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Abstract We consider the important problem of energy balanced data propagation in
wireless sensor networks and we extend and generalize previous works by allowing
adaptive energy assignment. We consider the data gathering problem where data are
generated by the sensors and must be routed toward a unique sink. Sensors route data
by either sending the data directly to the sink or in a multi-hop fashion by deliver-
ing the data to a neighbouring sensor. Direct and neighbouring transmissions require
different levels of energy consumption. Basically, the protocols balance the energy
consumption among the sensors by computing the adequate ratios of direct and neigh-
bouring transmissions. An abstract model of energy dissipation as a random walk is
proposed, along with rigorous performance analysis techniques. Two efficient distrib-
uted algorithms are presented and analyzed, by both rigorous means and simulation.
The first one is easy to implement and fast to execute. The protocol assumes that
sensors know a-priori the rate of data they generate. The sink collects and processes
all these information in order to compute the relevant value of the protocol parame-
ter. This value is transmitted to the sensors which individually compute their optimal
ratios of direct and neighbouring transmissions. The second protocol avoids the nec-
essary a-priori knowledge of the data rate generated by sensors by inferring the rele-
vant information from the observation of the data paths. Furthermore, this algorithm
is based on stochastic estimation methods and is adaptive to environmental changes.
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1 Introduction

Load balancing is a common important problem in many areas of distributed systems.
A typical example is that of shared resources such as a set of processors, where it is
of interest to assign tasks to resources without overusing any of them. A related but
different aspect of load balancing appears in the context of sensor networks, where
tiny smart sensors are usually battery powered: an important goal of data processing
is to balance the total energy consumed among the entire set of sensors. However,
limited local knowledge of the network, frequent changes in the topology of the net-
work and the specifications of sensors, among others, make load balancing in sensors
nets significantly different of classical load balancing in distributed systems.

To our knowledge, these considerations were first pointed out in the field of sen-
sor networks in [16]. In this paper the authors deal with the problem of devising
energy balanced sorting algorithms. In a subsequent paper [3] the authors deal with
the problem of energy balanced data propagation in sensor networks. They propose
a randomized data propagation protocol and provide recursive and closed form solu-
tions for the appropriate parameters of the protocol.

Before describing our contributions we present the problem previously stated in
[3]. Formal definitions are deferred to the next section. An important area of appli-
cation of sensor networks is the monitoring of a given region. Tiny smart sensors are
scattered in a given region in order to detect and monitor some phenomena. Once a
sensor detects the occurrence of an event it is responsible to inform (through wireless
transmissions) a particular station (representing the end users of the network), called
sink, about the occurrence of this event. Since the energy necessary to transmit a data
through radio waves is proportional to some power of the distance of transmission
(usually square power), sensors located far away from the sink are prone (if they
would transmit directly to the sink) to run out of their available energy before sensors
located closer to the sink. This leads to the idea that the data traffic has to be handled
by the network with multiple hops to the sink, allowing only short distance commu-
nication. However, this strategy tends to overuse sensors located close to the sink
since these sensors have to handle the entire set of events. There is then a trade-off
between long and short distance communication to forward a data to the sink in order
to make the life time of the whole network longer. A possible probabilistic protocol
divides the set of sensors into slices or ring sectors [3]. The first slice is composed
of sensors at unit distance from the sink, the second slice of sensors at distance 2,
and so on. Here the distance is the maximal number of hops necessary to send a data
to the sink. Sensors may communicate directly to the sink with probability (1 − pi ).
In this case the consumed energy is proportional to i2 with i is the slice number the
sensor belongs to. In order to save energy, a sensor can probabilistically decide with
probability pi to transmit its data to a sensor belonging to the next slice to the sink
(slice i → slice i − 1). In this case the amount of consumed energy is proportional
to a constant which is assumed to be 1 for convenience. This is illustrated in Fig. 1
where the two first slices are represented and in Fig. 3 for the slice number i. The
problem is to determine with which probability pi a sensor located in slice i has to
transmit to the next slice (or to directly transmit to the sink with probability 1 − pi )
in order to balance the consumed energy among all the sensors.
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Fig. 1 The sink (S) with the
first two slices of sensors

2 Related Works

In the literature, probabilistic data propagation protocols are proposed, in [2] (LTP, a
local optimization protocol) and [1] (PFR, a limited flooding protocol). Both proto-
cols are energy efficient and fault-tolerant, but tend to strain close to the sink sensors.

Leone and Rolim [8] inspired our work here since it proposes some stochastic
models (Markov chains, dynamic systems) for dynamic sensor networks. Indeed, our
approach to the energy-balance data propagation problem is to model the dynamics
of energy consumption of sensors as a random Walk. This formulation provides us
the tool to compute the optimal parameters of the protocol and support for the online
statistical analysis of the data traffic. The later is useful if the protocol implementer
does not know in advance the rate of data generated by the sensors which is inferred
from the traffic observations.

