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INTRODUCTION

Electronic transport in mesoscopic systems exhibits
a range of quantum coherent effects such as weak local-
ization, universal conductance fluctuations, and Aha-
ronov–Bohm effects [1, 2]. Being intermediate in size
between micro- and macroscopic systems, these sys-
tems are ideal playgrounds to investigate the quantum-
to-classical transition from a microscopic coherent
world, where quantum interference effects prevail, to a
macroscopic classical world [3]. Indeed, the disappear-
ance of quantum coherence in mesoscopic systems as
dephasing processes set in has been the subject of inten-
sive theoretical [4–7] and experimental [8–10] studies.
When the temperature is sufficiently low, it is accepted
that the dominant processes of dephasing are electronic
interactions. In disordered systems, dephasing due to
electron–electron interactions is known to be well mod-
eled by the classical noise potential [4], which gives an
algebraic suppression of the weak localization correc-
tion to conductance through a diffusive quantum dot:
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time in the dot. Equation (1) is insensitive to most
noise-spectrum details and holds for other noise
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sources such as electron–phonon interactions or exter-
nal microwave fields.

Other, mostly phenomenological models of dephas-
ing have been proposed to study dephasing in ballistic
systems [5–7], the most popular of which is perhaps the
dephasing lead model [5, 6]. A cavity is connected to
two external L (left) and R (right) leads of widths 
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. A third lead of width 
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 is connected to the system
via a tunnel-barrier of transparency 

 

ρ

 

. A voltage is
applied to the third lead to ensure that no current flows
through it on average. A random matrix theory (RMT)
treatment of the dephasing lead model leads to Eq. (1)
with 
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the dot’s time of flight 
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 [6, 11]. Thus, it is commonly
assumed that dephasing is system-independent. The
dephasing lead model is often used phenomenologi-
cally in contexts where the source of dephasing is
unknown.

Our purpose in this article is to revisit dephasing in
open chaotic ballistic systems with a focus on whether
dephasing remains system-independent in the semi-
classical limit of large ratio 
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 of the system size to
the Fermi wavelength. This regime sees the emergence

of a finite Ehrenfest time scale,  = 
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the Lyapunov exponent), in which case dephasing can
lead to an exponential suppression of weak localiza-

tion, 
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) [12]. Subsequent numer-
ical investigations of the dephasing lead model support
this prediction [13]. Here, we analytically investigate
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Dephasing in open quantum chaotic systems has been investigated in the limit of large system sizes to the Fermi
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 1. The weak localization correction 
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 to the conductance for a quantum dot coupled
to (i) an external closed dot and (ii) a dephasing voltage probe is calculated in the semiclassical approximation.
In addition to the universal algebraic suppression 
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and the dephasing rate , we find an exponential suppression of weak localization by a factor of 
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where  is the system-dependent parameter. In the dephasing probe model,  coincides with the Ehrenfest
time,  
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], for both perfectly and partially transparent dot-lead couplings. In contrast, when dephasing
occurs due to the coupling to an external dot,  
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potential instead of 
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two different models of dephasing and show that the
suppression of weak localization is strongly system-
dependent. First, we construct a new formalism that
incorporates the coupling to external degrees of free-
dom into the scattering approach to transport. This
approach is illustrated by a semiclassical calculation of
weak localization in the case of an environment mod-
eled by a capacitively coupled, closed quantum dot. We
restrict ourselves to the regime of pure dephasing,
where the environment does not alter the classical
dynamics of the system. Second, we provide the first
semiclassical treatment of transport in the dephasing
lead model. We show that, in both cases, the weak
localization correction to the conductance is

(2)

where  is the finite-  correction in absence of

dephasing. The time scale  is system-dependent. For

the dephasing lead model,  =  + (1 – 
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)  in terms
of the transparency 
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 of the contacts to the leads, and
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This analytic result fits the numerics of [13], and (up to
logarithmic corrections) is in agreement with [12]. Yet,
for the system-environment model,  = 
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ln[(
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]
depends on the correlation length 

 

ξ

 

 of the interdot cou-
pling potential. We thus conclude that dephasing in the
semiclassical limit is system-dependent.

