
Int J Comput Vis (2011) 95:74–85
DOI 10.1007/s11263-011-0441-3

1-Point-RANSAC Structure from Motion for Vehicle-Mounted
Cameras by Exploiting Non-holonomic Constraints

Davide Scaramuzza

Received: 6 May 2009 / Accepted: 25 March 2011 / Published online: 7 April 2011
© Springer Science+Business Media, LLC 2011

Abstract This paper presents a new method to estimate the
relative motion of a vehicle from images of a single cam-
era. The computational cost of the algorithm is limited only
by the feature extraction and matching process, as the out-
lier removal and the motion estimation steps take less than a
fraction of millisecond with a normal laptop computer. The
biggest problem in visual motion estimation is data asso-
ciation; matched points contain many outliers that must be
detected and removed for the motion to be accurately esti-
mated. In the last few years, a very established method for
removing outliers has been the “5-point RANSAC” algo-
rithm which needs a minimum of 5 point correspondences
to estimate the model hypotheses. Because of this, however,
it can require up to several hundreds of iterations to find a set
of points free of outliers. In this paper, we show that by ex-
ploiting the nonholonomic constraints of wheeled vehicles
it is possible to use a restrictive motion model which allows
us to parameterize the motion with only 1 point correspon-
dence. Using a single feature correspondence for motion es-
timation is the lowest model parameterization possible and
results in the two most efficient algorithms for removing out-
liers: 1-point RANSAC and histogram voting. To support
our method we run many experiments on both synthetic and
real data and compare the performance with a state-of-the-
art approach. Finally, we show an application of our method
to visual odometry by recovering a 3 Km trajectory in a clut-
tered urban environment and in real-time.

Please observe that this paper is accompanied by a demonstrative
video available at: http://www.youtube.com/watch?v=t7uKWZtUjCE.

D. Scaramuzza (�)
Autonomous Systems Lab, ETH Zurich, Zurich, Switzerland
e-mail: davide.scaramuzza@ieee.org

Keywords Outlier removal · Ransac · Structure from
motion

1 Introduction

Vehicle ego-motion estimation is a key component for au-
tonomous driving and computer vision based driving assis-
tance. Using cameras instead of other sensors for comput-
ing ego-motion allows a simple integration of egomotion
data into other vision based algorithms, such as obstacle,
pedestrian, and lane detection, without the need for calibra-
tion between sensors. This reduces maintenance and cost.
While there exist nowadays a wide availability of algorithms
for motion estimation using video input alone (see Sect. 2),
cameras are still little integrated in the motion estimation
system of a mobile robot and even less in that of an automo-
tive vehicle. The main reasons for this are the following:

• many algorithms assume static scenes and cannot cope
with dynamic and cluttered environments or huge occlu-
sions by other passing vehicles

• the data-association problem (feature matching and out-
lier removal) is not completely robust and can fail,

• the motion estimation scheme usually requires many key-
points and can fail when only a few keypoints are avail-
able in almost absence of structure.

In this paper, we show that all these areas can be improved
by using a restrictive motion model which allows us to pa-
rameterize the motion with only 1 point correspondence.
The first consequence is that only one feature correspon-
dence suffices for computing the epipolar geometry. This al-
lows motion to be estimated also in those cases where there
is only a few number of features available and hence stan-
dard algorithms would fail. The most valuable consequence
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is that very efficient methods for removing outliers can be
implemented. Once the outliers are removed, the motion can
be refined using all the inliers.

The structure of the paper is the following. In Sect. 2, we
review the related work. In Sect. 3, we give a short descrip-
tion of the RANSAC paradigm. In Sect. 4, we explain how
the nonholomic constraints of wheeled vehicles allow us to
parameterize the motion with a single point correspondence.
In Sect. 5, we describe two efficient methods for remov-
ing the outliers by taking advantage of the proposed motion
model. Finally, in Sects. 6 and 7 we present our experimental
results and conclusions.

2 Related Work on Visual Motion Estimation

Most of the works in estimating vehicle motion using vi-
sion (also called visual odometry) has been produced us-
ing stereo cameras (Moravec 1980; Lacroix et al. 1999;
Jung and Lacroix 2005; Nister et al. 2006; Maimone et al.
2007). Nevertheless, visual odometry methods for outdoor
applications have also been produced, which use a single
camera alone. The problem of recovering relative camera
poses and 3D structure from a set of monocular images
has been largely studied for many years and is known in
the computer vision community as “Structure From Mo-
tion” (SFM) (Hartley and Zisserman 2004). Successful re-
sults with only a single camera and over long distances
(from hundreds of meters up to kilometers) have been ob-
tained in the last decade using both perspective and omnidi-
rectional cameras (see Nister et al. 2006; Corke et al. 2004;
Lhuillier 2005; Goecke et al. 2007; Tardif et al. 2008;
Milford and Wyeth 2008; Scaramuzza and Siegwart 2008).
Here, we review some of these works.

