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Abstract

Object Imaging of the myelin water fraction (MWF) is
conventionally performed using a multi-echo spin-echo
sequence. This technique requires long acquisition times and
therefore often suffers from a lack of volume coverage. In this
work, the application of 3D balanced steady-state free pre-
cession (bSSFP) sequences to extract high-resolution myelin
water maps is discussed.

Materials and Methods Based on atwo-pool water exchange
model, an approximate bSSFP signal equation is derived and
applied to fit the flip angle dependence of the in vivo bSSFP
signal. Thereby, the MWF and signal amplitude are fitted,
while a priori assumptions are made for the other parameters
of the two-pool system.

Results The effects of magnetization transfer, finite RF
pulses, Byp and B; inhomogeneities, as well as variation of
the constant fit parameters, are investigated. Acquisition and
calculation of quantitative, high-resolution MWF maps from
white matter of healthy volunteers based on bSSFP is feasible
and averaged MWF fit results agree with literature. However,
results from numerical simulations indicate a severe depen-
dence of the derived MWF values on the constant two-pool
parameters.

Conclusion The demonstrated dependence of the MWF on
the two-pool parameters considerably impairs the applicabil-
ity of the proposed method.
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Introduction

Myelin is an electrically insulating material that consists of
multiple lipid bilayers surrounding the axons of neurons and
mainly appears in white matter (WM) and to a small amount
in gray matter (GM) of the peripheral and central nervous sys-
tem of vertebrates. Its central function is to increase the veloc-
ity of the electrical signal conducted along the axons. The
myelin sheath tightly encloses water, which exhibits there-
fore special magnetic resonance properties. Compared to the
intra- and extracellular water of the axon, the myelin water
experiences a shorter transverse relaxation 7>. Based on mul-
ticompartment analysis of this 7> decay, quantification of the
myelin water fraction (MWF) becomes feasible and provides
insight into pathologies of WM diseases such as multiple
sclerosis (MS).

The existence of the short 7> of myelin water is known
now for 30 years and was first shown in in vitro studies [1-3].
The most important method for invivo pixelwise mapping
of the MWF was introduced by MacKay et al. [4]. In their
work, a single-slice 32-echo spin-echo sequence was used to
acquire the multicompartment 75 decay. The data was ana-
lyzed with the help of a non-negative least-squares algorithm
[5,6], and the MWF was calculated according to the size of
the short 7> compartment. This technique was later used for
the investigation into demyelinating processes in the course
of MS, where reduced MWEF in lesions was observed [7-9].
Recently, the procedure of MacKay et al. was successfully
applied in determining the MWF of patients suffering from
other diseases like schizophrenia [10] or phenylketonuria
[11]. Nevertheless, this approach has the disadvantages of
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long acquisition times (about 25 min for one slice) and a lack
of volume coverage due to the single-slice measurement tech-
nique. So far, myelin water imaging with whole-brain cover-
age is arelatively new field with very little existing published
work [12-14].

Besides the existence of the multi-component 7> of WM
and GM, there is evidence that the longitudinal relaxation T}
is as well composed of more than one component and that 7
of myelin water is specifically shorter than 77 of the intra-
and extracellular water pools of the axon [14—17]. However,
direct observation of multiple 77 components is hindered
due to the short timescale of exchange between the water
compartments. Combined 7> and 77 measurements or appli-
cation of a sequence with combined contrast were shown to
be feasible solutions for the extraction of multi-component
T; relaxation [14,15,17].

Based on the idea that balanced steady-state free preces-
sion (bSSFP) sequences [18] can successfully be used for
the quantitative assessment of magnetization transfer (MT)
[19], this technique was applied for the quantification of
myelin water. Imaging with bSSFP benefits from very short
acquisition times (about 2min for one 3D data set), high
resolution and excellent signal-to-noise ratio (SNR) [20].
The signal formation in bSSFP is usually described by the
Freeman-Hill formula [21,22]. However, in most biologi-
cal tissues like WM or GM, the signal is more completely
described by a complex composition of relaxation instead
of the classical single-pool behavior. In this work, a com-
plete mathematical derivation of an extended bSSFP signal
equation, based on a two-pool water model describing WM
and GM, is presented. The model consists of a short pool
(myelin water, abbreviation s), a long pool (extracellular and
axonal water, abbreviation 1) and additionally includes pro-
ton exchange between the pools. The extended bSSFP signal
equation is a function of the repetition time TR, the echo time
TE, the flip angle «, the relaxation times of the two pools
(T3, T2[ LT Tll), the exchange rate k and most important the
MWE

The extended bSSFP signal equation is validated by
numerical simulations of the full set of non-simplified ordi-
nary differential equations (ODE). Moreover, the influence
of finite radiofrequency (RF) pulses and MT, as well as the
dependence on By and B inhomogeneities is carefully inves-
tigated in this work. The new signal equation is used to fit
data from in vivo 3D bSSFP measurements with varying flip
angles. The MWF and the signal amplitude are fitted as sin-
gle unknowns, while keeping the remaining parameters of
the two-pool system (relaxation times of the two pools and
exchange rate) constant. Both region of interest (ROI) and
pixelwise results from the fitting of axial, sagittal and coro-
nal views of healthy subjects are presented. The effect of
variation of the relaxation times and the exchange rate on the
MWEF fit is discussed.
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Materials and methods
Theoretical background
Conventional bSSFP signal equation