There are in the literature papers investigating energy-balance mechanisms and us-
ing a similar slice model of the network as we use in this paper. In [5, 9] the authors
define for sensors belonging to a same slice two period of time: during the first period
the sensors send the data directly to the sink while during the second period sensors
forward the data to sensors belonging to the next slice. The ratios between the two
periods of time are computed in order to balance the energy consumption between
sensors. The computations are based on the simulation of the process. The work pre-
sented in this paper is actually an extension of [3]. The framework introduced in [3]
assumes that sensors are randomly and uniformly distributed in a circular or a sec-
tor of a circular region, see Fig. 2. Sensors generate data that are collected by the
sink located in the center of the circular region. All the sensors generate the same
amount of data. The circular region is divided in rings of equal width R. The width
of the rings equals the minimum transmission distance of sensors in such a way that
sensors belonging to a particular ring can transmit data to sensors belonging to the
next ring closer to the sink. In order to balance the energy consumption, sensors can
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Fig. 2 Rings model of the
sensor network with a sink and
ring width R

Fig. 3 The communication flow
of slice i

transmit data directly to the sink. Such long range transmissions are energy costly for
the transmitter but unburden sensors located closer to the sink. Balancing the energy
consumption amounts to computing the appropriate ratio of long and short transmis-
sion. We first extend the work in [3] by considering that the amount of data generated
in the rings are parameters of the model. Then, we show that these parameters need
not be known in advance and can be inferred from data traffic statistics. We also
mention [18] which is very close in spirit to [3, 9]. In [18], the problem is refor-
mulated as an transmission allocation problem and the authors compute the optimal
number of rings to maximize the network lifetime. Jarry et al. [7] establishes a link
between the energy-balance mechanism we investigate in this paper and the flow of
data in network. The routing protocol we consider in this paper routes data through
neighboring links between sensors located to adjacent rings and direct links from the
sensors to the sink, see Fig. 3. Actually, it is proved in [7] that among energy-balance
routing strategy the one we consider maximizes the flow of data in the network. Con-
sidering more links in the network may only reduce the data flow in the network.
This result supports the investigation contained in this paper since it shows that the
energy-balance mechanism optimizes the flow of data in the network. A similar result
is proved independently in [4] using linear programming tools.

Intuitively, balancing the energy consumption between sensors make the lifetime
of the network longer. This is formally stated in [15]. Moreover, the paper addresses
the existence of optimal solution when balancing the energy is not realistic and the
variability of the energy consumption of sensors belonging to the same slice. Olariu
and Stojmenovic [14] addresses the problem of maximizing the network lifetime from
the point of view of network design. The conclusion of the paper support the rele-
vance of the approach developed in this paper. For instance, it is formally proved that
to reduce the energy consumption of conveying data from a sensor to the sink, the
transmission power must be the same for all sensors. Notice that the strategy inves-
tigated in [14] to balance the energy consumption among rings is to design networks
with rings of varying width. An algorithm to compute the optimal ring widths is pro-
vided.

Different techniques are investigated to increase the lifetime of the network. Clus-
tering techniques are investigated in [6, 13]. Basically, the cluster head is responsi-
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ble for the establishing the communications, the energy consumption is balanced by
changing the cluster head with time. The mobility of the sink is also an alternative
[10–12, 17].

3 Our Contributions

In this section, we generalize the energy balanced data propagation problem by al-
lowing unrestricted realistic energy assignment and we propose two new probabilistic
protocols, one of which is adaptive. Our analysis is based on the modelization of the
process of energy consumption as a random walk in Rn. The first algorithm we pro-
pose is relatively similar to the one suggested in [3] and corresponds to offline com-
putation of the probabilities pi of transmission to the next slice. Although very easy
to implement and fast in execution it suffers from an important weakness; namely
the probability of occurrence of the events per slice, i.e. the probability λi have to be
known. This particularity allows very efficient computations of the probabilities pi .
However, this property is not realistic or at least we gain in flexibility and adaptability
to devise an algorithm able to solve the problem without any assumption concerning
these probabilities. The analysis of the problem is new and leads to a formal definition
of the problem of energy balanced data propagation.

The second algorithm is adaptive and based on stochastic approximation methods.
The algorithm does not assume that the probabilities of occurrence of the events are
known and infers their values from the observation of the events. We refer to such
an algorithm as blind algorithm for energy balanced data propagation to stress the
fact that there is no a priori knowledge on the statistics concerning the localization
of the events. The algorithm can be accordingly implemented on any given network
and run on the fly, allowing online adaptation of the parameters of the network. This
characteristic is important if the parameters of the network are prone to change (this
appears frequently in sensor networks). This algorithm is an important contribution
of this section. Generally, adaptive algorithms, like the one proposed here, are most
appropriate for wireless sensor networks because of their evolving nature due to dy-
namic properties of the networks such as sensors failures, obstacles, etc., leading to
topology changes. We also formally define in a broader sense the problem of energy
balanced data propagation and show formally under which conditions the problem is
well formulated.

