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Abstract. We study an opinion formation model that takes into account that individuals have diverse
preferences when adopting an opinion regarding a particular issue. We show that the system exhibits
“diversity-induced resonance” [C.J. Tessone et al. Phys. Rev. Lett. 97, 194101 (2006)], by which an external
influence (for example advertising, or fashion trends) is better followed by populations having the right
degree of diversity in their preferences, rather than others where the individuals are identical or have too
different preferences. We support our findings by numerical simulations of the model in different network
topologies and a mean-field type analytical theory.

PACS. 87.23.Ge Dynamics of social systems – 02.50.-r Probability theory, stochastic processes, and statis-
tics – 89.65.-s Social and economic systems

1 Introduction

Resonance in forced dynamical systems is a topic of wide-
spread interest with many applications. A resonance is a
maximum in a suitably defined response of the system to
an external forcing. It usually requires the tuning of some
system parameters to the optimal value. The simplest ex-
ample is that of a forced linear oscillator whose amplitude
of oscillations (the response) reaches a maximum when
the natural frequency of the oscillator matches that of
the external forcing. In coupled nonlinear systems, more
complex resonances can appear. For example. they may
mode-lock into states where the ratio between the indi-
vidual frequencies are rational numbers in wide parameter
regions, known as Arnold tongues [1].

It was shown in the early 80’s that a resonance can also
appear as a function of the intensity of the fluctuations,
of either internal or external origin. The basic mechanism
leading to this stochastic resonance [2,3] is rather generic
and in its simplest form requires only a bistable system,
a sub-threshold periodic forcing and a fluctuating addi-
tive term (noise) in the dynamics. The forcing induces a
periodic lowering of the barrier separating the two sta-
ble fixed points, so helping the fluctuation dynamics to
overcome the barrier in one direction or the other. The
matching for resonance occurs when half the period of
the external forcing equals the Kramers’ time. The sur-
prising result that fluctuations can enhance the response
of a dynamical system to external forcing has become a
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new accepted paradigm and there have been many exten-
sions and applications [4], including neural systems [5],
non-linear electronic devices [6], sensory systems [7], so-
cial dynamics [8,9], etc.

Although most of the work in this field has considered
simple, low-dimensional systems, more recent work analy-
ses the role of fluctuations in the response of an extended
system [10,11]. A usual modelling is that of many inter-
acting units located on the sites of a lattice, such that the
individual responses to the forcing are modified by the mu-
tual interactions. A typical assumption in this case is that
the units are identical, in the sense that they all possess
the same values for all constituent parameters, and that
there is some regularity in the network of interactions. For
most applications, mostly in the biological or social sci-
ences, those assumptions are not correct since some sort
of diversity or variability will ineluctably be present. We
have shown in a recent work [12] the existence of a new
type of resonance as a function of the diversity of the sys-
tem. That work focuses on bistable and excitable systems
in which the diversity is modelled by quenched noise or,
more specifically, by a parameter that adopts a different
value for each of the units. Related work [13] has shown
that diversity can also induce synchronised spiking in an
extended, unforced, excitable system.

Surprising at first, the fact that the right amount of
diversity can enhance the response to an external forcing
is not against our intuition. Think, for example, of a soci-
ety which is very homogeneous in that all members of the
population work on a particular economical field. If the
economy tilts and that particular field becomes of less im-
portance, it will have a big negative impact in the overall
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wealth of the population since individuals will not be able
to follow the change. However, if there is some degree of
heterogeneity and fractions of the populations work on dif-
ferent fields, there will be always a section that can adapt
easily to the changing economy. The final ingredient that
allows the whole society to follow the change is some de-
gree of interaction by which the benefited agents can pull
the others towards the new field.