In the case of a single water compartment, the steady state
of bSSFP is derived from the Bloch equations using partial
integration, resulting in the well-known Freeman-Hill for-
mula [21,22]:

(1-ED)VEr

1 —E|E, — (E; — Ey)cosa

This equation is valid for centered echoes (TE = TR/2)
and alternating excitations (Zo). Furthermore, Ej» =
exp(—=TR/T12) and My is the equilibrium magnetization.
For WM and GM, which are complex biological tissues, the
bSSFP signal is more completely described by a complex
composition of relaxation instead of the classical single-pool
behavior. In the following, a complete mathematical deriva-
tion of an extended bSSFP signal equation will be presented,
in order to characterize the bSSFP behavior of the different
water pools in brain tissue. For the mathematical derivation,
a similar nomenclature as in references [14] and [23] is used.

S = Mysina

ey

Two-pool water model

To accurately describe the bSSFP signal of WM and GM,
a theoretical two-pool model is used. The short pool consists
of myelin water, whereas the extracellular and the axonal
water are combined to the long pool. The relaxation times
T} and T; belong to the short pool, Tll and Tzl to the long
one (Fig. 1). Furthermore, the two components undergo a
proton exchange that is indicated by the exchange rates k;
and k5. Exchange is specified by water molecules diffus-
ing through ion channels of the myelin bilayer either from
the short to the long pool (kg ) or vice versa (kjs). The
exchange rates are the reciprocals of the mean residence
times 7y and 74, the average time a proton remains in one
pool before diffusing to the other. In kinetic equilibrium,
the two exchange rates are related through the fractional
pool sizes by kg = (1/MWF — 1)k;s. The MWF stands
for the molar fraction of the short pool and is defined as
MWF = My /(Mg + M(l)), where Mé(M(l)) denotes the equi-
librium magnetization of the short (long) pool. Aside from
that, a general exchange rate can be defined as k = kg + k5,
whereby kg; = (1 — MWF) - k and kj; = MWF - k become
valid. The timescale of exchange 7 is believed to be long
on a 7, timescale (t > 100 ms), because two 75 compo-
nents are observed. On the other hand, T needs to be short
on a T timescale (t < 700 ms), because in conventional T}
measurements only one component is observed, despite the
existence of two physically different 77. The literature value
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Fig. 1 Physical properties of the two water pools describing WM and
GM. The short pool has relaxation times 7}, T and the fractional pool
size MWF, whereas Tll, TZI and (1-MWF) belong to the long pool. Pro-
ton exchange is described by the two exchange rates kg and k;¢

for T is ~ 200ms [17,24,25], which lies between the two
limits and corresponds to k ~ 5s~ 1.

Modified Bloch equations

The magnetization of the short pool will decrease by the fac-
tor ksyM°® and increase by kML, if exchange between the
two pools occurs. On the other hand, the magnetization of
the long pool will rise by k;sM' and decrease by kM. This
leads to modified 6-D Bloch equations [26], which describe
all spatial components of the two-pool magnetization vector
M = [M], M)IC, M‘;, Mi,, M:, Mé] separately:

am: .M 3 !
dtx — a)oM; — T—z'; — kg M+ kisM, (2a)
dM)lc 1 M)lc 1 s
dt :a)OMy—Tzl—k[SMx+kS[Mx, (2b)
dM; M; !
= —C()()M; - s kslM; + klsMy + w (1) Mg’
dt T;
(2¢)
dMé 1 Mg’ 1 s 1
=~ = —woM, — -~ kig M, + kslMy + wy (1) M,
dt T :
2d)
am? M — M;
E= U —ka M) A kML — o1 () M), (2e)
dt T,
1 1 1
M Mo =M oMl 4 kaMs —wr ) ML D)
T 71 1s M, sit, — w1 y
1

Here, M (M(l)) is again the abbreviation for the equilibrium
magnetization of the short (long) pool, wy = y|Bg| and
w1(t) = y|B1(t)|. Moreover, it is assumed that wg = a)(s) =
a)f). The modified Bloch equations describe the cases of exci-
tation, relaxation and exchange.

Solutions to the modified Bloch equations

Although, in principle it may be possible to solve the system
of differential equations (Eq. 2a—2f), the solution is com-
plex and cumbersome. Therefore, a different procedure is
suggested, which closely follows the vector model descrip-
tion introduced by Carr [27] to derive the signal behavior
of bSSFP. To separate excitation and relaxation, instanta-

neously acting RF pulses are assumed. Using the matrix nota-
tion developed by Jaynes [28], the solution for excitation
is written as a rotation around the x-axis (without loss of
generality):

10 0 0 0 0
01 0 0 0 0
_ 0 0 cosa 0 sina O —
+_ —
M; =R (o) M,] = 00 0 cosae 0 sina ne
0 O0—sine O cosa O
00 O —sina 0 cosa

3

where « is the flip angle, and M, is the 6-D magnetization
vector before the nth RF pulse. The solution for relaxation
is found analogously to the 3-D classical case [21,22]. The
resulting relaxation matrix is given by:

E; 0 0 0 0 0

0 E, 0 0 0 0
0 0 ES 0 0 0
E() = >l , )
0 0 0 Eb 0 0
0 0 0 0 Ef 0
00 0 0 0 E

where E} , = exp(—1/T},), E{yz = exp(—t/Tllyz).