Related works can be divided into three categories:
feature-based methods, appearance based methods, and hy-
brid methods. Feature-based methods are based on salient
and repetitive features that are tracked over the frames; ap-
pearance based methods use the intensity information of all
the pixels in the image or of subregions of it; hybrid methods
use a combination of the previous two.

In the first category are the works of Nister et al. (2006),
Corke et al. (2004), Lhuillier (2005), Tardif et al. (2008).
In Nister et al. (2006), Nister et al. dealt with the case of a
stereo camera but they also provided a monocular solution
implementing a fully structure from motion algorithm that
takes advantage of the 5-point algorithm and RANSAC. In
Corke et al. (2004), Corke et al. provided two approaches
for monocular visual odometry based on omnidirectional
imagery from a catadioptric camera. They performed ex-
periments in the desert and therefore used keypoints from
the ground plane. In Lhuillier (2005), Lhuillier used 5-point
RANSAC and bundle adjustment to recover both the motion

and the 3D map. In Tardif et al. (2008), Tardif et al. pre-
sented an approach for incremental and accurate SFM from
a car over a very long run (2.5 Km) without bundle adjust-
ment. To achieve it, they decoupled the rotation and transla-
tion estimation. In particular, they estimated the rotation us-
ing points at infinity and the translation from the recovered
3D map. Bad correspondences were removed with preemp-
tive 5-point RANSAC (Nister 2005).

Among the appearance based or hybrid approaches are
the works of Goecke et al. (2007), Milford and Wyeth
(2008), Scaramuzza and Siegwart (2008). In Goecke et al.
(2007), Goecke et al. used the Fourier-Mellin Transform
for registering perspective images of the ground plane taken
from a car. In Milford and Wyeth (2008), Milford et al. pre-
sented a method to extract approximate rotational and trans-
lational velocity information from a single perspective cam-
era mounted on a car, which was then used in a RatSLAM
scheme (Milford et al. 2004). However, appearance based
approaches alone are not very robust to occlusions. For this
reason, in our previous works (Scaramuzza and Siegwart
2008; Scaramuzza et al. 2008), we used appearance to es-
timate the rotation of the car and features from the ground
plane to estimate the translation and the absolute scale. The
feature-based approach was also used as a firewall to detect
failure of the appearance based method.

Closely related to structure from motion is what is known
in the robotics community as Simultaneous Localization and
Mapping (SLAM), which aims at estimating the motion of
the robot while simultaneously building and updating a co-
herent environment map. In the last years successful results
have been obtained also using single cameras (see Deans
2002; Davison 2003; Clemente et al. 2007, and Lemaire and
Lacroix 2007).

3 Minimal Model Parameterizations and RANSAC

For unconstrained motion (6DoF) of a calibrated camera
the minimum number of point correspondences required for
solving the relative pose problem is five (see 5-point algo-
rithm of Nister 2003; Stewenius et al. 2006). This can be
intuitively understood by noticing that of the six parameters
that we need to estimate (three for the rotation and three for
the translation) only five are actually required. Indeed, the
relative pose between two cameras is always valid up to a
scale.

The first solution to the 5-point relative pose problem was
proven by Kruppa in 1913 (Kruppa 1913) to have at most
eleven solutions. This was later improved by Faugeras and
Maybank (1990) showing that there are at most ten solu-
tions but the method found only in 2003 its efficient im-
plementation in the algorithm of Nister (2003) and Stewe-
nius et al. (2006). Before this efficient version of the 5-
point algorithm, the most common methods used to solve
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the relative pose problem were the 8-point, 7-point, and
6-point algorithms, which are all still widely used. The 8
and 7-point methods relaxed the requirements of having
calibrated cameras and hence led very efficient and easy-
to-implement algorithms. The 8-point algorithm (Longuet-
Higgins 1981) has a linear solver for a unique solution while
the 7-point method (Hartley and Zisserman 2004) leads to
up to three solutions. The 6-point method (Philip 1996;
Pizarro et al. 2003) works for calibrated cameras and yields
up to six solutions.

An interesting review and comparison of all these meth-
ods can be found in Stewenius et al. (2006). There, it is
shown that the new implementation of the 5-point method
provides superior pose estimates with respect to all the other
algorithms.