These ideas were put forward in reference [12] where we
presented a mathematical model that displays this effect
of diversity-induced resonance. We considered an ensemble
of globally coupled N bistable units xi(t) whose dynamics
is given by:

ẋi = xi − x3
i + ai +

C

N

N∑

j=1

(xj − xi) + A sin(Ωt). (1)

The parameters ai are independently drawn from a
Gaussian distribution of zero mean and variance σ2. The
value of σ can be considered as a measure of the diver-
sity. If σ = 0, all systems are identical, whereas increasing
values for σ indicate a larger degree of heterogeneity. We
consider that the external periodic forcing of amplitude A
is sub-threshold for those systems with ai close to zero.
This means that for σ = 0 the system as a whole is unable
to display a wide response to the forcing and the collec-
tive variable X(t) = 1

N

∑N
i=1 xi(t) oscillates around one

of the equilibrium values X(t) = ±1 with an oscillation
amplitude proportional to A. Imagine that the oscillation
point is X(t) = +1. As σ increases there will be a fraction
of units (those with a sufficiently large, negative, value for
ai) for which the weak forcing is now sufficient to take
them to the minimum xi = −1. If the intensity of the
coupling C is sufficiently large the whole system will be
pulled by those units and taken to that minimum. Hence,
the collective variable will have performed a large excur-
sion from X(t) = +1 to X(t) = −1. The opposite jump
from X(t) = −1 to X(t) = +1 is induced when the sign
of the forcing is reversed as induced by those units that
have a large, positive, value for ai.

It is important to realise, as explained in the theoreti-
cal treatment of [14], that this resonance mechanism relies
of the individual units having different dynamical response
to the external forcing but that the origin of the hetero-
geneity in the response is not important. Different sources
of disorder such as noise, diversity, non-regular network of
connectivities, inhibitory couplings, etc. can be the origin
of the resonance. The combined effect of noise and diver-
sity has been analysed in [15,16]. This result has already
been shown of interest in many fields, from complex net-
works [17] to cellular signalling [18]. A linear model in
which a full analytical calculation is possible has been re-
cently studied [19].

In this paper, we show a rather different example
of diversity-induced resonance in an opinion formation
model. The model is a simple majority model with the
addition of preferences in the individual choices. Those
preferences vary from individual to individual and are the
source of diversity. The interest of the paper is twofold.

First, by giving an example which is very far away from
the dynamical system described above, we want to em-
phasise the generality of the mechanism leading to the
resonance. Second, we believe that the example has inter-
est on its own in the field of social sciences, since it shows
that an external forcing (imitating the effect of advertis-
ing) has a larger impact on a heterogeneous society than
on a completely homogeneous one. This effect might be
relevant when explaining the changes in opinion (e.g. in
poll’s results) motivated by an apparently small change in
the external environment.

The outline of the paper is as follows: in Section 2
we define the model for opinion formation and high-
light its formal similarities to other well known models
of spin-glass systems, while stressing the ingredients that,
according to the general discussion, might lead to a reso-
nance effect. In Section 3 we present the results of numer-
ical simulations that show the existence of the resonance
as a function of a parameter measuring the diversity in
the individual preferences. In Section 4 we introduce a
mean-field theory that focuses on the collective variable
and from which a global mechanism for the resonance can
be extracted. Finally, in Section 5 we end with brief con-
clusions and outlooks.

2 Model studied

Although the focus is very different, the model we have
introduced bears many similarities with the random field
Ising model [20]. This model has attracted much attention
because of its interest for modelling disordered magnetic
materials [21] and also spin-glasses [22]. More recent work
has focused on the hysteresis behaviour when subjected
to a slowly varying magnetic field [23] or the question on
how the system can reach the global energy minimum [24].
The use of techniques of statistical physics to model social
behaviour has a long tradition (see, e.g., [9]) and suitable
modifications of the random field Ising model have been
used already to model the dynamics of social systems. To
the best of our knowledge, Galam [25] was the first one to
model individual preferences by a random field. Stochas-
tic resonance induced by fluctuating terms in the dynam-
ics was described by Kuperman and Zanette [8]. Michard
and Bouchaud [26] used the random field Ising model in
an external field and studied the emergence of collective
opinion shifts in a diverse population. The imitation mech-
anism, included in this work, has also been presented as
a key feature in price formation dynamics by Zhou and
Sornette [27].