To solve the modified Bloch equations for exchange, it is
additionally assumed that exchange processes decouple from
relaxation processes within the short repetition times usually
applied in bSSFP imaging. This approach is valid, as long as
fractional pool size modifications from longitudinal relax-
ation processes are negligible within TR. This corresponds
to an instantaneous appearance of exchange, similar to the
concept of instantaneous rotation allowing the decoupling
of excitation and relaxation. The part of the modified Bloch
equations containing only exchange parameters reads:

—kg kg 0O 0 0 O

kg —kis O 0 0 0

aM | 0 0 —ky ks O 0O

a0 0 kg ks 0 o |M )
0 0 0 0 —kg ki
0 0 0 0 kg —kg

This differential equation has the general solution M(¢) =
A(t) - My, where A(t) is the exchange matrix:

b 0 0

A@r) =

SO OO0
SO OO
SO0 & OO
SO T O
o QOO0 OoO 0o
U O OO

with
a=—(MWF—1)e ™ + MWF, b=-MWF (e*’“ - 1)

c=(MWF —1) (e*"’ _ 1) d=MWF (e*"’ - 1) 1.
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kg and k;s were replaced by the corresponding expressions
including kK and MWE. Although the concatenation of relax-
ation and exchange is not a general solution for longer TR,
it can be applied in the limit of short TR. The limit of TR —
0 leads to the case of commuting relaxation and exchange
matrices: [E(TR — 0), A(TR — 0)] — 0.

Extended bSSFP signal equation

The extended steady-state equation can now be derived
according to standard procedures [29] with the solutions for
excitation, relaxation and exchange from above. RF phase
alternations are described by R;:

-10 0 000
0-10 000
. 0 0-1000

R (® = 180°) = 00 0—-100 7
000010
000 001

For bSSFP, the magnetization directly after the nth RF-pulse
yields M7 = R,Rx(«¢)M;,;, where M, is the magnetiza-
tion before the nth RF-pulse. The magnetization before the
(n+1)th pulse yields (assuming relaxation takes place before
exchange):

M, =A(TR)[E(TR)M, + M|, ®)

with the equilibrium magnetization given by:

0
0

0
0 . C))

M1 — E)
[ Mo(1— EY) |

In steady state, the eigenvalue equation takes the form M, =
M, R and the final result becomes (for centered echoes with
TE=TR/2 and the case relaxation before exchange):

M, (00) = VER, [Is — AERZRX]_l AM,, (10

where all matrices are evaluated at time point TR. The total
signal amplitude is calculated according to: § = [M]y, +
|M|§y. The analytical solution yields the final extended
bSSFP signal equation:

A+ Bcosa

S o sin , Ny
C + Dcosa + E cos2a

with abbreviations
A B.C.D,E=f (TR E}} k. MWF).
A list of the full expressions is given in section “Appendix”.

The limit where only the short pool exists with fraction
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MWF = 100% and zero exchange leads to the well-known
standard bSSFP equation (Eq. 1). Equations 10 and 11
represent the case where relaxation before exchange occurs.
Comparison to the case of exchange before relaxation
showed negligible signal differences. Therefore, only relax-
ation before exchange will be considered below.

Numerical simulations

All numerical simulations and data analysis were performed
using Matlab 2007b (The MathWorks, Inc., Natick, MA,
United States).

To verify Eq. 11 and to justify the separation of relaxation
and exchange processes, numerical simulations of the full
set of non-simplified ordinary differential equations (ODE)
(see Eq. 2a—2f) were conducted. A standard ODE solver was
used to simulate the signal as a function of RF pulse char-
acteristics (flip angle o, RF pulse duration 7Trf), sequence
characteristics (repetition time TR) and two-pool properties
(relaxation times, MWF and exchange rate k). Rectangular
shaped RF pulses were used for excitation.

To investigate the effects of MT, the modified Bloch equa-
tions were extended to 9D to comprise an additional restricted
pool consisting of membranes and macromolecules. Numer-
ical simulations of the 9-D ODE set were performed taking
into account saturation of the restricted pool protons, as well
as proton exchange with the two free water pools. In gen-
eral, saturation of the restricted pool protons is achieved by
off-resonance irradiation affecting the longitudinal magne-
tization of the restricted pool and is described by the mean
saturation rate [19]:

TRF

W) =7 / ] (1)diG (A). (12)
0

where A is the frequency offset and G(A) the absorption
line shape. For the simulations (and measurements) of this
work, on-resonance RF pulses were applied, which results in
A — 0. The mean saturation rate W(A — 0) is calculated
as a function of the flip angle « and the RF pulse duration
Trr according to Eq. (12) and based on a Super-Lorentzian
line shape, yielding G(0) = 1.4 x 107> s~! for a T» of the
restricted pool of 12 s [30].