The protocol suggested in [3] requires that the probabilities pi are computed of-
fline, the implementation of the computations is fast and straightforward. However,
the analysis of the performance of the blind protocol describes in Sect. 6 is rather
involved. The most important factor is certainly the convergence time which is the
period needed for the sensors to compute the exact value of the probabilities pi . Un-
fortunately, the stochastic estimation method used for inferring the statistics of data
traffic are relatively slow to convergence. The rate of convergence is O(1/

√
t) where

t is the discrete time and corresponds to the number of data messages routed to the
sink. However, such methods are known to provide more quickly relevant values.
This means that even if the values inferred from the data traffic are not exact, their
values are quickly sufficiently close to the exact values to be meaningful. This point
is discussed in the section devoted to the numerical validation of the protocol, see
Sect. 7.
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We emphasize that the protocol does not need any overhead time before running.
Data are routed toward the sink as the protocol parameters are refined. The proto-
col does not necessitate any transmission from the sensors. The base station sends
periodically information to the sensors which is used to refined the parameters of
the protocol. The only energy overhead is due to the energy required to receive this
information.

4 Framework and Formal Definition of the Problem

In this section we state formally the framework and notations and state the problem of
energy balanced data propagation in wireless sensor networks. Notice that as a result
of the analysis of the problem, that is presented in the next section, we show that the
problem as stated in this section is well formulated.

The number of slices is denoted by n. The main assumption we need in this section
is that the energy consumed per sensor to handle the data to the sink is the same
among sensors belonging to a particular slice. This means that sensors belonging
to the same slice exhaust their available energy more or less simultaneously. Both
following assumptions give sufficient conditions validating this assumption. Notice
that these assumptions are based on a probabilistic selection of a sensor belonging to
a slice for data transmission. Different protocols can then be proposed.

We assume that the probability that an event is detected by a given sensor depends
uniquely on the slice the sensor belongs to. This means that we can define and es-
timate λ1, λ2, . . . , λn (

∑
i λi = 1) where λi is the probability that an event occurs

in slice number i. For example, this property is satisfied if the events are uniformly
randomly distributed on the monitored region. Indeed, in this particular situation, the
probabilities λi are proportional to the area covered by the i-th slice. Moreover, when
a data is transmitted from slice i to slice i − 1 the selected sensor belonging to the
slice i − 1 is uniformly selected among the whole set.

The probability pi , i = 1, . . . , n denotes the probability that a sensor belonging
to the slice i sends a data to a sensor belonging to the “next” slice i − 1. The com-
plementary probability 1 − pi denotes the probability that the sensor sends the data
directly to the sink. Then, when a data is handled by a sensor belonging to the i-th
slice the amount of consumed energy is a constant (assumed to be 1 for convenience)
with probability pi and i2 with probability 1 − pi . By definition we have p1 = 1 be-
cause sensors belonging to the first slice can do nothing else than transmitting to the
sink.

The number of sensors belonging to the i-th slice is denoted by Si . It might be the
case that there is a strong relationship between Si , λi but this is not essential.

The total energy available at the i-th slice is denoted by Ei , thus ei = Ei/Si is
the available energy per sensor. The energy can be seen as a given amount of energy
available at the start or as a rate of consumable energy.

An important aspect of our analysis is to model the energy consumption for han-
dling a given event as a random walk in Rn. We group the available scaled energy of
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each slice as a vector
⎛

⎜
⎜
⎜
⎝

En/Sn

En−1/Sn−1
...

E1/S1

⎞

⎟
⎟
⎟
⎠

. (1)

To start, consider an event generated in the n-th slice and consider the complete
process of handling the data generated by the event to the sink. We have different
possibilities for the scaled energy consumed in the different slices corresponding to
the different paths of the data. The data is directly transmitted to the sink with prob-
ability (1 − pn). The corresponding consumed energy vector per sensor is

⎛

⎜
⎜
⎜
⎝

n2/Sn

0
...

0

⎞

⎟
⎟
⎟
⎠

.

The data can alternatively be transmitted to the next (n − 1)-th slice from which it
is directly transmitted to the sink with probability pn(1 − pn−1). The corresponding
consumed energy vector in this situation is

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1/Sn

(n − 1)2/Sn−1
0
...

0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

Repeating this enumerative process, we describe all possible events with their proba-
bility and the corresponding vector of energy consumed.

Formally, we denote the U = {U1,U2, . . .} the set of vectors describing the relative
energy consumption for handling an event, or equivalently to convey the data toward
the sink. By relative energy consumption, we mean that the vectors Ui denote the en-
ergy consumption due to the transmission of the data in the different slices divided by
the total number of sensors in the slices. Denoting by � the set of possible events we
obtain a random variable � → U which describes the energy consumed for handling
an event. If we associate to each event its probability we have our probability space
(�, P (�),P ).