We consider a model for opinion formation in which the
opinion on a particular topic is considered to be a binary
variable (against or in favour of such a topic). There are
N individuals, each one having an opinion μi(t) = ±1, i =
1, . . . , N , at time t. The opinion μi(t) of individual i can
change due to (i) the interaction with the ki individuals in
its neighbourhood n(i), modelled by a majority rule, and
(ii) the influence of advertising, modelled as the effect of
some external time-varying agent. Each individual has a
tendency to favour one of the two opinions, +1 or −1. We
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introduce diversity in the fact that this preference for one
of the two opinions is stronger in some individuals than in
others. We model the effect of individual preferences by
a set of independent parameters θi. They are drawn from
a probability distribution g(θ), which satisfies 〈θi〉 = 0,
〈θi θj〉 = δij σ2. Their influence becomes apparent when
we spell out the evolution rules of this model:

(i) Select randomly one individual i. Its opinion at time
t is modified as :

μi(t + dt) = sign

⎡

⎣ 1
ki

∑

j∈n(i)

μj(t) + θi

⎤

⎦. (2)

In words, individual i adopts the average opinion in its
neighbourhood when this average opinion overcomes
its preference θi. This is a mechanism of social pres-
sure weighted against individual preferences. For in-
stance: if θi = 0.3 (resp. θi = −0.3) it is necessary
that the proportion of neighbours supporting the −1
(resp. +1) opinion exceeds 70% in order for individ-
ual i to adopt the majority opinion. Note that when
|θi| > 1 the individual will keep its preferred opinion
no matter what the social pressure is.

(ii) With probability A| sin(Ωt)|, the opinion is set to

μi(t + dt) = sign [sin(Ωt) + α θi] . (3)

This represents the effect of a time dependent external
global field (advertising, for example). A is a measure
of the strength of the field. This field has to overcome
the preference θi (weighted by a scale factor α) in
order for the individual to adopt the value favoured
by the field, i.e.: the advertising has more effect on
those individuals whose preference coincides with the
sign of the advertising.

After these two steps have been taken, time increases by
t → t + dt = t + 1/N and a new individual is selected
again at random. The process is repeated for many cycles
of the external forcing.

We are interested in quantifying how well the system
globally responds to the external forcing. To this end, we
focus on the time evolution of the average opinion:

m(t) =
1
N

N∑

i=1

μi(t). (4)

In general, m(t) oscillates in time with the frequency Ω
of the forcing. The amplitude of the oscillations of m(t)
is a measure of the response to the forcing. An equivalent
measure, but more useful from the computational point
of view, is the so-called spectral amplification factor R
defined as [4]:

R = 4A−2|〈m(t)e−iΩt〉|2, (5)

where 〈. . . 〉 denotes a time average in the steady state.
The main result of this paper, as shown in the next

sections, is the existence of a value of the diversity σ for

which the response R takes a maximum value. This reso-
nance effect appears for weak forcing (A sufficiently small)
and implies that the advertising has an optimal effect on
the population when there is some degree of diversity in
the preferences. The “microscopic” mechanism is easy to
understand. In a diverse society, there is always a fraction
of the population which is receptive to follow the external
field. This fraction initiates a change in the opinion and
then, by the imitation mechanism, the change is spread to-
wards a larger fraction. If the population is not too diverse,
the fraction that can follow the external signal is small and
it is not enough to initiate the global change. If the popu-
lation is too diverse, however, the imitation mechanism is
not effective. In Section 4 we will present a mean-field the-
ory that offers an alternative, “macroscopic”, explanation
to this microscopic mechanism. It will be clear after the
theoretical treatment that the origin of the resonance can
be traced to the lack of order caused by the diversity and,
as stressed in [12], any source of disorder will lead to simi-
lar results. A recent analysis of a similar model [28] shows
that the disorder caused by competitive interactions also
leads to a resonance effect.

3 Numerical results

We have ran the model using different topologies
for the neighbourhood network, namely: one- and
two-dimensional regular lattices with von Neumann neigh-
bourhood (and periodic boundary conditions); a fully-
connected network; a small-world network [30] and a scale-
free one [31]. In each case, we set the amplitude of the
forcing A to a small, sub-threshold, value such that, in
the absence of diversity, the average opinion makes small
oscillations around the value m = +1 or m = −1. In
all cases we will give evidence of a diversity-induced res-
onance effect. Namely, as the diversity σ increases, the
amplitude of the oscillations first increases and then de-
creases again. In the numerical simulations we have used
a Gaussian distribution for g(θ).

