
Algorithmica (2012) 62:595–629
DOI 10.1007/s00453-011-9581-7

Of Choices, Failures and Asynchrony: The Many Faces
of Set Agreement

Dan Alistarh · Seth Gilbert · Rachid Guerraoui ·
Corentin Travers

Received: 28 February 2010 / Accepted: 8 October 2011 / Published online: 20 October 2011
© Springer Science+Business Media, LLC 2011

Abstract Set agreement is a fundamental problem in distributed computing in which
processes collectively choose a small subset of values from a larger set of proposals.
The impossibility of fault-tolerant set agreement in asynchronous networks is one of
the seminal results in distributed computing. In synchronous networks, too, the com-
plexity of set agreement has been a significant research challenge that has now been
resolved. Real systems, however, are neither purely synchronous nor purely asyn-
chronous. Rather, they tend to alternate between periods of synchrony and periods of
asynchrony. Nothing specific is known about the complexity of set agreement in such
a “partially synchronous” setting.

In this paper, we address this challenge, presenting the first (asymptotically) tight
bound on the complexity of set agreement in such systems. We introduce a novel
technique for simulating, in a fault-prone asynchronous shared memory, executions of
an asynchronous and failure-prone message-passing system in which some fragments
appear synchronous to some processes.

We use this simulation technique to derive a lower bound on the round complexity
of set agreement in a partially synchronous system by a reduction from asynchronous
wait-free set agreement. Specifically, we show that every set agreement protocol re-
quires at least � t

k
�+ 2 synchronous rounds to decide. We present an (asymptotically)

matching algorithm that relies on a distributed asynchrony detection mechanism to
decide as soon as possible during periods of synchrony. From these two results, we
derive the size of the minimal window of synchrony needed to solve set agreement.

D. Alistarh (�) · R. Guerraoui
Swiss Federal Institute of Technology, Lausanne, Switzerland
e-mail: dan.alistarh@epfl.ch

S. Gilbert
Department of Computer Science, National University of Singapore, Singapore, Singapore

C. Travers
LaBRI, University of Bordeaux 1, Talence, France

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150531?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:dan.alistarh@epfl.ch


596 Algorithmica (2012) 62:595–629

By relating synchronous, asynchronous and partially synchronous environments,
our simulation technique is of independent interest. In particular, it allows us to obtain
a new lower bound on the complexity of early deciding k-set agreement complemen-
tary to that of Gafni et al. (in SIAM J. Comput. 40(1):63–78, 2011), and to re-derive
the combinatorial topology lower bound of Guerraoui et al. (in Theor. Comput. Sci.
410(6–7):570–580, 2009) in an algorithmic way.

Keywords Distributed computing · Message passing · Set agreement · Eventual
synchrony · Time complexity · Lower bounds

1 Introduction

Set agreement was first introduced by Chaudhuri [8] to capture the power of allowing
more choices than consensus [18], where only a single decision value is permitted.
Each process pi begins with an initial value vi ; eventually, every process outputs one
of the initial values as a decision. In k-set agreement, the set of all values output can
be of size at most k. The power of set agreement depends on the parameter k. When
k = 1, set agreement reduces to consensus. When k = n, the problem is trivial, i.e.,
processes can act entirely independently.

Impossibility Results and Lower Bounds. In a collection of seminal papers,
Borowski and Gafni [5], Herlihy and Shavit [16], and Saks and Zaharoglou [20]
showed that fault-tolerant asynchronous set agreement is impossible (while at the
same time revealing a deep connection between distributed computing and algebraic
topology). Chaudhuri et al. [9] further developed these techniques, establishing a tight
lower bound on the round complexity of synchronous set agreement: in a system with
t failures, at least � t

k
� + 1 rounds are necessary. More recently, Gafni et al. [14] and

Guerraoui et al. [15] considered the feasibility of reaching an early decision: how
fast can an algorithm tolerating up to t failures decide in an execution with at most
f < t failures? They both show (in two different ways) that at least �f

k
� + 2 rounds

are needed.