For example, if we assume that we have three slices, n = 3, the set of events is
� = {1,2,3}.1 The occurrence of event i indicates that data are generated in the slice
number i. The probability of such an event is P(ω = i) = λi . Let us assume that a
realization of the random variable � is the occurrence of an event in slice number 3,

1Formally we should say that the event is an application � → {1,2,3}, we simplify the exposition at this
stage since no confusion is possible. We proceed accordingly with the random variables � → U that we
denote simply U .
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this occurs with probability λ3. The different paths that the data are allowed to follow
toward the sink are:

– The sensor in slice 3 transmits the data directly to the sink, this occurs with proba-
bility (1 − p3) and leads to a vector of energy consumption

⎛

⎝
9
0
0

⎞

⎠

– The sensor in slice 3 transmits the data to a sensor belonging to the slice number
2 that transmits the data directly to the sink. This event occurs with probability
p3(1 − p2) and leads to a vector of energy consumption

⎛

⎝
1
4
0

⎞

⎠

– The data are transmitted from the sensor in slice 3 to a sensor belonging to the
slice number 2 and finally to a sensor belonging to the slice number 1. This event
occurs with probability p3p2p1, we remember that p1 = 1 by convention. This
event leads to a vector of energy consumption.

⎛

⎝
1
1
1

⎞

⎠

Since we are interested with the total energy available in the different slices, we
divide the entries of the vectors of energy consumption displayed in the previous
example with the corresponding total number of sensors belonging to the slices. The
vectors describing the relative energy consumption of the different paths considered
above are then

⎛

⎝
9/S3

0
0

⎞

⎠ ,

⎛

⎝
1/S3
4/S2

0

⎞

⎠ ,

⎛

⎝
1/S3
1/S2
1/S1

⎞

⎠ ,

and are possible realizations of the random variables Ui .
The process of energy consumption is described as a random walk in Rn with the

energy consumed for handling m events in the form X1 +X2 +X3 +· · ·+Xm, where
Xi are independent random realizations of the random variable Ui . The law of large
numbers implies that X1 +X2 +· · ·+Xm → mE(X) thus, to ensure energy balanced
data propagation we must have

E(X) = λ

⎛

⎜
⎜
⎜
⎝

En/Sn

En−1/Sn−1
...

E1/S1

⎞

⎟
⎟
⎟
⎠

. (2)
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Indeed, Equation (4) means that the mean energy consumption of sensors are pro-
portional to the available energy, i.e. ei = Ei

Si
is the energy available to sensors be-

longing to the ith slice. This condition ensures that sensors (in the mean) run out
simultaneously of energy.

Intuitively, if the expected consumed energy does not satisfy (2) then there is a
slice in which sensors will run out the available energy, described by (1), before the
sensors belonging to others slices. The network stops working prematurely. More-
over, if (1) describes the rate of consumable energy requirement (2) amounts to
preserving the ratio of consumed energy per slice. An energy assignment vector is
a vector of the form (1) meaning that the ratio of energy consumed in slice i with
respect to slice j should be Ei/Ej .

We later prove that the set of admissible energy assignment vectors is {v ∈ Rn :
vi ≥ 0,‖ v ‖= constant} and to each such vector there is a unique assignment of
the probabilities pi . Besides this existential result, we propose two new protocols for
calculating the optimal probabilities in an efficient manner. The first protocol assumes
a certain amount of local knowledge, while the second one implicitly estimates the
statistics of the events and is able to appropriately adapt to changes in the network
parameters.

For the sake of clarity we complete the small case example discussed above. The
number of slices n = 3 and the probabilities of occurrences of the events in the differ-
ent slices are λ1 = 1/9, λ2 = 1/3, λ3 = 5/9 with respectively S1 = 1, S2 = 3, S3 = 5.
The optimal probabilities (as calculated in [3]) are p2 = 0.5815 and p3 = 0.5735.
With these values, the expectation is

λ1

⎛

⎝
0
0
1

⎞

⎠ + λ2(1 − p2)

⎛

⎝
0

4/3
0

⎞

⎠ + λ2p2

⎛

⎝
0

1/3
1

⎞

⎠

+ λ3(1 − p3)

⎛

⎝
9/5
0
0

⎞

⎠ + λ3p3(1 − p2)

⎛

⎝
1/5
4/3
0

⎞

⎠ + λ3p3p2

⎛

⎝
1/5
1/3
1

⎞

⎠ =
⎛

⎝
0.4902
0.4902
0.4902

⎞

⎠ .

This corresponds to our formulation of the problem with λ = 0.4902 and where all
sensors consume the same amount of energy.

5 An Aware Strategy for Balanced Energy Dissipation

To ensure energy balance we have to determine for each slice i the probability of
transmitting a given data to the next slice pi , the data being transmitted directly to
the sink with probability (1 − pi). This section deals with this problem assuming an
a-priori knowledge of the probabilities λi of the distribution of occurrences of the
events among different slices. The first slice, located just before the sink, has only
to transmit the data to the sink directly (p1 = 1). Hence, if n is the total number of
slices we have n − 1 unknown probabilities p2, . . . , pn. The other free parameter to
be determined is the factor λ appearing in (4).