3.1 RANSAC

In every situation where a model has to be estimated from
given data, we have to deal with outliers. The random sam-
ple consensus (RANSAC) (Fischler and Bolles 1981) has
been established as the standard method for model esti-
mation in the presence of outliers. Structure from motion
is one application of the RANSAC scheme. The estimated
model is the motion (R, T) and it is estimated from fea-
ture correspondences. Outliers are feature points with wrong
data-associations. The idea behind RANSAC is to compute
model hypotheses from randomly-sampled minimal sets of
data points and then verify these hypotheses on the other
data points. The hypothesis that shows the highest consen-
sus with the other data is selected as solution. The number
of subsets (iterations) N that is necessary to guarantee that
a correct solution is found can be computed by

N = log(1 − p)

log(1 − (1 − ε)s)
(1)

where s is the number of minimal data points, ε is the per-
centage of outliers in the data points, and p is the requested
probability of success (Fischler and Bolles 1981). N is ex-
ponential in the number of data points necessary for esti-
mating the model, so there is a high interest in finding the
minimal parameterization of the model. For unconstrained
motion (6DoF) of a calibrated camera this would be 5 cor-
respondences. Using the 6, 7, or 8-point method would in-
crease the number of necessary iterations and therefore slow
down the motion estimation algorithm. It is therefore of ut-
most importance to find the minimal parameterization of the
model to estimate. In the case of planar motion, the motion-
model complexity is reduced (3DoF) and can be parameter-
ized with 2 points as described in Ortin and Montiel (2001).

For wheeled vehicles we will show in Sect. 4 that an even
more restrictive motion model can be chosen which allows

Table 1

Min. set of points 8 7 6 5 2 1

No. of iterations 1177 587 292 145 16 7

Fig. 1 General Ackermann steering principle

us to parameterize the motion with only 1 feature correspon-
dence. Using a single feature correspondence for motion es-
timation is the lowest model parameterization possible and
results in the most efficient RANSAC algorithm. We will
also show that an even more efficient algorithm can be de-
vised, which requires no iteration.

A summary of the number of RANSAC iterations needed
as a function of the number of model parameters s is shown
in Table 1. These values were obtained assuming a prob-
ability of success p = 99% and a percentage of outliers
ε = 50%.

4 Why Do We Need Only 1 Point?

For a wheeled vehicle to exhibit rolling motion, a point must
exist around which each wheel of the vehicle follows a circu-
lar course (Siegwart et al. 2011). This point is known as In-
stantaneous Center of Rotation (ICR) and can be computed
by intersecting all the roll axes of the wheels (Fig. 1). This
property holds for any robot. In particular for car-like and
differential-drive. For cars the existence of the ICR is en-
sured by the Ackermann steering principle (Siegwart et al.
2011). This principle ensures a smooth movement of the ve-
hicle by applying different steering angles to the inner and
outer front wheel while turning (see Fig. 1).

As the reader can perceive, the motion of a camera fixed
on the vehicle can then be locally described with circular
motion (note, rectilinear motion can be represented along a
circle with infinite radius of curvature). This constraint re-
duces the degrees of freedom of motion to two, namely the
rotation angle and the radius of curvature. Therefore, only
one feature correspondence suffices for computing the rela-
tive pose up to a scale. As we will see in the next section,
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Fig. 2 Relation between camera axes in circular motion

this is however theoretically valid under the assumption that
the camera is positioned above the rear wheel axis of the ve-
hicle. In the experimental section (6) will investigate under
which conditions this approximation can still be adopted if
the camera has an offset to the rear axis.

Now, we will see how the circular motion constraint re-
flects on the rotation and translation of the camera and on the
parameterization of the essential matrix. In the following we
will assume locally planar motion.

4.1 Parameterizing the Camera Motion

To understand the influence of the vehicle’s nonholonomic
constraints on the camera motion, we need to take into ac-
count two transformations: that between the camera and the
vehicle and that between the two vehicle positions.

Let us assume that the camera is fixed somewhere on the
vehicle1 (with the origin in OC , Fig. 2) with the axis zC or-
thogonal to the plane of motion and xC oriented perpendic-
ularly to the back wheel axis. Observe that once the camera
is installed on the vehicle the axes can be rearranged in the
way above with a simple transformation of coordinates.

The origin OV of the vehicle reference frame can be cho-
sen arbitrarily. For convenience, we set OV at the intersec-
tion of xC with the back wheel axis, and xV aligned with xC
(Fig. 2). We observed that by this choice the equations are
notably simplified.

Following these considerations, the transformation AC
V =

(RC
V,TC

V) from the camera to the vehicle reference system
can be written as RC

V = I3×3 and TC
V = [−L,0,0]T , where

L is the distance between the camera and the back wheel
axis (Fig. 2).

