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Abstract In several colour polymorphic species, mor-
phs differ in thermoregulation either because dark and
pale surfaces absorb solar radiation to a different ex-
tent and/or because morphs differ in key metabolic
processes. Morph-specific thermoregulation may
potentially account for the observation that differently
coloured individuals are frequently not randomly dis-
tributed among habitats, and differ in many respects,
including behaviour, morphology, survival and repro-
ductive success. In a wild population of the colour
polymorphic tawny owl Strix aluco, a recent cross-
fostering experiment showed that offspring raised and
born from red mothers were heavier than those from
grey mothers. In the present study, we tested in the
same individuals whether these morph-specific offspring
growth patterns were associated with a difference in
metabolic rate between offspring of red and grey
mothers. For this purpose, we measured nestling oxy-
gen consumption under two different temperatures
(laboratory measurements: 4 and 20�C), and examined
the relationships between these data sets and the colour
morph of foster and biological mothers. After con-
trolling for nestling body mass, oxygen consumption at
20�C was greater in foster offspring raised by grey
foster mothers. No relationship was found between
nestling oxygen consumption and coloration of their
biological mother. Therefore, our study indicates that

in our experiment offspring raised by grey foster
mothers showed not only a lower body mass than
offspring raised by red foster mothers, but also con-
sumed more oxygen under warm temperature. This
further indicates that rearing conditions in nests of grey
mothers were more stressful than in nests of red
mothers.
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Introduction

The evolution and maintenance of alternative geneti-
cally inherited colour morphs in animal and plant
populations have fascinated evolutionary ecologists for
a long time. Studies performed in molluscs (Jones
et al. 1977; Goodhart 1987), reptiles (Andrén and
Nilson 1981), anurans (Hoffman and Blouin 2000),
insects (Wilson et al. 2001), birds (Roulin 2004) and
plants (Armbruster 2002) showed that many genetic
colour polymorphisms are not selectively neutral with
respect to life history components, since alternative
morphs are frequently observed to achieve a different
reproductive success. This can often be explained by
non-random habitat distribution of individuals with
respect to colour morphs (Roulin 2004), suggesting
that morphs are under disruptive selection by being
adapted to alternative ecological niches. These morph-
dependent adaptations may be the outcome of several
processes one of which being associated with thermo-
regulation.

A large number of colour polymorphisms are due to
inter-individual variation in the deposition of melanins,
pigments that are under strong genetic control, and are
known to play a role in solar radiation (e. g. Berry and
Willmer 1986), dark surfaces absorbing and radiating
heat more quickly than pale surfaces (Majerus 1998). If
coloration can itself play a key role in thermoregulation
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in ectotherms (e.g. Heath 1975; Gibson and Falls 1979;
Bittner et al. 2002; Pereboom and Biesmeijer 2003) and
endotherms (Ellis 1980; Wunderle 1981; but see Beasley
and Ankney 1988), morphs may also differ with respect
to physiological processes associated with thermoregu-
lation. For example, in snails, morph-dependent ther-
moregulation is not only due to physical differences in
shell reflectivity and absorption of solar energy, and to
variations in the activity and habitat selection by the
various genotypes (e.g. Heath 1975; Jones 1982), it can
also be due to neuromodulatory mechanisms (Kavaliers
1992; Sokolova and Berger 2000). This suggests that
genes creating variation in coloration pleiotropically af-
fect key physiological processes involved in thermoreg-
ulation (Forsman et al. 2002).

Colour polymorphism is particularly frequent in
owls with individuals belonging to a same population,
sex and age class displaying rufous, brown or grey
morphs (König et al. 1999). Some authors have sug-
gested that the performance of alternative morphs is
associated with climatic variables. In the screech (Otus
asio) and tawny (Strix aluco) owls, the proportion of
red individuals decreased after a harsh winter (Van
Camp and Henny 1975; Galeotti and Cesaris 1996),
maybe because rufous and grey individuals differ in
their ability to thermoregulate (Mosher and Henny
1976). Morph-dependent thermo-regulation may ex-
plain why, in a cross-fostering experiment, foster nes-
tlings were heavier when their foster and biological
mothers were redder (Roulin et al. 2004). Perhaps
environmental conditions prevailing during this exper-
iment (carried out in a wild population in 2003) were
particularly favourable to the red morph, with chicks
of red foster and biological mothers showing better
thermo-regulation activities than those of grey mothers.