TRANSPORT THEORY 
FOR A SYSTEM-ENVIRONMENT MODEL

In the standard theory of decoherence, one starts
with the total density matrix 

 

η

 

tot

 

 including both system
and environment degrees of freedom [3]. The time-evo-
lution of 

 

η

 

tot

 

 is unitary. The observed properties of the
system alone are given by the reduced density matrix

 

η
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 obtained by tracing 
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tot

 

 over the environment
degrees of freedom. This is probability conserving,
Tr
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sys

 

 = 1, but renders the time-evolution of 
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sys

 

 non-
unitary. The decoherence time is inferred from the
decay rate of its off-diagonal matrix elements [3]. We
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generalize this approach to the scattering theory of
transport.

To this end, we consider two coupled chaotic cavi-
ties as sketched in Fig. 1a. Few-electron double-dot
systems similar to the one considered here have
recently been the focus of intense experimental efforts
[14]. One of them (the system) is an open quantum dot
connected to two external leads. The other one (the
environment) is a closed quantum dot, which we model
using RMT. The two dots are chaotic and capacitively
coupled. In particular, they do not exchange particles.
We require that λF � WL, R � L, so that the number of
transport channels satisfies 1 � NL, R � L/λF and the
chaotic dynamics inside the dot have enough time to
develop, λτD � 1. Electrons in the leads do not interact
with the second dot. Inside each cavity, the dynamics
are generated by chaotic Hamiltonians Hsys and Henv.
We only specify that the capacitative coupling poten-
tial, �, is smooth and has magnitude � and correlation
length ξ.

The environment coupling can be straightforwardly
included in the scattering approach by writing the scat-
tering matrix, �, as an integral over time-evolution
operators. We then use a bipartite semiclassical propa-
gator to write the matrix elements of � for the given
initial and final environment positions, (q0, q), as

(3)

This is a double sum over classical paths, labeled γ for
the system and Γ for the environment. For pure dephas-
ing, the classical path γ(Γ) connecting y0(q0) to y(q) in
the time t is solely determined by Hsys (Henv). The pref-
actor CγCΓ is the inverse determinant of the stability
matrix, and the exponent contains the noninteracting
action integrals, Sγ, SΓ, accumulated along γ and Γ, and

the interaction term, �γ, Γ = �[yγ(τ), qΓ(τ)].

Since we assume that the particles in the leads do
not interact with the second cavity, we can write the ini-

tial total density matrix as η(n) =  ⊗ ηenv, with

 = |n〉〈n|, n = 1, 2, …, NL. We take ηenv as a random
matrix, though our approach is not restricted to that par-
ticular choice. We define the conductance matrix as the
following trace over the environment degrees of free-
dom:

(4)

The conductance is then given by g = . This
construction is current conserving; however, the envi-
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Fig. 1. (Left panel a) Scheme of the system-environment
model. The system is an open quantum dot that is coupled
to an environment in the shape of a second, closed quantum
dot. (Right panel b) Scheme of the dephasing lead model.

(b)
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ronment-coupling generates decoherence and the sup-
pression of coherent contributions to transport. To see
this, we now calculate the conductance to the leading
order in the weak localization correction.

We insert Eq. (3) into Eq. (4), perform the sum over
channel indices with the semiclassical approximation

 ≈ δ(  – y0) [15], and use the RMT

result  ≈ δ(  – q0), where Ωenv is the
environment volume [16]. The conductance then reads

(5)

This is a quadruple sum over classical paths of the sys-
tem (γ and γ', going from y0 to y) and the environment
(Γ and Γ', going from q0 to q), with action phases Φsys =
Sγ(y0, y; t) – Sγ'(y0, y; t '), Φenv = SΓ(q0, q; t) – SΓ'(q0, q;
t') and Φ� = �γ, Γ(y0, y; q0, q; t) – �γ', Γ'(y0, y; q0, q; t').
We are interested in the conductance averaged over
energy variations, and, hence, look for contributions to
Eq. (5) with stationary Φsys, Φenv. The first such contri-
butions are the diagonal ones with γ = γ' and Γ = Γ', for
which Φ� = 0. They are �-independent and give the
classical, Drude conductance: gD = NLNR/(NL + NR).
The leading order correction to this comes from weak-
localization paths γ and γ' [12, 15, 17, 18] (see Fig. 2),
with Γ' = Γ for the environment paths [19]. In the
absence of dephasing, these contributions accumulate
the phase difference δΦsys. Semiclassically, these con-