Partial Synchrony. Set agreement has been extensively studied in both synchronous
and asynchronous systems. Real world distributed systems, however, are neither
purely synchronous nor purely asynchronous. Instead, they tend to exhibit periods
of synchrony when the network is well behaved, and periods of asynchrony when the
network is poorly behaved. (For example, consider a TCP network [6] under vary-
ing loads, which may affect the message delivery delays.) To describe such a system,
Dwork et al. [11] introduced the idea of partial synchrony. They assume for every ex-
ecution some (unknown) time GST (global stabilization time), after which the system
is synchronous. In this paper, we study the feasibility and complexity of set agreement
in the context of partially synchronous systems, determining the minimum-sized win-
dow of synchrony in which k-set agreement can be solved.

Of course, the lower bounds for synchronous systems [9, 12] imply an immediate
lower bound here of � t

k
� + 1 rounds. The question, then, is whether there exists any

matching algorithm that terminates in a synchronous window of size � t
k
� + 1, or



Algorithmica (2012) 62:595–629 597

is there some inherent cost to tolerating asynchrony? Moreover, how does this cost
depend on t and k?

We answer these questions by showing that at least � t
k
� + 2 synchronous rounds

are required for k-set agreement, and then introducing an algorithm that terminates
in any window of synchrony of size at least � t

k
� + 4 rounds. Together, these results

show that there exists an inherent price to tolerating asynchronous executions, and
that this price is constant in the context of the set agreement problem.

Lower Bound by Reduction. The technique for deriving the lower bound is an im-
portant contribution, as it provides new insights into the complexity of set agree-
ment. Instead of relying on topology, as is typically required for set agreement lower
bounds, we derive our result by reducing the feasibility of asynchronous set agree-
ment to the problem of solving set agreement in a window of size � t

k
� + 1. Since

asynchronous set agreement is known to be impossible, this reduction immediately
implies that at least � t

k
� + 2 synchronous rounds are required for k-set agreement.

Our main tool is a technique for simulating “locally synchronous” executions in
an asynchronous system. In particular, we show how to perform a k-fault-tolerant
simulation of a message-passing system in an asynchronous shared memory system
where each simulated execution appears synchronous to some processes.

This technique can be viewed as a generalization of the simulation technique
of [12], moving from synchronous systems to cover the spectrum of partially syn-
chronous ones. There are two new key observations. First, when the simulation is run
for an epoch of length � t

k
� + 1 rounds, we show that either some simulator sees a

window of synchrony of size � t
k
� + 1 rounds, or some simulator fails. Second, we

observe that these epochs of length � t
k
�+ 1 can be repeated until either some simula-

tor fails, or some simulator decides. From this we conclude that we have successfully
simulated a set agreement protocol, resulting in the desired reduction.

Early Deciding Synchronous Set Agreement. Our technique turns out to be of more
general interest as we can re-derive and extend existing lower bounds for synchronous
early deciding set agreement.

It has been previously shown [14, 15], using sophisticated techniques, that even in
an execution with f < t failures, some process cannot decide prior to round �f

k
�+ 2.

Strictly speaking, these two results differ in how failures are counted. In [15], the
lower bound is global: some process requires at least �f

k
� + 2 rounds. In [14], the

lower bound is local: every process decides after round �f
k
� + 2. The latter bound

applies in the case where the total number of processes n is unbounded and an un-
bounded number of failures can occur.

Using our simulation technique, we re-derive both lower bounds in a simpler and
more general manner, in the standard model where t and n are bounded and known
a priori. Of note, both lower bounds are corollaries of a single theorem that relates
the number of processes which decide early with the worst-case round complexity
of an algorithm. Basically, we show that if d processes decide by round �f

k
� + 1 in

executions with at most f failures, then in the worst-case, some process takes at least
time � t

k
� + E(·) + 1 to decide (where E is a function of t, k and d).



598 Algorithmica (2012) 62:595–629

Upper Bound for Eventually Synchronous Agreement. We then present the first
known algorithm for k-set agreement that tolerates periods of asynchrony. Our al-
gorithm guarantees correctness, regardless of asynchrony, and terminates as soon as
there is a window of synchrony of size � t

k
� + O(1). For simplicity, we show syn-

chronous round complexity of � t
k
� + 4. Closing the gap between these bounds re-

mains an intriguing challenge.
Two basic ideas underlie our algorithm. First, processes collectively execute an

asynchrony detection sub-protocol that determines whether a round appears syn-
chronous or asynchronous. A process can decide when it sees � t

k
� + O(1) syn-

chronous rounds. Even so, different sets of processes may have different views of
the system when the decision occurs, since there are only � t

k
� + O(1) rounds to ex-

change information. Second, each process maintains an estimate, i.e., a value that it is
leaning toward choosing. In each round, each process adopts the minimum estimate
that it receives. If a process is about to decide, however, it can elevate the priority of
its estimate, causing other processes to adopt its value instead.