If the vehicle undergoes perfect circular motion with ro-
tation angle θ , then the direction of translation φ of the ve-
hicle must satisfy the “circular motion constraint” φ = θ/2,

1Note that the camera does not necessarily have to be on the axis of
symmetry of the vehicle.

which can be easily verified by trigonometry. Accordingly,
the transformation between the first and second vehicle po-
sition AV

V ′ = (RV
V′ ,TV

V′) can be written as:

RV
V′ =

⎡
⎣

cos(θ) − sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

⎤
⎦ , TV

V′ = ρ ·
⎡
⎢⎣

cos( θ
2 )

sin( θ
2 )

0

⎤
⎥⎦

(2)

where ρ is the vehicle displacement (Fig. 2). Follow-
ing these considerations, the overall transformation AC

C′ =
(RC

C′ ,TC
C′) between the first and second camera positions

can be computed as a composition of the following three
transformations, that is:

AC
C′ = AC

V ◦ AV
V ′ ◦ AV ′

C′ = AC
V ◦ AV

V ′ ◦ AC
V

−1
(3)

where we used AV ′
C′ = AC

V

−1
. And from this, we obtain:

RC
C′ = RV

V′ , and TC
C′ =

⎡
⎢⎣

L cos(θ) + ρ cos( θ
2 ) − L

ρ sin( θ
2 ) − L sin(θ)

0

⎤
⎥⎦ .

(4)

4.2 Computing the Essential Matrix

Before going on, we would like to recall some knowledge
about computer vision. Let p = (x, y, z) and p′ = (x′, y′, z′)
be the image coordinates of a scene point seen from the two
camera positions. Note, to make our approach independent
of the camera model we use spherical image coordinates;
therefore p and p′ are the image points back projected onto
a unit sphere (i.e. ‖p‖ = ‖p′‖ = 1). This is always possible
when the camera is calibrated.

As known in computer vision (Hartley and Zisserman
2004), the two unknown camera positions and the image co-
ordinates must verify the epipolar constraint

p′T Ep = 0, (5)

where E (called essential matrix) is defined as E = [T]×R,
where [T]× denotes the skew symmetric matrix

[T]× =
⎡
⎣

0 −Tz Ty

Tz 0 −Tx

−Ty Tx 0

⎤
⎦ (6)

and R and T = [Tx,Ty, Tz] describe the relative pose be-
tween the camera positions (for our case R = RC

C′ and T =
TC

C′ ).
The epipolar constraint (5) is very important because it

allows us to estimate the relative camera pose from a set of
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image correspondences. Indeed, given the image points p
and p′ we can compute E from (5) and finally decompose E
into R and T (Hartley and Zisserman 2004).

This said, we can now compute the essential matrix for
our case using E = [TC

C′ ]×RC
C′ , that is:

E =
⎡
⎣

0 0 ρ sin( θ
2 ) − L sin(θ)

0 0 L + ρ cos( θ
2 ) − L cos(θ)

L sin(θ) + ρ sin( θ
2 ) L − ρ cos( θ

2 ) − L cos(θ) 0

⎤
⎦ . (7)

At this point, note that the essential matrix is notably sim-
plified if L = 0, that is, when the camera is above the back
wheel axis. Indeed, by substituting L = 0 into (7) we obtain:

E = ρ ·
⎡
⎣

0 0 sin( θ
2 )

0 0 cos( θ
2 )

sin( θ
2 ) − cos( θ

2 ) 0

⎤
⎦ . (8)

Finally, by imposing the epipolar constraint (5), we obtain
the following homogeneous equation that needs to be satis-
fied by every pair of point correspondences p, p′:

sin

(
θ

2

)
· (x′z + z′x) + cos

(
θ

2

)
· (y′z − z′y) = 0. (9)

Note, this equation depends only on the single parameter θ ,
showing that the relative camera motion can be recovered
using a single feature correspondence.

4.3 Recovering θ

Given one point correspondence, the rotation angle θ can
then be obtained from (9) as:

θ = −2 tan−1
(

y′z − z′y
x′z + z′x

)
. (10)

Conversely, given m image points, θ can be computed indi-
rectly by solving linearly for the vector [sin( θ

2 ), cos( θ
2 )] us-

ing Singular Value Decomposition (SVD). To this end, we
first form a m × 2 data matrix D, where each row is formed
by the two coefficients of (9), that is:

[
(x′z + z′x), (y′z − z′y)

]
. (11)

The matrix D is then decomposed using SVD:

Dm×2 = Um×2�2×2V2×2 (12)

where the columns of V2×2 contain the eigenvectors ei of
DT D. The eigenvector e∗ = [sin( θ

2 ), cos( θ
2 )] corresponding

to the minimum eigenvalue minimizes the sum of squares
of the residuals, subject to ‖e∗‖ = 1. Finally, θ can be com-
puted from e∗.

4.4 Discussion on Our Motion Model

To recap, we have shown that by fixing the camera in the
optimal position L = 0 and under circular motion constraint
the relative camera motion can be parameterized through a
single feature correspondence.

In the next section we will see how this can be used for
efficiently removing the outliers of the feature matching pro-
cess. Then, we will investigate until which limit we can ac-
tually push L for our restrictive model to be still usable.
Indeed, as observed in the expression of the essential ma-
trix (7), when L �= 0 the minimal model parameterization is
2 (θ and ρ), that is, at least two point correspondences are
required to estimate the camera motion.2 However, as we
will point out in Sect. 6, our 1-point parameterization con-
tinues to be still a very good approximation in those cases
where θ is small (θ < 10 deg).