Consider a node in the i-th slice which has to transmit a data. The data has to be
transmitted because of an event occurring in the i-th slice with probability λi . The



442 Theory Comput Syst (2010) 47: 433–453

data can also be transmitted because it was previously generated by the preceding
(i + 1)-th slice. This occurs with probability λi+1 ·pi+1. The event can also be trans-
mitted due to an event generated in the (i + 2)-th slice, this occurs with probability
λi+2 · pi+2 · pi+1 and so on up to the n-th slice. Then, a data is transmitted from the
i-th slice with probability

λi + λi+1pi+1 + λi+2pi+2pi+1 + · · · + λnpnpn−1 · · ·pi+1. (3)

The mean dissipated energy per sensor on the i-th slice is of the form

pi

1

Si

+ (1 − pi)
i2

Si

. (4)

Then the mean energy dissipated in the i-th slice is of the form

(
λi + λi+1pi+1 + · · · + λnpnpn−1 · · ·pi+1

)
(

pi

1

Si

+ (1 − pi)
i2

Si

)

= λei, (5)

where the equality is imposed to ensure energy balanced data propagation through
the network. With pn+1 = λn+1 = 0 we define the xi value as

xi = λi + λi+1pi+1 + · · · + λnpnpn−1 · · ·pi+1, (6)

which satisfies the recurrence relation

xi = pi+1xi+1 + λi, i = n, . . . ,1, (7)

with the convention pn+1 = 0. Solving (5) for pi , i = n, . . . ,2 we get

pi = i2xi − Sieiλ

(i2 − 1)xi

= i2

i2 − 1
− Siei

(i2 − 1)xi

λ, i = n, . . . ,2. (8)

Since p1 = 1 we solve (5) with i = 1 for λ and get

λ = x1

S1e1
. (9)

This last equation is actually a constraint on λ. To investigate properties of this con-
straint, we define a function (λ,E1, . . . ,En) → λ′ = f (λ) by substituting λ by λ′
in (9). A fixed point of this function, i.e. λ = f (λ), determines through (6) and (8)

a solution of our problem. The recursive scheme described in Fig. 4 calculates the
value of the fixed point of this function. This algorithm is executed by the sink based
on the knowledge of the energy assignment vector, the probabilities of occurrence of
the events on the different slices and the number of sensors per slices. This informa-
tion may come directly from the sensors (both at set-up or during protocol evolution)
which know the slice they belong to.

Actually, there is a more efficient way of solving this problem, based on the result
of Proposition 1, as illustrated in Fig. 5.
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Fig. 4 Pseudo-code for
iterative solution of (2) Initialize p2, . . . , pn and λ

Initialize NbrLoop=1
while not convergence

x ← 0
for counter = n to 2

x ← x + λcounter

pcounter ← pcounter (λ,pcounter+1, . . . , pn) with (8)

x ← xpcounter

end for
x ← x + λ1
Compute λinter with (9)

λ ← λ + (λinter − λ)/nbrLoop

nbrLoop ← NbrLoop + 1
end while

1. The Sink compute the fixed point of f (λ) defined in Proposition 1
2. The Sink sends to every sensor the relevant λ value
3. Each sensor computes its probability pi

Fig. 5 High-level description of the energy balanced data propagation protocol

Proposition 1 The function f (λ) defined through (6), (8) and (9) is linear. Then, we
can write

f (λ) = a + bλ, (10)

with a and b real constants defined by

S1e1a = λ1 + λ2C2 + λ3C3C2 + · · · + λnCnCn−1 . . .C2, (11)

S1e1b = −D2 − D3C2 − D4C3C2 − · · · − DnCn−1 . . .C2, (12)

with

Ci = i2

i2 − 1
, Di = Siei

i2 − 1
. (13)

Proof Let us fix a value of λ. Computing f (λ) amounts to recursively computing the
parameters xi for i = n,n − 1, . . . ,1 and then computing f (λ) with (9). We prove
by induction that the xi values are all linear in λ. For i = n, we get

xn = λn.

So, the assertion is true for i = n. Let us now assume it is true for i = n, n−1, . . . , k+
1. Using (7) and (8) we get

xk = pk+1xk+1 + λk = Ck+1xk+1 − Dk+1λ + λk,
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which is linear in λ establishing the first part of the assertion. Since the xi are linear
functions in λ we introduce the notation

xi = ai + biλ, i = n, . . . ,1. (14)

The coefficients ai and bi are recursively determined by

ai = λi + ai+1Ci+1, (15)

bi = bi+1Ci+1 − Di+1, (16)

with initial conditions an = λn and bn = 0 (i.e. xn = λn). These equations prove (11)

(12). To get (15) and (16), we write again (8) as

pi = Ci − Di

xi

λ,

which can be inserted into formula (7) to obtain

xi = λi + xi+1Ci+1 − Di+1λ.