In the present study, we tested a prediction of this
hypothesis by measuring oxygen consumption in the
laboratory in some of the same cross-fostered nestlings
used in Roulin et al. (2004). Based on the fact that
stressful environmental conditions may lead to an ele-
vation of oxygen consumption (Demas et al. 1997;
Svensson et al. 1998; Ots et al. 2001; Giorgi et al. 2001;
Moreno et al. 2001; Raberg et al. 2002), we predict that
chicks of red foster and/or biological mothers have
lower oxygen consumption than chicks of grey foster
and/or biological mothers. Our aim is therefore to
investigate whether the covariation between offspring
body condition and mother colour morph found in
Roulin et al. (2004) is associated with a covariation be-
tween offspring oxygen consumption and mother colour
morph. Two non-mutually exclusive scenarios are pos-
sible. First, if genes creating variation in coloration
pleiotropically affect key physiological processes in-
volved in thermoregulation, offspring oxygen con-
sumption is expected to covary with the coloration of
biological mothers. Second, if environmental conditions
prevailing in this experiment were favourable to parents
of a given morph, offspring oxygen consumption is ex-
pected to covary with the coloration of foster mothers.

Methods

The study organism

The tawny owl is sexually dimorphic in size, with adult
females weighing on average 562 g and males 437 g
(Baudvin and Dessolin 1992). Adult birds, but not nest-
lings, can be easily classified in colour morphs with
coloration varying between red and grey. The propor-
tion of each morph is similar in the two sexes (Baudvin
and Dessolin 1992; Galeotti and Cesaris 1996). Appar-
ently, pairing is random with respect to plumage color-
ation (Roulin et al. 2003). Birds mainly breed in holes of
trees located in forests, and the diet is primarily com-
posed of small mammals and complemented by birds
and frogs. Nestlings abandon their nests before being
able to fly at approximately 4 weeks of age.

Experimental design

The study was carried out in 2003 in western Switzer-
land. We matched 18 nests in pairs with similar laying
dates (Pearson correlation: r=0.95, n=9, P=0.0001)
and clutch sizes (r=0.71, n=9, P=0.033). During
incubation, we captured all females (males were absent
from the nest at that time) and Roulin classified them in
one of five colour morphs (1 = red, 2 = red-brown, 3 =
brown, 4 = brown-grey and 5 = grey). One week later,
we recaptured 16 of them for an independent classifi-
cation into colour morphs. The two measurements were
repeatable (one-way ANOVA, repeatability=0.87,
F17,16=14.98, P<0.0001) demonstrating the reliability
of our scoring system (see also Roulin et al. 2003). In
total, we had a sample of two red females, six red-
brown, four brown, four brown-grey and two grey
females. We swapped all eggs or recently hatched chicks
between pairs of nests, so that each pair raised alien
young, to determine whether metabolic rate is associated
with colour morph of foster and biological mothers.
Within pairs of nests foster and biological mothers did
not resemble each other with respect to colour morph
(r=�0.13, n=9, P=0.75). Hatching date (mean 6 April,
range 21 March–25 April), clutch size (mean 3.4, range
2–5) and altitude (mean 672, range 470–870) were not
correlated with female colour morph (Pearson correla-
tion, P-values >0.30). Number of hatchlings (r=0.40,
n=18, P=0.10) and proportion of male offspring (i.e.
sex ratio, r=�0.04, n=17, P=0.87) were not signifi-
cantly associated with colour morph of the foster mother

When nestlings were 25 days of age (range 18–30), we
randomly selected one individual per brood to measure
oxygen consumption. We chose this age because feathers
are well grown and nestlings are already thermo-inde-
pendent. Nestling body mass ranged between 240 and
412 g (mean 330 g). For unknown reasons one nest was
abandoned, and because of technical problems we were
unable to measure oxygen consumption of chicks from
one of the nest. Therefore, sample size is 16 experimental
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nestlings. For each nestling, a drop of blood was collected
from the brachial vein, and their sex determined from
blood cell DNA using polymerase chain reaction (PCR)
amplification of the CHD genes (Griffiths et al. 1998).