For the two-dimensional regular lattice, we plot in Fig-
ure 1 the spectral amplification factor R as a function
of diversity σ for two different values of the parameter
α, which determines the relative importance that indi-
vidual preference has with respect to the external signal
as compared to the neighbours influence. Although there
are some clear finite-size effects, a well defined maximum
is clearly observable in both cases. Comparing panels 1a
and 1b, it is apparent that for α = 1 the response at the
optimal diversity level is lower that for α = 0. The reason
for this dependency on the parameter α can be under-
stood by inspection of the dynamic rules of the system
(cf. Eq. (3)): this parameter can be seen as a secondary
source of disorder in the system disturbing the external
signal, lowering its effect. Thus, the effective level of dis-
order introduced by the diversity in the population is in-
creased, for increasing values of α. This can be confirmed
by the fact that in panel 1b, the location of the maxi-
mum response is shifted towards lower values of diversity,
measured in terms of σ.
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Fig. 1. (Color online) Spectral amplification factor, R, as a
function of the diversity σ when the neighbourhood network
is a two-dimensional regular lattice. Each panel correspond to
different values of the parameter α, that measures the relative
weight of the individual preferences with respect to the external
signal: (a) α = 0, (b) α = 1. The symbols represent different
system sizes: N = 52 (◦), N = 102 (�), N = 302 (�) and
N = 1002 (�). All the curves show an optimum response for
an intermediate value of diversity. In both panels, the signal
has an intensity A = 5 × 10−3 and frequency Ω = 2π/1024.

It is clear that a regular lattice is only a crude approx-
imation to the network of interactions in social systems. A
more realistic approach should study the behaviour of the
microscopic evolution rules equations (2–3) in a network
that has the typical traits of social networks, namely [29]:
(i) small-world behaviour [30], or short average path length
between individuals; (ii) high clustering, the fact that the
likelihood that the fraction of neighbours of an agent that
are also neighbours among themselves is also large; (iii)
small average number of connections between pairs of
agents; (iv) a highly skewed (in some cases a scale-free) de-
gree distribution [31,32]. To understand the effect of the
topology of the network of interactions on the observed
resonance, it is convenient to study the different ingredi-
ents separately. Therefore, we first study the role of the
small-world property, and we later study what happens
for networks exhibiting scale-free degree distributions.

Figure 2 shows the results for the small-world network.
This is constructed in the usual way [30], with a rewiring
probability p and average connectivity 2k. This network
exhibits short average path length, high clustering, while
keeping a small number of neighbours for each individ-
ual. The particular case p = 0, corresponds to the usual
one-dimensional regular lattice, with coordination num-
ber k. The main result here is that as p increases (leading
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Fig. 2. (Color online) For a small-world neighbourhood net-
work, we plot the response R as a function of diversity, σ,
and the rewiring probability p. It is apparent that, regard-
less the exact network topology, the effect of diversity-induced
resonance appears in the system, showing the existence of an
optimum synchronisation between the external signal and the
global dynamics of the system. The signal has an intensity
A = 5 × 10−3 and frequency Ω = 2π/1024. The system size
is N = 103. The initial network is a one-dimensional one with
k = 3, i.e. before rewiring, each site is connected to its six
nearest neighbours.

to a larger degree of disorder), the resonance peak nar-
rows and the optimal response increases. Thus, for slightly
disordered networks the systems reacts more robustly am-
plifying the external stimulus for a wider range of diversity
values; however, R reaches lower values. This effect can be
understood if we consider that for small values of p, it is
more probable for the system to develop stable domains of
different opinions, that enlarge or shrink depending on the
instantaneous signal value. These domains tend to coexist,
thus decreasing the global response of the system.

The networks of interaction considered so far are such
that the degree of each node spans a small interval for all
the individuals. As mentioned above, beyond the small-
world behaviour, another important ingredient of social
interaction networks is that they often display a scale-free
degree distribution. As a paradigmatic case, we studied
the model defined by equations 2 and 3, when embedded
in a scale-free network. As the model for the generation of
the network, we used the Barabási-Albert algorithm [31]:
starting from a fully connected network of size k0, a new
node is added and attached to the existing nodes. The pro-
cess is repeated by adding one node at a time at attaching
it to k0 of the existing nodes selected with a probability
proportional to their degree. The process stops when the
desired number of nodes N has been reached. This al-
gorithm generates networks with a power-law degree dis-
tribution with an exponent γ = 3, a short average path
length, and an average number of neighbours equal to k0.
In Figure 3, we show the results of running the dynamical
rules, equations (2,3) on this network. Panel (a) shows
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Fig. 3. (Color online) Plot of the response R for a scale-free
network. In panel (a) we plot the response as a function of
the diversity σ. Each symbol represents different values of k0,
the number of links added at each time during the network
formation process: k0 = 3 (•), k0 = 5 (�), k0 = 10 (�) and k0 =
30 (�). Panel (b) shows for k0 = 5 the spectral amplification
factor for individual nodes Rk as a function of their degree
for different values of diversity: σ = 0.15 (◦), σ = 0.50 (�),
σ = 0.80 (�) and σ = 1.50 (�). For both panels, the other
parameters are set to: A = 0.10, Ω = 2π/1024, α = 0.1 and
N = 5 × 103.