Inserting (14) into this last equation leads to the recursive expression for ai and bi . �

In the preceding computations, the dependence of the function f (λ) on the total
energy per slice (the Ei parameters) was not stated clearly, neither was the physical
interpretation of this vector. The next results show that the entries of this vector are
not important by themselves. What is important is the ratio Ei/Ej between the total
mean energy available at the i-th slice with respect to the j -th slice.

Corollary 1 Consider two total energy assignment vectors which are linearly depen-
dent,

⎛

⎜
⎜
⎜
⎝

En

En−1
...

E1

⎞

⎟
⎟
⎟
⎠

= μ

⎛

⎜
⎜
⎜
⎝

E′
n

E′
n−1
...

E′
1

⎞

⎟
⎟
⎟
⎠

,

with μ a real non-zero constant. Then, the fixed points, λ and λ′ of the functions

f (λ,E1, . . . ,En) = λ

f (λ′,E′
1, . . . , e

′
n) = λ′

are related by

λ′ = μλ. (17)

Proof This follows from the result of Proposition 1. The value of the fixed point are
given respectively by

λ = a

1 − b
, and λ′ = a′

1 − b′ .
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Direct inspection of the expressions for the coefficients of both functions, using
Siei = Ei and S′

ie
′
i = E′

i shows that μa = a′ and b = b′ which implies the result. �

Proposition 2 Consider two total energy assignment vectors which are linearly de-
pendent,

⎛

⎜
⎜
⎜
⎝

En

En−1
...

E1

⎞

⎟
⎟
⎟
⎠

= μ

⎛

⎜
⎜
⎜
⎝

E′
n

E′
n−1
...

E′
1

⎞

⎟
⎟
⎟
⎠

.

Then, the corresponding probabilities pi and p′
i of transmitting directly to the next

slice are equal.

Proof We know that the probabilities pi of transmitting directly to the next slice
depend only on the λ and λ′ values which are fixed points of the functions
f (λ,E1, . . . ,En) = λ and f (λ′,E′

1, . . . , e
′
n) = λ′. By hypothesis, we know that

μλ = λ′. However, in the equations determining the p′
i s values only the products

λEi and λ′E′
i are involved. Since these products are equal the result is proved. For

the sake of completeness, we mention that we can also prove by induction that the
values xi and x′

i values are the same. �

The next result shows how the energy balanced data propagation problem can be
well formulated.

Proposition 3 Given an energy assignment vector belonging to the set {v ∈ Rn :
vi ≥ 0,‖ v ‖= constant} then there exist unique probabilities pi , i = 2, . . . , pn to
solve the energy balanced data propagation problem.

Proof Probabilities pi are determined by the fixed point of the function defined by
Proposition 1. This fixed point is unique because the function is linear. Moreover,
with our hypothesis the parameters a and b, see (11) and (12), satisfy a > 0 and
b < 0 implying the existence of a fixed point. �

This result shows formally that the problem is well formulated and possesses a
unique solution if the energy assignment vector is restricted to belongs to the set
{v ∈ Rn : vi ≥ 0,‖ v ‖= constant}.

The next results prove the convergence of the numerical scheme illustrated by
Fig. 4 and provide convergence rate.

Proposition 4 If b < 1 with b defined in (10) and (11) then the recursive scheme
illustrated by Fig. 4 does converge to the fixed point λ = f (λ).

Proof We are looking for a fixed point of the function f (λ) = a +bλ, this fixed point
is unique and can be written as

λ = a

1 − b
.
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The recursive algorithm defined in Fig. 4 can be written again

λl+1 = λl + f (λ) − λl

l
= λl + a − λl(1 − b)

l
.

Using this expression, we compute the difference of the values obtained by iterating
f (λ) to the fixed point,

λl+1 − a

1 − b
= λl − a

1 − b
− a − λl(1 − b)

l
(18)

=
(

λl − a

1 − b

)(

1 − 1 − b

l

)

. (19)

Because b < 0 we have that for l large enough

θl = 1 − b

l
< 1.

Moreover,

θl + θl+1 + · · · + θl+k → ∞, when k → ∞,

implying that

(1 − θl)(1 − θl+1) · · · (1 − θl+k) ≤ e−θl−···−θl+k → 0,

and this implies the convergence of the algorithm. �

Proposition 5 Given an initial value λ0, the number of steps the recursive scheme
should be iterated to ensure |λn − a

1−b
| < ε is bounded by an expression which is

O( 1
ε
). More precisely, we have

∣
∣
∣
∣λl − a

1 − b

∣
∣
∣
∣ <

∣
∣
∣
∣λ0 − a

1 − b

∣
∣
∣
∣
(b − 1)l

l! . (20)

Proof Using repeatedly (19) and the inequality (b < 0)

∣
∣
∣
∣1 − 1 − b

l

∣
∣
∣
∣ <

∣
∣
∣
∣
b − 1

l

∣
∣
∣
∣,

we get (20). Next, we use the bound for the factorial n! > √
2πnne−n to get

∣
∣
∣
∣λl − a

1 − b

∣
∣
∣
∣ <

∣
∣
∣
∣λ0 − a

1 − b

∣
∣
∣
∣

1√
2 pi

(
(1 − b)e

l

)l

.