Finally, observe that the planar assumption and the cir-
cular motion constraint hold only locally, but because of the
smooth motion of cars we found that this assumption ac-
tually holds still quite well also in the real situations; the
performance will be shown in Sect. 6.

5 Outlier Removal: Two Approaches

Outlier removal is the most delicate process in camera pose
estimation. The presence of a few outliers in the data may
affect negatively the accuracy of the final motion estimate.
Here, we describe two approaches for removing the out-
liers, which take advantage of our 1-point parameteriza-
tion. Once the outliers are identified, the unconstrained mo-
tion estimate (6DoF) can be computed from all the remain-
ing inliers using standard methods (Stewenius et al. 2006;
Hartley and Zisserman 2004).

The two approaches explained here are based on
RANSAC and histogram voting.

2Note that because ρ does not appear as a multiplicative factor in (7),
this means that we can actually determine the absolute scale analyti-
cally from just two-point correspondences. This result was presented
in our previous work (Scaramuzza et al. 2009).
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Fig. 3 A sample histogram from feature correspondences

5.1 1-Point RANSAC

The first step of our 1-point RANSAC consists in computing
the relative motion out of one randomly chosen correspon-
dence. To do this, we first use (10). The motion hypothesis is
then generated using (2) (note, ρ can be arbitrarily set to 1).
The second step is counting the inlier rate in each iteration,
that is, the number of correspondences which satisfy the hy-
pothesis. This can be done using the reprojection error. We
used an error threshold of 1 pixel. Note, for an efficient com-
putation of the reprojection error, some approximation exist,
e.g. the Sampson distance (Hartley and Zisserman 2004) or
the directional error by Oliensis (2002).

5.2 Histogram Voting

The possibility of estimating the motion using only one fea-
ture correspondence allows us to implement another algo-
rithm for outlier removal which is much more efficient than
the 1-point RANSAC as it requires no iterations. The al-
gorithm is based on histogram voting: first, θ is computed
from each feature correspondence using (10); then, a his-
togram H is built where each bin contains the number of
features which count for the same θ . A sample histogram
built from real data is shown in Fig. 3. When the circular
motion model is well satisfied, the histogram has a very nar-
row peak centered on the best motion estimate θ∗, that is,
θ∗ = argmax{H }.

In a first stage, we thought of selecting the inliers by tak-
ing all the features with θ within a given distance t from
θ∗. We found that most of these points were indeed inliers,
but there were still many missing points. Furthermore, the
choice of t was not trivial. Therefore, the implemented so-
lution consists again in using reprojection error, that is, we
generate our motion hypothesis by substituting θ∗ into (2)
and use the reprojection error to identify all the inliers.

We also implemented a similar approach where, instead
of computing θ∗ as the argmax of the histogram, we set
θ∗ equal to the median of the distribution, that is, θ∗ =
median{θi}. The inliers are then found by using again the
reprojection error. We found this method giving as good re-
sults as the argmax method and therefore we used this in our
final implementation.

Compared with the 5-point RANSAC, the 1-point
RANSAC and histogram voting method are the most effi-
cient algorithms for removing the outliers. In all the tests, the
computational time required to detect the inliers using the
histogram voting method was in average 0.2 milliseconds,
with a dataset of about 1600 points. The 1-point RANSAC
found a successful solution in less than 7 iterations, requir-
ing at most 1 millisecond. These tests were done with an
Intel 2 GHz Dual Core laptop.

6 Experiments

In this section, we will validate our motion model. The
1-point method and the histogram voting method will be
compared with the 5-point algorithm by Nister (2003) and
Stewenius et al. (2006), which is considered the standard
in visual odometry (Lhuillier 2005; Nister et al. 2006;
Tardif et al. 2008). In particular, we will investigate within
which constraints our motion model is able to find as many
(or more) correspondences as the 5-point method and when
it becomes too restrictive.

As discussed in Sect. 4.4, in order to use our 1-point pa-
rameterization the camera needs to be installed above the
back wheel axis, satisfying so the requirement L = 0. In this
section, we will evaluate also under which motion condi-
tions we can arbitrary fix the camera on the vehicle. The
position of the camera is in fact of utmost importance in
commercial automotive applications, where the camera is
usually under the vehicle windscreen.

We will also evaluate the performance when the planarity
constraint is not perfectly satisfied. For the 5-point method,
we will use the implementation of the algorithm available at
the authors’ website. We will first compare the three algo-
rithms on synthetic data and finally on real data.