Assessment of oxygen consumption

Oxygen consumption (VO2) wasmeasured using an open-
air flow respirometer. Owls were placed in a metabolic
chamber (40·40·40 cm3=64 l) that was located in a cli-
matic chamber (Weiss Technik, Germany) to calibrate
temperature. Therewas no light in the chamber during the
tests. Outside air was dried over silica gel and pushed
through themetabolic chamber at a flow rate of ca. 75 l/h.
The flow rate was controlled and measured continuously
by a calibrated mass flow controller (Model 5850E,
Brooks Instruments, Veenendaal, The Netherlands) that
was connected to a control and read out equipment
(Model 5878, Brooks Instruments). The effluent air was
sequentially passed through a column of KOH (to fix the
expired CO2) and a silica gel column (to fixH2O). Finally,
oxygen concentration was measured using an oxygen
analyser (Gas purity analyser Xentra 4100, Servomex,
Esslinger, Switzerland). It was recorded on paper by a
potentiometric recorder (recorder 320, Scientific Instru-
ments, Basel, Switzerland) and digitised using the soft-
ware BioBench (Version 1.0, National Instruments). We
calculated oxygen consumption with the Depocas and
Hart’s formula (1957): VO2=V2·(F1O2�F2O2)/
(1�F1O2). Under our experimental conditions, the Dep-
ocas andHart’s formula is equal to 1.2647·V2·dFO2with
VO2 being the amount of O2 consumed by an owl (ml O2/
h), dFO2 the difference in O2 measured before and after
the metabolic chamber (& O2) and V2 the flow rate (l/h)
measured before the metabolic chamber. Although the
apparatusmeasured dFO2 200 times/s, only one valuewas
available every 10.5±2.5 s.

The tawny owl is a nocturnal bird, and hence we
decided to measure oxygen consumption during the day
when the individuals rest. In this way, we reduced the
risk of confounding morph-specific metabolic rate with
morph-specific behaviour. The apparatus was at the
university of Lausanne, and to measure oxygen con-
sumption we brought owlets by car at that place. The
distance between nest-boxes and the university was not
correlated with colour morph of foster and biological
mothers (mean 31 km, range 8–56 km; Pearson corre-
lation, P-values >0.75). Because morph-dependent
thermo-regulation may differ between temperatures, we
decided to measure oxygen consumption under two
different temperatures, namely 4 and 20�C. The tem-
peratures we chose lay within the natural range, since in
our study area the minimal and maximal mean ambient
temperatures measured from 21 March to 25 May were
0 and 20.4�C (data collected in Payerne between 1990
and 2003 by the Swiss Meteorological Institute).

Each individual was placed in the chamber at
0800 hours. At that time, the climatic chamber was set

up at 1�C, but due to the presence of an owl in the
metabolic chamber, actual temperature was 4.3±0.4�C
(mean±SD; treatment ‘cold temperature’). Each indi-
vidual was placed under this temperature for 4 h 30 min
and during that time we measured oxygen consumption.
Then, we removed the owl from the chamber during 1 h
30 min, a period of time that was necessary to set up
temperature to 18�C. In the meantime, owls were placed
in a quiet box. Due to the presence of an owl, temper-
ature in the chamber was 20.0±1.4�C (treatment ‘warm
temperature’). We measured oxygen consumption under
20�C during 4 h 30 min. We always started with the 4�C
treatment and then the 20�C treatment because it was
easier to quickly set up the chamber from 4 to 20�C than
from 20 to 4�C.

Owls needed time to adapt to the temperatures set up
in the metabolic chamber, and hence we did not consider
oxygen consumption measured during the first 2 h of
each treatment. The amount of oxygen consumed per
hour has therefore been calculated for a period of 2 h
and 30 min. To derive the minimum amount of oxygen
consumed per hour, we considered the minimal value for
each 20-min period, and calculated a mean value over
the seven available measurements. This measure is not
sensitive to variation in physical activities of the owls
during the measurements.

Each individual tested in the metabolic chamber has
been weighed before (i.e. at 0800 hours) and after the
experiment (i.e. at 1830 hours). We also weighed any
faeces and pellets produced during the day. For each
individual, we calculated a mean body mass value as
(body mass at 0800 hours + body mass at 1830 hours
+ mass of faeces and pellets)/2. All chicks were brought
back to their nest between 1900 and 2000 hours. They all
fledged successfully.