So, with μ = |λ0 − a
1−b

| 1√
2π

the condition |λl − a
1−b

| < ε is implied by

(
(1 − b)e

l

)l

<
ε

μ
,
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or

(1 − b)e

l
<

(
ε

μ

)1/l

.

From this last inequality and because ε/μ < (ε/μ)(1/l) for ε small enough, we de-
duce that

(1 − b)e

l
<

ε

μ
,

is a sufficient condition. So we get,

l >
(1 − b)eμ

ε
,

proving the result. �

The convergence result shows that the important parameter is the slope b. Next
result gives us a bound on this parameter.

Proposition 6 The parameter b defined by (12) satisfies the inequality

−b < 2 max
i

Siei

S1e1
.

Proof We first notice that the inequalities Ci < 1, inserting this into the definition of
the b parameter (12) leads to

−b < max
i

Siei

S1e1

(
1

22 − 1
+ 1

32 − 1
+ 1

42 − 1
+ · · ·

)

.

But since 1
i2−1

< 1
(i−1)2 we get that the term contained in the parenthesis on the left

side of the preceding inequality is bounded by 2, leading to the result. �

6 A Blind Strategy for Balanced Energy Dissipation

In this section, we deal with the problem of the estimation of the probabilities pi of
transmitting a data directly to a sensor which belongs to the next slice being blind to
the probabilities λi of occurrence of events in a given slice. The blindness assump-
tion is more general and realistic and allows the design of adaptive algorithms that
appropriately adjust to the network parameters. However, we do not estimate directly
the λi probability but directly the values of xi (6). One reason for this is that the xi

values have probabilistic interpretation in terms of the path of the data through the
different slices of the networks.

Proposition 7 Consider an event occurring in slice i = 1, . . . , n with probability λi .
The event is handled by the network which conveys it to the sink. Define Ai the event:
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Initialize x̃0 = λ, . . . , x̃n

Initialize NbrLoop=1
repeat forever

Send x̃i values to the stations which compute their pi probability
wait for a data
process the data

for i=0 to n
if the data passed through slice i then

X ← 1
else

X ← 0
end if
Generate R a x̃i-Bernoulli random variable
x̃i ← x̃i + 1

NbrLoop
(X − R)

Increment NbrLoop by one.
end for

end repeat

Fig. 6 Pseudo-code for estimation of the xi value by the sink

“The data passes through slice number i”, and 1i the indicator function of event Ai .
Then

Prob(1i = 1) = xi. (21)

Proof To compute the probability that the data passes through slice i we can pass in
review the different scenarios leading to the realization of the event Ai . A necessary
condition is that the event is generated in slice i, i + 1, . . . , n. If we denote Gi the
event: “The event is generated in slice i”, we have

Prob(1i = 1) =
n∑

j=i

Prob(1i = 1|Gj).

Because Prob(1i = 1|Gj) = λjpjpj−1 · · ·pi+1 if j > i and Prob(1i = 1|Gi) = λi

the last equation leads to (21). �

This result is useful for devising a blind strategy for balanced energy. Indeed,
from the sink point of view the realization of the events Ai can be observed if we
assume that each sensor handling an event appends to the data associated to it the
slice number the stations belongs to.

We describe the blind algorithm for energy data propagation. The algorithm does
not know about the probability λi of occurrences of the events in the slices and indi-
rectly estimates them. The algorithm is illustrated in Fig. 6 in pseudo-code like form.
The sink starts to assign values x̃i for the estimation of the xi values and λ. For con-
venience, and since there are not intrinsic differences between λ and xi we introduce
the notation x0 = λ. Each sensor is assigned a x̃i value depending on the slice number
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it belongs to and then computes the probability pi of transmitting directly to the next
slice using formula (8). As already mentioned, sensors add information to the prop-
agated data to make possible for the sink to determine the slices a given data passed
through. Based on these observations the sink recursively estimates the probability
that the data passes through a given slice i. This probability is given by (see (6))

xi = λi + λi+1pi+1 + · · · + λnpnpn−1 · · ·pi+1.

Here, we used xi without tilde to refer to the real probability of the event Ai which
is the observable event. Moreover, we have seen that they can be written as (see (10)
and (14))

xi = ai + biλ, i = 1, . . . , n,

and

λ = x0 = a + bλ.

This means that from the point of view of the sink an event Ai occurs with probability
xi given above.

Proposition 8 The algorithm illustrated in Fig. 6 converges in probability to the
solution of the energy balanced data propagation. Precisely this means that

Prob

((

λn − a

1 − b

)2

> ε

)

→ 0, when n → ∞,

with a and b defined in Proposition 1 and λn defined recursively by

λn+1 = λn + 1

n
(Xn − Rn),

with Xn a Bernoulli random variable with parameter a + bλn (the observable event
A1) and Rn a Bernoulli random variable with parameter λn (generated internally by
the sink).