Invivo experiments

Measurements were conducted on a Siemens Avanto 1.5T
system (Siemens Healthcare, Erlangen, Germany) in 3D with
sagittal orientation based on a 144 x 192 x 192 matrix with
1.3 mm isotropic resolution. The protocol for quantitative
MWEF estimation consisted of:
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1. A carefully conducted second-order manual shim for
correction of main magnetic field inhomogeneities result-
ing in frequency variations of less than 15 Hz within the
shimmed volume containing the whole brain.

2. An MPRAGE sequence for anatomical reference and
segmentation of WM (TR/TE=1760/4.61 ms, inversion
time TI=906ms, flip angle « = 7°, bandwidth=
130 Hz/pixel).

3. Multiple bSSFP sequences with 8 varying flip angles ¢ =
4,8, 12, ..., 32° and non-selective rectangular RF pulses
with Trp = 2ms to minimize MT effects (see Fig. 3b and
[31]) (TR/TE=5.4/2.7 ms, bandwidth =500 Hz/pixel).

4. A multi-slice B; field map sequence (20 slices, 5mm
slice thickness, 64 x 64 matrix, 4 mm in plane resolu-
tion) for the assessment of flip angle deviations based on
stimulated echoes resulting from a multi-pulse sequence
(¢ — o — &), analogous to the scheme described in [32].

An acquisition time of 25min is required to measure the
whole protocol (MPRAGE: 3 min, bSSFP: 8§ x 2.5min, B;
field map: 2 min). In total, six healthy volunteers were inves-
tigated. Informed consent was obtained from all participants,
and experiments were approved by local ethics committee.

Postprocessing and data analysis

For image registration and brain extraction, the software
packages FSL [33] and AFNI [34] were used. The effec-
tive measured B field is depicted as percentage difference
from the actual flip angle. According to that, flip angle devi-
ations were calculated pixelwise after By image registration
and data interpolation performed with FSL.

The correct assessment of myelin water demands the elim-
ination of possible MT contributions. Therefore, a long RF
pulse duration of 2 ms was chosen for the experimental setup
of the bSSFP sequence [31]. However, the derivation of the
new bSSFP signal equation was based on instantaneously
acting RF pulses. Recently, Bieri and Scheffler showed that
long pulse durations in bSSFP imaging may lead to a diver-
gence between bSSFP signal prediction and measurement
data, making a finite RF pulse correction necessary [35].
They suggest the following modification to the transverse
relaxation 75 (for non-selective rectangular RF-pulses):

Trr\ ™' .
Tocorr = (1 - f—TR ) T, with
Trr\ T2
=0.68—-0.125{1+ — ) =, 13
¢ ( + - R) - (13)

where TR is the duration of the RF pulse. This correction was
consistently included in the derived bSSFP signal equation.

One axial, one sagittal and one coronal section per volun-
teer were selected for analysis. The MWF was fitted using the

finite RF pulse corrected bSSFP signal equation (Eq. 11) as
fitequation and a nonlinear least squares (NLLS) approach as
fit procedure. The fit was performed as a function of the 8 dif-
ferent . The distance between acquired data and model was
minimized with respect to the MWF and the signal ampli-
tude. The parameters 77, Tll, T;, Tzl and k were kept con-
stant, whereas TR is known from the measurements (5.4 ms).
For the fit of WM regions, a priori values were chosen accord-
ing to WM literature values: 7; = 10 ms, TZI =80ms, 7T} =
400 ms, Tll = 900ms and k = 587! [4,17,24,25,36]. The
constant parameters for GM region fitting were fixed analo-
gously according to GM literature values: T, = 12ms, Tzl =
90ms, T} = 600ms, T} = 1,400ms and k = 557"

For the pixelwise fits, a Wiener filter with kernel size 3
was first employed on all images to increase SNR without
substantial loss of image details. WM pixels were then seg-
mented based on signal thresholds of the MPRAGE images.
The fit of the MWF solely was applied to the segmented
WM pixels, thereby using the constant WM parameters given
above. Only MWEF fit results with standard errors <100%
were allowed.

Results

Numerical simulations

Figure 2 depicts a comparison of the derived bSSFP sig-
nal equation (Eq. 11) with the numerical simulation of the

0.15 T :
';:' 01F
LA
®
E: *  Simulation differential equations
» 005¢ Extended bSSFP signal equation b
with finite RF pulse correction
.-“! ~ Bxtended bSSFP signal equation
/ without finite RF pulse correction
O 1 1
0 30 60 90

Flip angle « [*]