tributions give  = –exp[– /τD]NLNR/(NL + NR)2

[15, 17, 18].
In the presence of an environment, each weak local-

ization pair of paths accumulates an additional action
phase difference δΦ�, which is averaged over. Dephas-
ing occurs mostly in the loop, when the paths are more
than the correlation length ξ apart (see Fig. 2). Thus, we
can define Tξ = λ–1ln[(ξ/�L)2] as twice the time between
the encounter and the start of dephasing. If ξ < �L,
dephasing starts before the paths reach the encounter,
Tξ < 0 [20]. Using the central limit theorem and assum-
ing a fast decaying interaction correlator, 〈�[yγ(τ),

qΓ(τ)]�[yγ(τ'), qΓ(τ')]〉Γ ∝ exp[–{yγ(τ) – yγ(τ')}/ξ],
the average phase difference due to � reads

(6)

where t1 (t2) gives the start (end) of the loop. The deri-
vation then proceeds as for � = 0 [15], except that, dur-
ing the time (t2 – t1 – Tξ), the dwell time is effectively
divided by [1 + τD/τφ], so the (t2 – t1)-integral generates
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t2 t1– Tξ–( )/τφ–[ ],exp= =

an extra prefactor of [1 + τD/τφ]–1exp[–τξ/τφ], where τξ =
λ–1ln[(L/ξ)2]. Thus, the weak localization correction is
as in Eq. (2) with  given by τξ. In contrast to [12], the
exponent depends on ξ not λF.

A calculation of coherent-backscattering with
dephasing to be presented elsewhere enables us to show
that our approach is probability- and, thus, current-con-
serving. We also point out that (for τφ ~ τD) one can
ignore the modifications of the classical paths due to the
coupling to the environment as long as ξ �
[λFL/λτD]1/2. Thus, our method is applicable for ξ
smaller (as well as larger) than the encounter size
[λFL]1/2 but not for ξ ~ λF.

DEPHASING LEAD MODEL

We next add a third lead to an otherwise closed dot
(as in Fig. 1b) and tune the potential on this lead such
that the net current through it is zero. Thus, every elec-
tron that leaves through lead 3 is replaced by one with
an unrelated phase, leading to a loss of phase informa-
tion without loss of particles. In this situation, the con-
ductance from L to R is given by g = TLR + TL3TR3(TL3 +
TR3)–1 [5], where Tnm is the conductance from lead m to
lead n when we do not tune the potential on lead 3 to

ensure zero current. We next note that Tnm =  +

δTnm + �[N–1], where the Drude contribution, , is
�[N] and the weak localization contribution, δTnm, is
�[1]. If we now expand g for large N and collect all the
�[1]-terms, we get

(7)

τ̃
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D

Tnm
D

gwl δTLR

TL3
D( )2δTR3 TR3

D( )2δTL3+

TL3
D TR3

D+( )
------------------------------------------------------------.+=

Fig. 2. (Color online) Semiclassical contribution to weak
localization for the system-environment model. The paths
are paired everywhere except at the encounter. There, one
crosses itself at the angle �, while the other does not (going
the opposite way around the loop). Here, we show ξ > �L,
so the dephasing (dotted path segment) starts in the loop
(Tξ > 0).



650

JETP LETTERS      Vol. 86      No. 10      2007

PETITJEAN et al.

For a cavity perfectly connected to all three leads (with
WL, R, 3 � λF), the Drude and weak localization results

for � = 0 (at finite ) [15] can be substituted into

Eq. (7), immediately giving Eq. (2) with  given by .

To connect with the numerics of [13], we now con-
sider a tunnel barrier with finite transparency 0 ≤ ρ3 ≤ 1
between the cavity and the dephasing lead. Introducing
tunnel barriers into the trajectory-based theory of weak
localization is detailed in [21]. It requires three main
changes to the theory in [15]: (i) The dwell time (single

path survival time) becomes  = (τ0L)–1 Wm.
(ii) The paired path survival time (for two paths closer
than the lead width) is no longer equal to the dwell

time, instead it is  = (τ0L)–1 (2 – ρm)Wm,
because survival requires that both paths hitting a tun-
nel barrier are reflected [21]. (iii) The coherent-back-
scattering peak contributes to transmission as well as
reflection (see Fig. 3).