6.1 Generation of Synthetic Data

We investigate the performance of the algorithms in ge-
ometrically realistic conditions. In particular, we simulate
a vehicle moving in urban canyons. Our scenario is de-
picted in Fig. 4. We set the first camera at the origin and
randomise scene points uniformly inside several different
planes, which stand for the facades of urban buildings. We
used overall 1600 scene points, namely 400 on each plane.
The second camera is positioned according to the motion
direction of the vehicle which moves along circular trajec-
tories about the instantaneous center of rotation. Therefore,
the position of the second camera depends on the rotation
angle θ , on the vehicle displacement ρ, and on the dis-
tance L of the camera from the center of the back wheels.
These parameters are the same introduced in the previous
sections.
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Fig. 4 Our synthetic scenario: (a) Top view, (b) 3D view

Fig. 5 Comparison between 1-point RANSAC, 5-point RANSAC, and histogram voting. Fraction of inliers versus θ

To make our analysis more realistic, we assume that
the car can drive at a maximum speed of 50 Km/h and
that the camera frame rate is 15 Hz (actually the one of
our real camera). Accordingly, the maximum vehicle dis-
placement between two frames is about 1 m. Therefore,
as a default condition we set ρ = 1 m in all tests. The
minimal distance of the scene to the camera was set at
10 m.

We also simulate feature location errors by introducing a
noise parameter into the image data. We include a Gaussian
perturbation in each image point with a standard deviation
of 0.5 pixel in a 640 × 480 pixel image.

6.2 Comparison with 5-Point RANSAC

In this section, we evaluate the performance of our 1-point
RANSAC and histogram voting with the standard 5-point
RANSAC (Nister 2003; Stewenius et al. 2006). The perfor-
mance is done by comparing the percentage of inliers found
by the three methods, that is, the ratio between the found
matches and the true number of inliers.

We evaluated the performance with respect to the rota-
tion angle θ and the normalized camera offset L/ρ.3 Since
this would require to do the test for all the possible combi-
nations of θ and L/ρ, we chose to show here only two ex-
treme cases, that is, the optimal case L/ρ = 0 and the case
L/ρ = 1. In fact, these two cases are those we tested also on
our platform and therefore we decided to replicate them in
simulation.

The average results, over one thousand trials, are shown
in Fig. 5 for planar and non-perfectly planar motion respec-
tively. For simulating a non-planar motion, we introduced a
0.1 m high step and a tilt angle of 1 deg. Note, we limited
the range of θ in the simulations between 0 and 20 deg as
this is what we experienced with the real data from our plat-
form (see Fig. 6). Note, each plot in Fig. 5 corresponds to
a different combination of motion (planar/non-planar) and
camera settings (L/ρ = 0 and L/ρ = 1). For each combina-
tion, we generated one thousand trials; each trial consists in
perturbing the image points with 0.5 pixel variance Gaussian

3Notice that in order to make our evaluation independent of the dis-
placement of the vehicle, it is better to use an adimensional parameter.
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Fig. 6 Steering angle θ (deg) vs. traveled distance (m) read from our
car. It is the angle the vehicle rotated between two consecutive frames

noise. Every dot in the plot shows the average over these one
thousand trials for a given theta angle.

As observed in Fig. 5(a), for planar motion and L/ρ = 0,
the performance of the algorithms stays constant with θ as
expected. However, when L/ρ = 1, Fig. 5(b), the fraction
of inliers found by the 1-point and histogram-voting meth-
ods decreases with θ , starting around θ = 10 deg. When
θ = 20 deg, the two algorithms find 75% of the true inliers.
The performance of the 5-point method stays conversely
constant with θ regardless of L/ρ. The 5-point method in-
deed does not assume motion constraints.

For non-perfectly planar motion, Figs. 5(c)–(d), the per-
formance of the 1-point and histogram-voting methods de-
creases notably, with only 50% of the inliers detected.

6.3 Number of RANSAC Iterations

We repeated the experiments presented in the previous sec-
tion by varying also the percentage of outliers in the data-
points from 10% up to 90%. The results were the same as
introduced in Fig. 5 regardless of the number of outliers in
the datapoints. However, the number of RANSAC iterations
needed to find the largest set of inliers increased exponen-
tially with the percentage of outliers.4 For instance, when the
outliers were 70% of the datapoints, the 5-point RANSAC
needed more than 1500 iterations. A comparison of the num-
ber of iterations needed to find the largest set of inliers as a
function of the percentage of outliers is shown in Fig. 7.
These results are the average over different trials. Note, here
we also added a comparison with the 2-point RANSAC.

As predicted by (1), the number of iterations of the
1-point and 5-point RANSAC increases exponentially with

4As a stopping criterion, here we used the method proposed in Hart-
ley and Zisserman (2004), which adaptively estimates the fraction of
outliers in the data and computes accordingly the number of iterations
required using (1).

Fig. 7 Number of RANSAC iterations versus fraction of outliers

the fraction of outliers. But the number of iterations of the
1-point is greatly smaller than that of the 5-point. For in-
stance, in the worse case, with 90% of outliers, the 5-point
needed more than 2000 iterations while the 1-point method
required only 90 iterations. The histogram-voting method
does not require iterations but is shown here just for com-
parison.