Fig. 2 Comparison of the numerical simulation of the differential
Eq. ((2a)—(2f)) with the derived extended bSSFP equation using
WM parameters: 7, = 10ms, T2’ = 80ms, 7} = 400ms, Tll =
900 ms, k = 5s~!, MWF = 20%, Trg = 2ms, TR = 2-TE = 5.4 ms.
The gray dashed line shows the plot of the derived bSSFP signal equa-
tion without finite RF pulse correction, the black line illustrates the
bSSFP equation including the correction. The total signal is depicted
as a function of the flip angle «, the shaded gray area displays the mea-
surement range. Excellent correspondence between the simulation of
the differential equations and the finite RF pulse corrected bSSFP sig-
nal equation is found in the range of measurements, therefore justifying
the application of the finite RF pulse correction
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Fig. 3 a Numerical WM bSSFP simulation of the two-pool Bloch
equations showing the signal of the short pool, the signal of the long pool
and the total signal as a function of the flip angle. Black line: simulation
with exchange (k = 5571, MWF = 20%), red line: simulation without
exchange (k = 0s~!', MWF = 20%) and broken gray line: simulation of
one existing pool (k = 0s~!, MWF = 100%). Other parameters used
were: T, = 10ms, Tzl = 80 ms, 7} = 400 ms, Tll = 900ms, Trr =
2ms and TR = 2 - TE = 5.4ms. b Numerical WM bSSFP simulation
of the 9-D Bloch equations including an additional third restricted pool
(abbreviation r) to investigate the connection between MT and RF-pulse

full set of non-simplified ODE (Eq. 2a-2f). Within the
range of experimentally applied flip angles (4°-32°), the
extended bSSFP steady-state solution clearly underestimates
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duration. The signal of the short pool, the signal of the long pool and the
total signal are illustrated as a function of the flip angle. Parameters used
were: Ty = 10 ms, T2[ = 80ms, T}’ = 400 ms, Tll = 900 ms, MWF =
20%, T = 1,000ms,7;, = 12us,TR = 2 -TE = 5.4ms, ky
=45k =157 ky = 300257 kg = 450257 ky =
30-0.8s ! and k;, = 4.5-0.8s~'. Moreover: fraction of the restricted
pool F, = 15%, therefore MWF + (1 — MWF) = 85% of the total size
of all pools. The signals are plotted with and without M T, based on two
RF pulse durations of 2ms and 230 ps

the simulated values by 15% at the maximum difference.
This is due to the assumed instantaneously acting RF pulses,
whichis in contradiction to the long RF pulse duration chosen
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Fig. 4 aIntroductory examples to the two-pool bSSFP analysis show- yield MWEF results displayed in Table 1. b Single-pool fitting exam-
ing MWF parameter fitting of two WM and two GM ROIs from ples of the regions from Fig. 4a. NLLS fit procedure and application
one healthy subject. NLLS fit procedure and application of the finite of the finite RF pulse corrected Freeman-Hill formula with either the
RF pulse corrected extended bSSFP signal equation (Eq. 11) with constant WM parameter 71 = 850 ms or the constant GM parameter

either constant WM parameters 7, = 10ms, Tzl = 80ms, T} = T1 = 1,200 ms lead to single-pool 7> fit results given in Table 1. More-
400 ms, Tll = 900ms and k = 5s~! or constant GM parameters over, fitting residuals and 95% confidence intervals are presented. Sum
T = 12ms, Tzl =90ms, T = 600ms, Tll = 1,400ms andk = 55! of squares of the fitting residuals are given in Table 1

Table 1 ROI results derived from two-pool bSSFP model fitting and single pool fitting using the Freeman-Hill formula (ROI results £ standard
error)

WM GM

Forceps minor Forceps major Putamen Thalamus

Two-pool bSSFP fitting (Eq. 11)?

MWF [%] 154+ 1.5 11.1+1.0 58+2.0 39+16
SSQP 29.7 18.6 92.9 68.1
Single pool fitting (Eq. 1)°

T, [ms] 53.64+3.2 58.74+2.0 67.7+42 70.7+£3.6
SSQP 130.5 51.3 187.8 128.5

aFixed WM parameters: T, = 10, Tzl = 80, T}’ = 400, T]l = 900ms, k = 5s~!; fixed GM parameters: T, = 12, Tzl = 90, T}’ = 600, T]l =
1,400ms, k = 557!

YSum of squares of the fit residuals

‘Fixed WM parameter: 77 = 850 ms; fixed GM parameter: 71 = 1,200 ms
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10200 SORE0 MWF (%]

Fig. 5 Axial, sagittal and coronal sample images from five healthy
volunteers showing 1.3 mm isotropic high-resolution MWF parame-
ter estimates as derived from two-pool bSSFP model fitting using the
NLLS algorithm and the extended bSSFP fit equation (Eq. 11). Analy-
sis was solely applied to segmented WM pixels using the constant WM
parameters 7; = 10ms, Tzl = 80ms, 7T} = 400 ms, Tll = 900 ms and

k = 5s7!. Mean values with corresponding standard deviations are
listed in Table 2

for experiments to exclude MT effects. The application of a
finite RF pulse correction therefore becomes essential. Using
the procedure proposed in [35] for the correction of trans-
verse relaxation, finally good agreement (<0.1% deviation at
a = 32°) between the analytical description of the two-pool
bSSFP signal and the numerical simulation of the differential
equations is achieved. In summary, provided that the finite
RF pulse correction is included, the use of the derived two-
pool bSSFP signal equation is valid within the measurement
range.