For the Drude conductance, we need only (i) above,

giving us  = ρmρnNmNn/�, where � = . For
the conventional weak localization correction, we need (i)
and (ii). The contribution’s classical path stays within W
of itself for the time TW(�)/2 on either side of the encoun-
ter (the dashed region in Figs. 2 and 3); thus, we must use
the paired-paths survival time, τD2, for these parts of the
path. Elsewhere, the survival time is given by τD1. We fol-
low the derivation in [15] with these new ingredients, and
the conventional weak localization correction becomes

δ  = –(ρmρnNmNn/�2)(τD1/τD2)exp[–Θ]. The expo-

nential with Θ = /  + (  – )/  is the prob-

ability that the path segments survive the time  as a

pair ( /2 either side of the encounter) and survive an

additional time (  – ) unpaired (to form a loop of

length ). However, we must include point (iii) above

τE
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τ̃ τE
cl

τD1
1– ρmm∑

τD2
1– ρmm∑

Tnm
D ρk Nkk∑

Tnm
0( )

τE
op τD2

τE
cl τE

op τD1

τE
op

τE
op

τE
cl τE

op

τE
cl

and consider the failed coherent backscattering (shown
in Fig. 3). We perform the backscattering calculation
following [15] (see also [18]) but using τD2 when the
paths are closer than W and τD1 elsewhere. We then
multiply the result by the probability that the path
reflects off lead m and then escapes through lead n. This

gives the contribution δ  = –(ρm(1 –
ρm)ρnNmNn/�2)exp[–Θ] assuming n ≠ m. There is a sec-
ond such contribution with m  n. Summing the
contributions for m ≠ n,

(8)

where  = Nk. If only the dephasing lead has a
tunnel barrier, substituting the Drude and weak local-
ization results into Eq. (7), we obtain Eq. (2) with  =

(1 – ρ)  + . In this case, the exponential in Eq. (2)
is the probability that a path does not escape into the
dephasing lead in either the paired region or the extra

time (  – ) unpaired (for the loop to form).

To generalize our results to j dephasing leads, we
expand the relevant conductance formula in powers of
N and collect the �[1] terms. Then, gwl = δTLR +

δTLm + BmδTRm), where the sum is over all
the dephasing leads. The prefactors Am, Bm are combi-
nations of Drude conductances and thus independent of

, ; we need them to get power-law dephasing.
However, we can already see that there must be expo-

nential decay with [(1 – ρ)  + ]/τφ, as for j = 1,

where now  = (τ0L)–1  and  =

(τ0L)−1 .

CONCLUSIONS

We first observe that the dephasing-lead model has
no independent parameter ξ. To our surprise, it is the
Fermi wavelength, not the dephasing-lead’s width,
which plays a role similar to ξ. Thus, a dephasing-lead
model cannot mimic a system-environment model with

ξ ~ L at finite . Our second observation is that Eq. (2)

with  = τξ is for a regime where � does not affect the
momentum/energy of classical paths. Therefore, it does

not contradict the result with  =  in [12] valid for ξ
so small that dephasing occurs via a “single inelastic
process with large energy transfer” [22]. Intriguingly,
their result is similar to ours for the dephasing-lead
model. Could this be due to the destruction of classical
determinism by the dephasing process in both cases?

We finally note that conductance fluctuations in the
dephasing-lead model exhibit an exponential depen-
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Fig. 3. (Color online) Failed coherent-backscattering con-

tribution to conductance: δ . It involves paths that

return close but antiparallel to themselves at lead m but
reflect off the tunnel-barrier, remaining in the cavity to
finally escape via lead n. The cross-hatched region is when
the two solid paths are paired (within W of each other).

Tnm
cbs
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dence ∝exp[–2τE/τφ] for ρ3 � 1 [13] but recover the
universal behavior of Eq. (1) for ρ3 = 1 [23]. However,
external noise can lead to dephasing of conductance
fluctuations with an τE-independent exponential term
[23], similar to the one found above for weak-localiza-
tion in the system-environment model. Thus, our con-
clusion that dephasing is system-dependent in the deep
semiclassical limit also applies to conductance fluctua-
tions.
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