Proof Since the values x̃i for i = 1, . . . , n depend on the x̃0 = λ value it is enough
that the algorithm converges for λn. First notice that

E(Xn − Rn|λn) = a + (b − 1)λn.

So, we get

E

((

λn+1 − a

1 − b

)2∣
∣
∣λn

)

=
(

λn − a

1 − b

)2

+ 2
b − 1

n

(

λn − a

1 − b

)2

+ 1

n2
E(Xn − Rn|λn).
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Taking expectation in both sides of this equality we get

E

((

λn+1 − a

1 − b

)2)

= E

((

λn − a

1 − b

)2)

+ 2
b − 1

n
E

((

λn − a

1 − b

)2)

+ 1

n2
E(Xn − Rn|λn)

= · · ·

= E

((

λ1 − a

1 − b

)2)

+ 2(b − 1)

n∑

j=1

1

j
E

((

λj − a

1 − b

)2)

+
n∑

j=1

1

j2
E(Xn − Rn|λj )
︸ ︷︷ ︸

bounded
︸ ︷︷ ︸

convergent

.

Since b < 0 and E((λn+1 − a
1−b

)2) > 0 the first sum on the right side of this equation
converges. Hence,

E

((

λj − a

1 − b

)2)

→ 0 when j → ∞,

which implies the convergence in probability. �

7 Numerical Experiments and Conclusion

Recursive stochastic estimation procedures are very useful for solving practical prob-
lems and leads to adaptive protocols such that the one presented in Fig. 6. The
main drawback of these methods is the slow rate of convergence, typically of or-
der O(1/

√
n) and the lack of a robust stopping criterion. Intuitively, this is due to the

fact that the procedure tracks the true value of the parameter to be estimated with cor-
rection of order O( 1

n
). This implies that the procedure is robust in the sense that every

possible value of the parameter is reached, but makes the estimate of the number of
steps necessary very difficult.

Numerical experiments are then presented in order to validate the efficiency of the
blind protocol introduced in this section. The framework we choose for our experi-
ment is the same as the particular one described in [3]. This framework is realistic
and allows us to compare our numerical results. The probability that an event occurs
in slice number i = 1, . . . , n is proportional to the area of this slice and is given by

λi = 2i − 1

n2
.
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Fig. 7 Numerical experiment of algorithms (λ in terms of number of loops) illustrated in Fig. 6 with
3,10,20,30 slices from left to right and top to bottom

We choose to deal with energy balanced data propagation and we have for the energy
assignment vector

E(X) = λ

⎛

⎜
⎜
⎜
⎝

En/Sn

En−1/Sn−1
...

E1/S1

⎞

⎟
⎟
⎟
⎠

= λ

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

.

We simulate the algorithm executed by the sink and illustrated in Fig. 6. We start by
arbitrarily fixing x̃1 = 0.5 for i = 2, . . . , n and λ = 1. This last choice corresponding
to the worst a priori estimation possible. We simulate the occurrence of the events
with respect to the known probability λi . Notice that these probabilities are known
from the simulation but are undirectly estimated by the algorithm (the sink). The
path of the data generated by the event are simulated using the successive values of
the probabilities pi for i = 2, . . . , n which are computed on the basis of the x̃i values
using formula (8). Once the path is simulated the sink updates the values of x̃i and
a new event is generated. We proceed the simulations for 3, 10, 20 and 30 slices.
These experiments are reported in Fig. 7. We observe from the experiments that, as
expected, we quickly get a good estimation of the value of λ but need many more
iterations to get high precision estimate due to the convergence of order O(1/

√
n).
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We discussed in this section the problem of balancing the consumed energy per
sensors for the process of data propagation through wireless sensor networks. The
main novelty contained in this section is related to the very realistic hypothesis that
no a priori knowledge on the probability of the region in which the events occur
is known. We show that stochastic approximation methods can be applied and lead
to protocols able to estimate these probabilities. Although high precision estimate
needs many iterations of the estimation process, good estimations are provided by
the algorithm prior to convergence.

An other important point to develop is to estimate the energy consumed before
convergence of the algorithm and whether energy are wasted during this period of
time or not.

A possible extension of this problem is not to consider slices of sensors but to
consider all the sensors individually. In this situation, all the sensors have their own
energy restriction and their own probability of observing an event. In this situation,
it seems important that the algorithm can be devised in a distributed way. Indeed, if
sensors are considered individually the process of broadcasting the xi values from
the sink to the sensors leads to an important traffic of data and it is likely that in this
situation the impact of collisions cannot be longer ignored. Moreover, in the situation
described in this section we ignore problems related to the size of the data sent to
the sink. Indeed, when sensors add some information to the propagated data, such as
the slice number, the size of the data can become prohibitive with respect to small
memory capacity of smart sensors. In our situation it seems likely that the number
of slice is of reasonable order, but if the sensors are individualized, the situation can
prove to be very different.
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