Figure 3a illustrates further results from the numerical
simulations of the two-pool Bloch equations (Eq. 2a-2f).
The signal amplitudes are shown for both pools and for the
total signal separately. If exchange processes are taken into
account, the short pool will gain signal intensity, which will
in return be lost by the long pool. Due to the fast decay of
the transverse magnetization of the short pool, less magne-

@ Springer

tization is available for transfer to the long pool in compari-
son with the amount exchanged by the long component. The
right plot depicts an important difference between the total
signal including exchange and the one without exchange: the
neglect of proton exchange would lead to an overestimation
of the fitted MWF of about 10%. In consequence, incorporat-
ing proton exchange is necessary to extract the correct MWE.
Besides that, an obvious difference between the total signal
for two pools and the signal for only one existing pool is
observed.

Figure 3b displays the results from the numerical sim-
ulations based on the Bloch equations comprising three
pools: the two water pools described above and an additional
restricted pool consisting of macromolecules and mem-
branes. The simulations included saturation of the restricted
pool, as well as proton exchange between all pools. Two RF
pulse durations were investigated: 230 pus (a typical pulse
duration used for MT experiments [31]) and 2 ms, as it was
applied in our measurements. For Trr = 230 s, an evident
signal difference between MT and no MT is observed, which
represents the background of measuring MT effects. On the
other hand, the correct assessment of the MWF demands
the elimination of possible MT contributions. This can be
achieved by choosing an RF pulse duration of 2 ms. Due to
the decrease in RF pulse bandwidth, the signal difference
between MT and no MT becomes negligible small for 2 ms
duration. Therefore, MT effects can definitely be excluded
from the experiments performed in this study.

In vivo experiments

Quantitative MWF evaluation is exemplarily illustrated in
Fig. 4a. The bSSFP signal intensities from two WM and two
GM regions from one healthy subject are fitted based on
Eq. 11 applying either the constant WM or GM parameters.
Resulting MWF values are given in Table 1, together with the
sum of squares of the residuals (SSQ). The fitted MWF of the
GM regions are considerably smaller than the MWF obtained
from WM regions yielding good correspondence with liter-
ature values [4,7-14,17,25,36]. WM and GM results from
single-pool fitting using the finite RF pulse corrected Free-
man-Hill formula are presented in Fig. 4b. For the single-pool
fit, the distance between acquired data and Freeman-Hill for-
mula was minimized with respect to the transverse relaxation
T» and the signal amplitude, while leaving 77 fixed (850 ms
for WM, 1,200ms for GM). Due to the dependence on the
ratio 7>/ T of the Freeman-Hill formula [20], fitting of both
relaxation times was not feasible. The resulting single-pool
T, values are shown in Table 1, together with the SSQs. In
general, both fit procedures yield small residuals of less than
2%. To evaluate the significance, direct comparison of the
different SSQs is valid, because both the two-pool and the
single-pool fit procedure possess 6 degrees of freedom (8



Magn Reson Mater Phy (2010) 23:139-151 147
Table 2 MWF [%] derived from pixelwise two-pool bSSFP model fitting of segmented white matter (pixelwise mean =+ pixelwise SD)

MWF [%] Subject 1 Subject 2 Subject 3 Subject 4 Subject 5
Axial view 11.2£4.0 13.6 5.1 14.8 £ 6.1 12.5+49 11.9+4.6
Sagittal view 123+3.8 13.1£4.5 148 £5.0 1224+3.7 11.4+3.8
Coronal view 11.9+£33 123+4.0 142+4.7 132+44 13.2+42

Corresponding MWF parameter maps are illustrated in Fig. 5
a h.i.-ﬂ‘ "' B, variation [H2
' +5

{

i

b 3
vl &

bﬂﬁ:' 1% 7B, variation [HZ]
3¢

Eﬁq’.‘;—..‘f

Fig. 6 Right: axial, sagittal and coronal sample images of a sixth
healthy volunteer showing 1.3mm isotropic high-resolution MWF
parameter estimates as derived from two-pool bSSFP model fitting
using the NLLS algorithm and the extended bSSFP fit equation (Eq.
11). Left: axial quantitative Bp maps having the same location as the
axial sample image shown on the right side. Maps were computed
based on two gradient recalled echo images with different echo times.

data points—2 unknowns). Since the SSQs from the two-
pool bSSFP fitting are in each region reduced compared to the
singe-pool fitting SSQs, one can conclude that the extended
two-pool bSSFP equation yields significantly better fit results
than the application of the Freeman-Hill formula.

Axial, sagittal and coronal quantitative myelin water maps
with an isotropic resolution of 1.3 mm are presented in Fig. 5
for WM of five normal appearing human brains. Mean MWF
values from segmented WM pixels with corresponding stan-
dard deviations are listed in Table 2, separately indicated for
the investigated subjects. Besides some small problems with
off-resonance artifacts affecting particularly the regions near
the nasal cavities, the derived MWF maps appear smooth
and high correlation between individual subjects is observed.
Furthermore, the mean MWF values correspond to literature
values [4,7-14,17,25,36].