6.4 Experiments on Real Data

Note, the equations and results derived in this paper are valid
for both perspective and omnidirectional cameras. To show
the generality of the approach we decided to use an omnidi-
rectional camera.

(1) Data Acquisition: The method described in this paper
has been successfully tested on a real vehicle (Fig. 9). Our
omnidirectional camera is composed of a hyperbolic mirror
(KAIDAN 360 One VR) and a digital color camera (SONY
XCD-SX910, image size 640 × 480 pixels).

For the purpose of this paper, we tested the algorithms
with the camera in two different positions: camera above
the back wheel axis (L = 0) and camera above the front
wind screen as in Fig. 9 (L = 1 m). To do this, we collected
two datasets with the camera at different positions. We used
the maximum frame rate of this camera, which is 15 Hz but
sometimes we noticed that the frame rate decreased below
10 Hz because of the memory sharing on the on-board com-
puters. For calibrating the camera we used the toolbox de-
scribed in Scaramuzza et al. (2006) and available from the
authors’ website. The vehicle speed ranged between 0 and
45 Km/h.

The dataset was taken in normal traffic in the city cen-
ter of Zurich during a 3 Km trajectory (Fig. 13). There-
fore, many pedestrians, moving trams, buses, and cars were
also present. Point correspondences were extracted using the
Harris detector (Harris and Stephens 1988).
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6.4.1 Inlier ratio

To evaluate the performance on real data, we compare the
percentage of inliers found by the three methods under dif-
ferent conditions which are: L = 0, L = 1 m, flat road,
non-perfectly flat road, straight and curving path, low frame
rate. Because we cannot show the results for the all 4000
images in our dataset, we decided to show them only for
some selected paths. The results of the comparison are pre-
sented in Fig. 8 while the paths they refer to are shown
in Fig. 13. As observed in Fig. 8, the performance of the
1-point and histogram-voting methods compare very well
with the 5-point method for the first four cases (a–b–c–d).
The performance of the two algorithms is slightly lower in
the fifth path (Fig. 8(e)) where the camera frame rate drops
to 2.5 Hz. We can justify this by observing that our restric-
tive motion model holds only locally and it is therefore im-
portant that the displacement of the vehicle between two
consecutive frame be small. The performance drastically de-
creases at some point in the sixth path where the car is going
downhill on a slightly twisting road.

By inspecting the performance for the all dataset, we
found that the percentage of inliers of the 1-point and
histogram-voting methods differed from that of the 5-point
by less than 10% in 80% of the cases. This is clearly quan-
tified in Fig. 10, which shows the histogram of the relative
difference (%) between the inlier count of the 1-point and
the 5-point algorithm over all images. When the difference
was larger than 10%, we found that this was due to sudden
jumps of the frame-rate or to non-perfect planarity of the
road. To verify this last statement quantitatively, we mea-
sured the planarity of the motion estimated by the 5-point
algorithm. The planarity of the motion was characterized
both in terms of the estimated tilt angle � and in terms
of the estimated camera displacement Z along z. For ev-
ery pair of consecutive images, we computed both � and

Z and measured the ratio
#inliers1p

#inliers5p
. The relation between the

non-planarity of the estimated motion and the inlier ratio is
shown in Figs. 11 and 12. These plots depict mean and stan-
dard deviation of the inlier ratio computed within predefined
intervals of � and Z, respectively. As observed, a reduced
number of inliers in the 1-point algorithm occurs when the
planar motion assumption is violated. Furthermore, the less
planar the motion, the smaller the number of inliers. This re-
sult is perfectly in line with what we predicted in simulation
in Sect. 6.2.

Despite this, from Fig. 10 we can see that our restric-
tive motion model is a good approximation of the motion
of the car. Furthermore, in the all experiment we found that
the 1-point and the histogram-voting method performed the
same. However, we also observed that in presence of low
frame rate or non-planar motion the performance of the

histogram-voting was slightly lower. Regarding the compu-
tational cost, during all the experiment we found that the
1-point RANSAC required at most 7 iterations while the 5-
point RANSAC needed from 500 up to 2000 iterations.

(3) Visual odometry: To evaluate the quality of point cor-
respondences output by our proposed methods, we imple-
mented a motion estimation algorithm and we run it on
the entire 3 Km dataset. For this experiment, we imple-
mented a very simple, incremental motion estimation al-
gorithm, which means, we only computed the motion be-
tween consecutive frames (e.g. two-view structure-from-
motion). Note, we did not use the previous poses and struc-
ture to refine the current estimate. Furthermore, we did
not use bundle-adjustment. For removing the outliers, we
used one of our proposed methods. From the remaining in-
liers, the relative pose was then estimated using the motion-
estimation algorithm in Stewenius et al. (2006), which pro-
vides unconstrained 6DoF motion estimates. The absolute
scale between consecutive poses was measured by simply
reading the speed of the car from the vehicle CAN-bus and
multiplying it by the time interval between the two frames.
The recovered trajectory using the histogram-voting method
for outlier-removal is shown in Fig. 13 overlaid on a satellite
image. Note that this algorithm run at 400 fps.