Statistical procedure

All statistical analyses were carried out with the JMP
software (Sall and Lehman 1996). They are two-tailed
and P-values <0.05 considered significant. Minimum
oxygen consumption at 4�C was introduced in stepwise
ANCOVA using the BACKWARD option with the
probability of leaving a factor being 0.10. The in-
dependent factors were nestling sex, age, mean body
mass and colour morph of foster and biological mothers.
We did not consider the colour morph of individual
chicks because at the nestling age it is not yet developed,
and furthermore the aim of our study was to examine
whether offspring oxygen consumption covaries with
colour morph of foster and biological mothers. A similar
analysis was carried out for minimum oxygen con-
sumption at 20�C. Means are quoted ±1 SD.

Results

In 25-day-old nestling tawny owls, minimum oxygen
consumption at 4�C was 6.24±0.74 l/h and at 20�C
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4.38±0.44 l/h (t15=12.33, P<0.0001). Oxygen con-
sumption measured at 4�C was positively correlated with
the consumption at 20�C (r=0.58, n=16, P=0.019). In
stepwise ANCOVA, minimum oxygen consumption at
4�C was significantly associated with nestling age
(F1,13=4.82, P=0.047, standardised b=0.47) but not
with nestling body mass (F1,13=4.21, P=0.06, b=0.44),
sex (F1,13=0.01, P=0.91), and colour morph of foster
(F1,13=1.92, P=0.19) and biological mothers
(F1,13=0.70, P=0.42). Minimum oxygen consumption
at 20�C was significantly associated with colour morph
of foster mother (F1,13=6.14, P=0.028, b=0.51; Fig. 1)
and nestling body mass (F1,13=13.06, P=0.003,
b=0.74), but not with nestling age (F1,13=0.33,
P=0.58), sex (F1,13=0.09, P=0.77) and colour morph
of biological mother (F1,13=0.59, P=0.46).

Discussion

In the tawny owl, a cross-fostering experiment showed
that redder biological and foster mothers produced
heavier offspring (Roulin et al. 2004). In a first move to
understand the proximate mechanisms explaining these
findings, we analysed oxygen consumption in the same
individuals as in Roulin et al. (2004) with the aim of
determining whether metabolic rate is associated with
colour morph of foster and/or biological mothers. One
individual was tested per nest and we found that when
the foster mother was greyer foster chicks consumed
more oxygen at least under 20�C. This suggests that, in
2003, rearing conditions experienced in nests of grey

mothers were not optimal, leading foster chicks to grow
to a lower body mass and to have a higher metabolic
rate under standardised conditions. Complementary
studies are required to determine which environmental
factors caused these observations (e.g. quality and/or
quantity of food, parasites). The absence of a relation-
ship between offspring oxygen consumption and colour
morph of biological mother under both 4 and 20�C is
difficult to interpret because sample size was low and our
design did not allow to partition the origin-related from
environmental components of oxygen consumption. To
gain more confidence on whether offspring metabolism
is associated with colour morph of biological mother, we
should measure several chicks born from different
mothers and raised in the same nest (partial cross-fos-
tering experiment). We can indeed suspect that metab-
olism covaries with colour polymorphism if genes
coding for coloration pleiotropically alter key physio-
logical processes. The tawny owl therefore appears to be
an appropriate model system to examine the full range
of adaptations of genetically inherited morphs in an
ecological context.

Zusammenfassung

Der Sauerstoffverbrauch bei jungen Waldkäuzen Strix
aluco hängt von der Farbmorphe der Pflegemutter ab