To investigate the influence of By inhomogeneities on the
experimental bSSFP data, the measurement protocol of the
sixth healthy volunteer was expanded. In addition to the reg-
ular protocol described in Section Materials and Methods,
a standard Siemens protocol based on two gradient recalled
echo sequences with different TE was measured to calcu-
late quantitative By maps. The field mapping sequence had
sagittal orientation and consisted of a 128 x 128 matrix with

aRegular measurement protocol (as described in Section “Materials and
methods”). b Manually induced increase of the By inhomogeneity by
10 wT/m (in y-direction from frontal to posterior) results in frequency
variations of about 40 Hz in the By map and leads to the formation of an
apparent MWF gradient reaching from frontal to posterior WM having
the size of ~ 60%

2 x 2 mm? resolution and 36 slices with 4 mm slice thickness.
TR was 455ms, TE; = 4.76 ms, TE; = 9.52ms, a = 60°
and bandwidth =260 Hz/pixel. Figure 6a illustrates the axial,
sagittal and coronal sample images showing 1.3 mm isotro-
pic high-resolution MWF parameter estimates and on the left
side one quantitative By map having the same location as the
axial MWF map. Figure 6b depicts the second part of the mea-
surement, where the 8 bSSFP sequences were repeated with
a manual increase of the By inhomogeneity by 10 wT/m (in
y-direction from frontal to posterior). This modification leads
to frequency variations of about 40Hz in the By map and
results in the formation of an apparent MWF gradient reach-
ing from frontal to posterior WM. Therefore, it can be con-
cluded that the fit procedure introduced in this work reveals
to be highly sensitive to By variations arising i.e. from dental
fillings. For that reason, a careful conducted high order man-
ual shim is essential for obtaining smooth MWF parameter
maps.

Discussion

In this work, a new bSSFP signal equation based on a two-
pool water exchange model was derived that was used as fit

@ Springer
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equation for the quantitative analysis of bSSFP measurement
data with varying flip angles. The distance between acquired
data and model was minimized with respect to the MWF
and the signal amplitude, while keeping the parameters
T}, Tll Ty, Tzl and k fixed. Obtained results (Tables 1
and 2) correspond to previously reported literature values
[4,7-14,17,25,36]. Moreover, the MWF parameter results
from GM regions are considerably smaller than the MWF
obtained from WM regions yielding as well agreement with
literature. Aside from that, 77 of myelin water was assumed
to be considerably shorter than the longitudinal relaxation of
the intra- and extracellular water of the axon. Omitting this
difference would lead to a serious overestimation of the MWF
of about 10% and therefore result in MWF values inside the
upper range of literature values.

On-resonance MT effects were excluded from experi-
ments by choosing long RF pulse durations (Fig. 3b). How-
ever, the selection of long RF pulse durations requires the
use of a finite pulse correction (Fig. 2), which was applied to
the derived bSSFP signal equation. Another important error
source is Bj field inhomogeneity leading to flip angle devi-
ations of maximal 10% in the experimental data. To elim-
inate these systematic errors, the applied flip angles were
corrected prior to data analysis, by performing B field map-
ping. Furthermore, problems with By inhomogeneities were
avoided by carefully conducting high-order manual shims.
The neglect of manual shimming leads to the formation of
high MWF gradients in the parameter maps making this sort
of correction essential (Fig. 6b). Issues with By inhomo-
geneities would as well play an important role in case of
switching to higher magnetic field strengths. There, not only
problems with MWF gradients would arise, but one would
also have to deal with formation of bSSFP off-resonance
bands in the acquired images. Nonetheless, by applying care-
ful manual shimming and RF phase cycling to avoid band-
ing artifacts, measurements at higher field strengths may be
feasible. Increased imaging time due to the phase cycling
approach might be reduced by parallel imaging techniques.

The proposed two-pool analysis procedure is based on
fitting the MWF and the signal amplitude and fixing the
parameters T, Tzl LT Tll and k. In principle, the choice
to fix certain parameters was made based on two reasons.
First, the derived bSSFP signal equation is extremely com-
plex making it impossible to fit all parameters, especially in
the presence of the simple bSSFP curve behavior. Second,
there are four unknown relaxation times present in the two-
pool model, which cannot be measured directly with other
techniques and then inserted backwards into the model. In
particular, the knowledge about the two longitudinal relaxa-
tion times is very limited from literature. However, it is clear
from previous work that the relaxation times show spatial
and pathological variation and are not globally constant. To
investigate the stability of the MWF parameter, variation of

@ Springer
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Fig. 7 Estimation of MWF stability upon variation (+10%) of con-
stant fit parameters for one WM region. MWF fit results & standard
errors are given as a function of the parameter variation. In each case,
one parameter is varied while leaving the remaining parameters unmod-
ified. a Variation of the exchange rate k. b Variation of the transverse
relaxation times 75 and Tzl. ¢ Variation of the longitudinal relaxation

components 7} and Tl[

the fixed parameters was performed, which is shown in Fig. 7
for one WM region. Thereby, each of the constant parame-
ters was varied between £10%. Variation of the exchange
rate results in extremely small deviation of the fitted MWF
(< £4%) (Fig. 7a). The discrepancy of the MWF values
upon variation of T and T} is as well in a reasonable range
(< £10%) (Fig. 7b, c). On the other hand, the alteration of the
fitted MWF caused by variation of Tzl and Tll is more severe.
However, the smoothness of the derived MWF parameter
maps (Fig. 5) indicates that the “real” spatial WM param-
eter variation of the investigated healthy subjects must be
smaller than £10%, because the standard deviations of our
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Fig. 8 Fitresults of two WM regions evaluated in all healthy subjects
showing on the one hand the incorporation of all 8 flip angles to the fit
with @ = 4°,8°,...,32° and on the other hand the reduction to 4 flip
angles with @ = 4°, 16°,24°,32°. The proposed flip angle decrease

