committee in
video coding and the ACTORS European Project.

Jonathan Piat is a PhD student at the National Institute of
Applied Sciences of Rennes (INSA) and a member of the IETR
laboratory in Rennes. He received his postgraduate certificate
in Distributed Software Architecture from the MINE school
of Nantes in 2007 and computer engineering from the Poly-
technic School of the University of Nantes in 2007. His main
research interests include dataflow-models, Computer Aided
software Design, multiprocessor rapid prototyping, and video
coding/decoding.

http://opendf.sourceforge.net/

J Sign Process Syst (2011) 63:215–225 225

Marco Mattavelli was born in Milano, Italy, he received
his Diploma of Electrical Engineering from the Politecnico di
Milano. Since 1988 he joined the “Philips Research Laboratories”
of Eindhoven in the framework of EUREKA-95 (HDMAC)
project. Main research activities regarded channel and source
coding for optical recording, electronic photography and signal
processing of TV and HDTV signals. Since October 1991 he
joined the “Signal Processing Laboratory” (LTS) of the “Swiss
Federal Institute of Technology” (EPFL) where he got his PhD
in 1996. Then, he has been involved in several research projects
and didactic activities. He has been very active in the last 10 years
in the ISO/IEC standardization activities (known as MPEG),

for which he has been Chairman of the Implementation Study
Group. For his work he received the ISO/IEC Award in 1997 and
2003. He is currently leading the “Multimedia Architectures Re-
search Group” in the “Laboratory of Microelectronic Systems”
of EPFL. His major research activities include: methodologies
for high level specification and modeling of complex systems,
architectures and systems for video coding, high speed image
acquisition and video processing, applications of combinatorial
optimization to signal processing. He holds patents in the mul-
timedia and video processing fields. He is the author of more
than 100 publications and has served as invited editor for several
conferences and scientific journals.

Marco Mattavelli started his research activity at the “Philips
Research Laboratories” of Eindhoven in 1988 on channel and
source coding for optical recording, electronic photography and
signal processing of HDTV. In 1991 he joined the “Swiss Federal
Institute of Technology” (EPFL) where he got his PhD in 1996.
He has been a chairman of a sub group of MPEG ISO/IEC stan-
dardization committee. For his work he received the ISO/IEC
Award in 1997 and 2003. He is currently leading the “Multimedia
Architectures Research Group” at EPFL. His current major
research activities include methodologies for specification and
modeling of complex systems, architectures for video coding,
high speed image acquisition and video processing systems, ap-
plications of combinatorial optimization to signal processing. He
is the author of more than 100 publications and has served as
invited editor for several conferences and scientific journals.

	Automatic Synthesis of Parsers and Validation of Bitstreams Within the MPEG Reconfigurable Video Coding Framework
	Abstract
	Introduction
	Essential Concepts in RVC
	Problem Definition

	BSDL, A Language for Defining Bitstream Syntaxes
	BSDL Bitstream Schema Validation
	The Case of Unsized Elements of Syntax

	Synthesis of Parsers from Bitstream Descriptions
	The Case of Unsized Elements of Syntax

	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 1.30
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 10
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e5c4f5e55663e793a3001901a8fc775355b5090ae4ef653d190014ee553ca901a8fc756e072797f5153d15e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc87a25e55986f793a3001901a904e96fb5b5090f54ef650b390014ee553ca57287db2969b7db28def4e0a767c5e03300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c00200073006b00e60072006d007600690073006e0069006e0067002c00200065002d006d00610069006c0020006f006700200069006e007400650072006e00650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e00200065006e002000700061006e00740061006c006c0061002c00200063006f007200720065006f00200065006c006500630074007200f3006e00690063006f0020006500200049006e007400650072006e00650074002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000640065007300740069006e00e90073002000e000200049006e007400650072006e00650074002c002000e0002000ea007400720065002000610066006600690063006800e90073002000e00020006c002700e9006300720061006e002000650074002000e0002000ea00740072006500200065006e0076006f007900e9007300200070006100720020006d006500730073006100670065007200690065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f9002000610064006100740074006900200070006500720020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e0065002000730075002000730063006800650072006d006f002c0020006c006100200070006f00730074006100200065006c0065007400740072006f006e0069006300610020006500200049006e007400650072006e00650074002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF753b97624e0a3067306e8868793a3001307e305f306f96fb5b5030e130fc30eb308430a430f330bf30fc30cd30c330c87d4c7531306790014fe13059308b305f3081306e002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c306a308f305a300130d530a130a430eb30b530a430ba306f67005c0f9650306b306a308a307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020d654ba740020d45cc2dc002c0020c804c7900020ba54c77c002c0020c778d130b137c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor weergave op een beeldscherm, e-mail en internet. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f007200200073006b006a00650072006d007600690073006e0069006e0067002c00200065002d0070006f007300740020006f006700200049006e007400650072006e006500740074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200065007800690062006900e700e3006f0020006e0061002000740065006c0061002c0020007000610072006100200065002d006d00610069006c007300200065002000700061007200610020006100200049006e007400650072006e00650074002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e40020006e00e40079007400f60073007400e40020006c0075006b0065006d0069007300650065006e002c0020007300e40068006b00f60070006f0073007400690069006e0020006a006100200049006e007400650072006e0065007400690069006e0020007400610072006b006f006900740065007400740075006a0061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f6007200200061007400740020007600690073006100730020007000e500200073006b00e40072006d002c0020006900200065002d0070006f007300740020006f006300680020007000e500200049006e007400650072006e00650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for on-screen display, e-mail, and the Internet. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200037000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToRGB
 /DestinationProfileName (sRGB IEC61966-2.1)
 /DestinationProfileSelector /UseName
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing false
 /UntaggedCMYKHandling /UseDocumentProfile
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