that diversity-induced resonance appears independently
of the value of k0, although the width of the resonance
peak in the global response of the system decreases for
larger k0. Barabási-Albert networks are characterised by
the presence of hubs, highly connected nodes that are cen-
tral in the network. It is, then, interesting to compute the
response of the individual nodes to the external signal de-
pending on the degree of the nodes. In Figure 4, panel (b),
we show the average response of the individual nodes, as
a function of their degree, i.e.

Rk =
4A−2

Nk

∑

i∈{ki=k}

∣∣〈μi(t)e−iΩt〉∣∣2 . (6)

Where the sum runs on the Nk nodes whose degree is k.
Interestingly, for values of diversity away the resonance
condition, the response is larger for low degree nodes. At
the resonance, on the other hand, the response is mostly
independent of the node degree.

Finally, Figure 4 shows the response of the system for a
fully-connected neighbourhood network. We have included
in panel (a) of this figure the case of a signal amplitude
A = 0.60 which is supra-threshold in the zero-diversity
case. As seen in this panel, supra-threshold signals are
not amplified at all, and the response of the system mono-
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Fig. 4. (Color online) We compare the theoretical prediction
of the system response (see inline text for details) with numer-
ical simulations in fully-connected networks. In panel (a) each
symbol represents the response R, as a function of diversity σ
for different values of signal intensity: A = 0.01 (•), A = 0.05
(�), A = 0.10 (�) and A = 0.60 (�). The full lines corre-
spond to the analytical prediction. The other parameters are:
N = 104, Ω = 2π/1024 and α = 0.1. Panel (b) shows the spec-
tral amplification factor as a function of signal frequency, Ω for
two different values of the signal intensity: A = 0.05 (•) and
A = 0.1 (�). The solid lines stand for the theoretical results.
The other parameters are σ = 0.85, α = 0.1 and N = 104.

tonically decreases with diversity. This trait was found in
diversity-induced resonance in bistable systems [12], but is
also commonly found in systems exhibiting stochastic res-
onance [4] with respect to noise intensity. Also, in the same
panel, it can be seen that larger (but still sub-threshold)
signal amplitudes, lead to lower optimal diversity values.
In panel (b) of Figure 4 we plot the dependence of the sys-
tem response R with respect to the signal frequency Ω. As
shown, the larger the frequency, the lower the response of
the system. This is because slower signals allow units with
a more akin bias to adopt its favoured opinion.

4 Analytical approach

We now present a mean-field like theory that can explain
the observed features. The derivation follows the lines
of [28]. Since the opinion changes at each time by the
modification of a single variable, we can write the follow-
ing exact relation for the ensemble average m(t):

Nm(t + dt) = Nm(t) + 〈μi(t + dt) − μi(t)|{μ(t)}〉 , (7)

where {μ(t)} = (μ1(t), . . . , μN (t)) denotes the particu-
lar realisation of the μi variables and 〈. . . | . . . 〉 denotes
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a conditional ensemble average. By identifying dt = 1/N
and rearranging we get:

dm(t)
dt

= −m + 〈μi(t + dt)|{μ(t)}〉 . (8)

The average term in the right-hand side can be computed
using the contribution from the biased majority rule, equa-
tion (2) which acts with probability 1 − |f(t)| (we define
f(t) = A sin(Ωt)) and the contribution of the external
forcing, equation (3) which acts with probability |f(t)|.
In the spirit of the mean-field approximation we replace
in equation (2) the average opinion of the neighbourhood
n(i) by the global average opinion m(t). This yields:

〈μi(t + dt)|{μ(t)}〉 = (1 − |f(t)|) 〈sign (m(t)+θi)|{μ(t)}〉
+|f(t)|〈sign (f(t) + αθi) |{μ(t)}〉.