MWEF results are broadly comparable to literature results
[4,7-14,17,25,36]. Nevertheless, the strong dependence of
the MWF on T2l and Tll demonstrates that the applicability
of the proposed method not only to pathologies, but also to
maturation or ageing of WM is considerably impaired.

Only recently, Deoni et al. introduced a similar approach
to myelin water imaging, but used, in contrary to our study,
a genetic algorithm to fit all unknown parameters [ 14]. In their
work, presented MWF results from WM pixels of healthy
subjects lie inside the upper range of literature values (aver-
aged MWF = 29.5 &+ 5.3%) and are considerably higher
than the results presented here. We strongly assume that
the observed difference arises not only due to the fixed
parameters in our study, but also due to the negligence of
B inhomogeneities and MT effects in the work of Deoni
et al.

Lately, some groups predicted the two-pool model to
be inappropriate and supposed instead a three pool model
including the axonal water as separate pool (fractional pool
size ~ 50%), the myelin water (~ 30%) and the extracellular
water as third pool (~ 30%) [13,37,38]. According to these
studies, a significant amount of signal from the axonal water
could be misclassified into the myelin water signal if only
two pools were considered. This, in turn, would lead to an
eventual global overestimation of the fitted MWE.

Figure 8 illustrates fit results from WM regions showing
on the one hand the incorporation of all 8 flip angles to data
analysis and on the other hand the reduction to either 3 or
4 flip angles. Application of 4 different flip angles results in
similar values for the MWF and slightly enhanced standard
errors, whereas the decrease to 3 flip angles is impractical
due to extreme high standard errors (>100%). The reduction

1 2 1 2 1 2

ROI

results in similar values for the MWF and slightly enhanced standard
errors, which may lead to a possible shortening of measurement time
from 25 to 15 min. Due to the extreme high standard errors, the reduction
to 3 flip angles is impractical

to 4 flip angles would lead to a considerable shortening of
acquisition time from 25 to 15 min.

The technique presented in this work offers a stable
approach to high-resolution 3D myelin water imaging of
WM from healthy subjects. However, the application of the
proposed technique is limited due to the fixed parameters
included in the analysis procedure. Nevertheless, we believe
that this study provides a non-negligible contribution to the
relatively new field of 3D myelin water quantification with
whole-brain coverage.

Conclusion

In this work, a new bSSFP signal equation based on a two-
pool water exchange model was derived to quantify the MWF
of WM from healthy subjects. In the course of the proposed
two-pool model analysis, the MWF and the signal amplitude
were fitted as single unknowns, while a priori assumptions
were made for the other parameters of the two-pool system.
The influence of By and B; inhomogeneities, as well as MT
effects and the requirement for a finite RF pulse correction
were discussed. Moreover, the stability of the derived MWF
values upon variation of the fixed parameters was investi-
gated. MWF values found in this study showed good corre-
spondence with literature. However, the strong dependence
of the MWF on the fixed two-pool parameters considerably
impairs the application of the proposed technique.
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Appendix

The extended bSSFP signal equation is written as:

A+ Bcosa

S o sin o (11D

C + Dcosa + E cos2a’

with full abbreviations given by:

A = AKTR (1 + EL (MWF — 1) — E-{MWF)

(\/;5 (MWF — 1) — E;MWF)

— MR (Ef—Eﬁ)( Ey+ (Es—1) JE, - E;Eg)

(MWF — 1) MWF
+/E3\E} ( E3 (MWF — 1) — \/E>5MWF)
(—EIMWE + B} (=1 + E{ + MWF))
(1— E)) (B3 - £3) JES ..
B = TR | +((1 - E}) EVVE; + (E} — 1) (Ef - E3)
X \/E>é+ (E5 —1) @Eé) MWE
C = TR [—1 + (Ei (MWF — 1) — EfMWF)
(ES (MWF - 1) — ESMWF) |
1 - (Ei B Ei) (Ell - Eé)
+§ekTR +4 (E} — E!) (ES — E5) MWF ...
—4 (E} — EY) (E5 — E}) MWF?
+E'MWF (E; (1 — MWF) + EéMWF)
+E} (E3 (~ELEL + (MWF — 1)?)
—EL (MWF — 1) MWF)
D = XTR gL~ Eb+ (EY - Ef - E3 + E)) MWF|
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—E' —ES+ E.+ E'ESEL ...
1 2 2 1=2%2 MWF
" (+E‘f (1 + E{E§ — (E| + E3) EY)

+E} ESE\MWF — Ej} (EgEg (MWF — 1)
+E1 (E3 — ESMWF + E5MWF))
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