Figure 14 shows instead the comparison among the vi-
sual odometry paths computed with histogram-voting, 1-
point, and 5-point RANSAC. As the reader can see, the tra-
jectory estimated by the histogram voting method differs
very little from that estimated with the 1-point RANSAC.
Furthermore, both methods seem to outperform the 5-point
RANSAC. This result should not surprise the reader. Indeed,
let us remind that we did not use bundle adjustment, which
obviously would largely reduce the accumulated drift. How-
ever, it is also important to point out that sometimes the
found inliers are not the largest RANSAC consensus, mean-
ing that more iterations would have actually been necessary.
Additionally, this result points out that even though for most
of the frames the 5-point RANSAC finds a little more in-
liers than the 1-point RANSAC, the 1-point RANSAC and
the histogram voting methods output “better” inliers, in that
they favour the underlying motion model.

7 Conclusion

In this paper, we have shown that by exploiting the nonholo-
nomic constraints of a wheeled vehicle it is possible to pa-
rameterize the motion with a single feature correspondence.
This parameterization is the smallest possible and resulted
in the two most efficient algorithms for removing outliers.

We have seen that for car-like and differential drive
robots this 1-point parameterization is satisfied only by fix-
ing the camera above the back wheel axis (L = 0). How-
ever, in the experimental section we have demonstrated that
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Fig. 8 Comparison 1-point, 5-point, and histogram voting. Percent-
age of good matched versus frame number. (a) Straight path, flat road,
L = 1 m. (b) Straight path, non-perfectly flat (e.g. crossing the tram
rail ways), L = 1 m. (c) Curving path, flat road, L = 0 m. (d) Curving

path, flat road, L = 1 m. (e) Curving path, flat road, L = 1 m, camera
frame rate 2.5 Hz. (f) Curving path, non-perfectly flat road (going
down hill with slightly twisting road), L = 1 m
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Fig. 9 Our vehicle equipped with the omnidirectional camera. The
field of view is highlighted

Fig. 10 Histogram of the relative difference (%) between the inlier
count of the 1-p and the 5-p algorithm over all consecutive image pairs.

This difference is computed as
|#inliers5p

−#inliers1p
|

#inliers5p
. As observed, the per-

centage of inliers of the 1-point method differs from that of the 5-point
by less than 10% in 80% of the cases. The histogram voting method
gave the same performance and therefore it is not shown here

Fig. 11 Effect of the estimated tilt angle � on the ratio between the
inlier count of the 1-point and the inlier count of the 5-point algorithm:
(#inliers1p

/#inliers5p
). Mean and standard deviation of this ratio are com-

puted within predefined intervals of �

Fig. 12 Effect of the estimated displacement Z along z on the ratio be-
tween the inlier count of the 1-point and the inlier count of the 5-point
algorithm: (#inliers1p

/#inliers5p
). Mean and standard deviation of this ra-

tio are computed within predefined intervals of Z

Fig. 13 (Color online) Comparison between visual odometry (red
dashed line) and ground truth (black solid line). The entire trajectory
is 3 Km long. The numbers correspond to the sequences analyzed in
Fig. 8. Blue lines mark starting and ending points of each sequence

also for the case L �= 0 our restrictive model is still suitable
under the constraint that the rotation angle θ between two
camera poses is small. In particular we have shown that in
most cases our 1-point and histogram-voting methods per-
form similarly to the standard 5-point method, finding al-
most the same number of inliers. Finally, we showed the
quality of the output correspondences by recovering visu-
ally the trajectory of the car.

Both the simulated and real experiments have pointed out
that our restrictive model is a suitable approximation of the
real motion of the vehicle provided that the road is nearly flat
and the frame-rate is high (e.g. > 10 Hz at 50 Km/h). This is
because the circular motion model holds only locally. When
the conditions for the validity of the model are not satis-
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Fig. 14 (Color online) Comparison between visual odometry tra-
jectories using the three different methods for outlier removal: his-
togram-voting (red dashed line), 1-point RANSAC (cyan solid line),
and 5-point RANSAC (black solid line)

fied this reflects in a reduced number of inliers found by the
1-point and histogram voting methods. However, when this
happens the problem can be easily overcome by switching to
the standard 5-point RANSAC. Failure modes in the 1-point
methods can be easily detected by looking at the histogram
distribution. In fact, when the local circular planar motion is
well verified, this reflects in a narrow histogram with a very
distinguishable peak. Conversely, when our motion assump-
tion does not hold, the resulting histogram appears wider. In
these cases, looking at the variance of the distribution pro-
vides an easy way to switch between the 1-point and 5-point
approaches.
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