Bei verschiedenen farbpolymorphen Arten untersche-
iden sich die Morphen in ihrer Thermoregulation ent-
weder, weil dunkle und helle Oberflächen
Sonnenstrahlung in unterschiedlichem Ausmaß ab-
sorbieren, und/oder, weil sich die Morphe in wesentli-
chen Stoffwechselprozessen unterscheiden.
Morphespezifische Thermoregulation könnte
möglicherweise die Beobachtung begründen, dass far-
bunterschiedliche Individuen häufig nicht zufällig in den
Habitaten verteilt sind und sich in vielem, darunter
Überlebens- und Fortpflanzungserfolg, Verhalten und
Morphologie unterscheiden. Bei einer wildlebenden
Population des farbpolymorphen Waldkauz Strix aluco
zeigte ein kürzlich durchgeführtes Experiment, bei dem
Jungtiere von Müttern der jeweils anderen Farbmorphe
aufgezogen wurden, dass von roten Muttertieren ab-
stammende und aufgezogene Jungtiere schwerer waren
als jene von grauen Muttertieren. In der vorliegenden
Studie testeten wir an denselben Individuen wie bei, ob
diese morphspezifischen Wachstumsmuster der Jungti-
ere mit einem Unterschied in der Stoffwechselrate zwis-
chen Nachkommen von roten und grauen Müttern
zusammenhing. Zu diesem Zweck maßen wir den Sau-
erstoffverbrauch der Jungtiere bei zwei verschiedenen
Temperaturen (4 und 20�C) und untersuchten den Zu-
sammenhang zwischen Sauerstoffverbrauch und Farb-
morphe von Pflege- und biologischer Mutter. Es wurde
kein Zusammenhang gefunden zwischen dem Sauerst-
offverbrauch und der Farbe der biologischen Mutter.
Dagegen zeigte sich, dass von grauen Pflegemüttern

Fig. 1 Relationship between residual minimum oxygen consump-
tion at 20�C and colour morph of foster mother tawny owls (Strix
aluco). Residuals were extracted from a regression analysis with
minimum oxygen consumption as the dependent variable and
nestling body mass as the independent variable
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aufgezogene Jungtiere nicht nur eine geringere Körper-
masse hatten als von roten Pflegemüttern aufgezogene
Tiere, sondern auch mehr Sauerstoff bei warmen Tem-
peraturen verbrauchten. Das weist darauf hin, dass die.

Acknowledgements We are grateful to Maud Giorgi for technical
assistance. This experiment was performed under legal authoriza-
tion of the service vétérinaire du canton de Vaud (1508 to A.R. and
709.5 to P.C.). The project was financed by the Swiss National
Science Foundation (Grant No. 823A-064719 to A.R. and
3100AO-104118/1 to P.C.) and the Hilfsfond of the Swiss Orni-
thological Institute of Sempach (to A.R.). The Swiss Meteorolog-
ical Institute kindly provided temperature data measured in
Payerne. Marcel Klaassen provided helpful comments on an earlier
version of the text.

References

Andrén C, Nilson G (1981) Reproductive success and risk of pre-
dation in normal and melanistic colour morphs of the adder,
Vipera berus. Biol J Linn Soc 15:235–246

Armbruster WS (2002) Can indirect selection and genetic context
contribute to trait diversification? A transition-probability
study of blossom-colour evolution in two genera. J Evol Biol
15:468–486

Baudvin H, Dessolin JL (1992) Analyse de la morphométrie de la
chouette hulotte Strix aluco en Bourgogne. Alauda 60:93–104

Beasley BA, Ankney CD (1988) The effect of plumage color on the
thermoregulation abilities of lesser snow goose goslings. Can J
Zool 66:1352–1358

Beck B (2000) Neuropeptides and obesity. Nutrition 16:916–923
Berry AJ, Willmer PG (1986) Temperature and the colour poly-

morphism of Philaenus spumarius (Homoptera: Aphrophori-
dae). Ecol Entomol 11:251–259

Bittner TD, King RB, Kerfin JM (2002) Effects of body size and
melanism on the thermal biology of garter snakes (Thamnophis
sirtalis). Copeia 2:477–482

Demas GE, Chefer V, Tala MI, Nelson RJ (1997) Metabolic costs
of mounting an antigen-stimulated immune response in adult
and aged C57BL/6J mice. Am J Physiol 273:1631–1637

Depocas F, Hart SJ (1957) Use of the Pauling oxygen consumption
of animals in open-circuit systems and in short-lag, closed-cir-
cuit apparatus. J Appl Physiol 10:388–392

Ellis HI (1980) Metabolism and solar radiation in dark and white
herons in hot climates. Physiol Zool 53:358–372

Forsman A, Ringblom K, Civantos E, Ahnesjö J (2002) Coevolu-
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