(9)
Both mean values can now be easily evaluated:

〈sign(m(t)+θi)〉 = Prob(θi >−m(t))−Prob(θi < −m(t))

= Ĝ(m(t)). (10)

Here, Ĝ(θ) = 1 − 2G(−θ), where G(θ) is the cumulative
probability function of the distribution of preferences g(θ).
In the same way, the contribution of the external signal
to equation (9) is

〈sign(f(t) + α θi)〉 = Ĝ(f(t)/α). (11)

Adding up those contributions we get a closed evolution
equation for the average opinion m(t):

dm(t)
dt

= −m + |f(t)|Ĝ
(

f(t)
α

)
+ (1− |f(t)|)Ĝ(m). (12)

This equation can be written as a relaxational dynam-
ics [33] in a time-dependent potential

dm(t)
dt

= −∂V (m, t)
∂m

. (13)

It is easy now to see the effect that the diversity has
on the dynamics of the global variable. For the sake of
concreteness, we consider that the preferences follow a
Gaussian distribution of zero mean and variance σ2, but
similar results hold for other distributions. In this case,
Ĝ(θ) = erf(θ/σ

√
2), being erf(x) the error function [34].

Consider first the non-forced case, f(t) = 0. The potential
is:

V (m) =
m2

2
− m erf

(
m

σ
√

2

)
− σ

√
2
π

e−m2/2σ2
. (14)

This potential is bistable when σ = 0. As σ increases,
the two minima of the potential get closer to each other
and the barrier between them decreases until at the crit-
ical value σc =

√
2/π the potential becomes monostable,

as can be seen in Figure 5. This shows the existence of
a phase transition between consensus and non-consensus

-3 -2 -1 0 1 2 3
m

-1

0

1

V(m)

Fig. 5. (Color online) Effective potential (cf. Eq. (14)) defining
the relaxational dynamics of the average opinion for different
values of diversity: σ = 0, 0.25, 0.7979, and 1 (respectively,
from top to bottom as found at the vertical line m = 0).

states. The effect of the external field now is easily under-
stood as a periodic lowering and rising of the two potential
wells. For small σ, the barrier separating the two stable
points is large and the effect of the field is that of mak-
ing the global variable m(t) oscillate around one of the
equilibrium points. As σ increases, the barrier lowers and
it is possible to induce transitions between the two sta-
ble states. When σ increases even further, the potential
becomes monostable and again the effect of the forcing
is that of producing small oscillations, this time around
the only equilibrium point. This macroscopic mechanism
is similar to the one found in [12].

We can now integrate numerically equation (12) to ob-
tain the time evolution of m(t) and compute the spectral
amplification factor (cf. Eq. (5)) for a given set of param-
eters. In both panels of Figure 4, we display with lines
this theoretical prediction. As expected from a mean-field
type theory, there is a good agreement with the numerical
results of the fully connected network.

5 Conclusions

We have analysed theoretically and numerically a model
for opinion formation. The model has many points in com-
mon with random field Ising models used to study phase
transitions in statistical mechanics. It incorporates two
basic ingredients for the evolution of the opinion held by
an individual: social pressure and the effect of advertising
(modelled as an oscillating influence acting over all the
individuals). The model also considers that every individ-
ual has an intrinsic preference for one or the other option.
We have shown that an optimal synchronisation of the av-
erage opinion with respect to the external signal can be
achieved if the population shows some degree of diversity
in the preferred opinions. We have also shown that the re-
sults are robust against the exact topology of the network
used to model the neighbourhood of the individuals, and
that the results hold for increasingly large system sizes. We
have given explanations for this resonance both from the
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point of view of the individual responses to the external
influence or by looking and the average global variable
within a mean-field approach.

From the point of view of the social dynamics, our re-
sults imply that an external message can propagate better
in a society if there is some degree of diversity in the in-
dividual preferences. These results can also be interpreted
in the context of population dynamics where the exter-
nal signal stands for a changing environment [35,36]. The
value of the diversity parameter specifies to which exter-
nal condition an individual is best fitted to. In this set-
ting, the response is directly related to the average fitting
of the population. Within this interpretation, the results
reported in this paper imply that intermediate values of
diversity cause a better fit of the population to the chang-
ing environment.
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