The key property of the algorithm is that there are at most k different high priority
estimates in the system when a decision occurs. In a synchronous system, this would
follow from the following fact: if there are k + 1 distinct estimates that remain at the
end of a round, then there must have been at least k failures during that round. In
a partially synchronous system, however, this is not true, as asynchronies can play
the same role as failures in keeping extra values in the system. Instead, we rely on a
careful analysis of the distributed asynchrony detection.

Implications. Several implications arise from our simulation technique and its us-
age. First, it provides additional evidence that the impossibility of fault-tolerant asyn-
chronous k-set agreement is a central result in distributed computing, as it implies
non-trivial results in both partially synchronous and synchronous models. Second, it
highlights close connections between models that have differing levels of synchrony.
In particular, our simulation technique takes advantage of structural similarities be-
tween eventually synchronous set agreement and early deciding set agreement to es-
tablish lower bounds in two different models of synchrony. The uncertainty regarding
asynchrony (found in a partially synchronous execution) turns out to be fundamen-
tally similar to the uncertainty regarding failures (found in an early deciding execu-
tion).

2 Model

In this section, we define three basic models of computation: the partially syn-
chronous model of computation, the synchronous model of computation, and the
asynchronous model of computation.

The partially synchronous model ESn,t consists of n deterministic processes Π =
{p1, . . . , pn}, of which up to t < n may fail by crashing. (Note that the algorithm
in Sect. 5 uses t < n/2.) The processes communicate via a message-passing network,
modeled much as in [10, 11, 17]: time is divided into rounds. In each round, a pro-
cess sends messages, receives messages, and performs some local computation. We



Algorithmica (2012) 62:595–629 599

assume that processes may fail by crashing. If a process p fails while sending mes-
sages in a round r , any subset of the messages that p sends in that round may be
delivered to their recipients. A process that has not crashed by the end of round r is
called non-failed at round r .

In this model, there is no assumption that every message broadcast in a round is
also delivered in that round. Instead, we assume only that if all non-failed processes
broadcast a message in round r , then each process receives at least n − t messages in
that round. (This can be implemented by delaying a round r +1 message until at least
n − t round r messages have been received.) We assume that the network is partially
synchronous: there is some round GST after which every message sent by a non-failed
process is delivered in the round in which it is sent. Similar round-based models have
been studied by Charron-Bost and Schiper [7] (the heard-of model), by Keidar et
al. [17] (the GIRAF model), and by Schmid et al. [4, 21] (the perception-based fault
model).

The synchronous model Sn,t is identical to ESn,t , except that we assume every pro-
cess knows, a priori, that GST = 0, i.e., that every message is delivered in the round
that it is sent.

The asynchronous model ASn,kconsists of n processes Π = {p1,p2, . . . , pn}, up
to k of which may crash. The processes communicate via single-writer, multi-readers
(SWMR) registers. The memory is organized in arrays X[1 . . . n] of n registers; entry
X[i] of an array can be written only by pi . We assume that registers are initialized
with an special value ⊥. Also, for simplicity, we consider that each register is written
at most once. (Note that our simulations have this property.)

In addition to read() and write() operations, a process can also invoke X.snapshot()
to read all the contents of X in a logically instantaneous single operation. Let x and
x′ be the result of any two snapshot operations on X, possibly invoked at different
processes. We assume that the following hold: Containment: x ⊆ x′ ∨ x′ ⊆ x;1 Self
inclusion: Let v be the value written by pi in X[i] prior to invoking X.snapshot(),
with no intervening X[i].write(·) operations by any process; let x be the result of the
snapshot operation; then x[i] = v. An implementation of snapshots on top of SWMR
registers can be found in [1, 3]; thus, snapshots provide no extra computational power
in this model. k-set agreement is known to be impossible in ASn,k [5, 16, 20].

Adopt-commit Objects. Our simulation relies on adopt-commit objects to coordi-
nate which messages are delivered in each simulated round. An adopt-commit object
AC, introduced in [12, 22], supports one operation propose(v) that returns a decision
(dec, v) where dec ∈ {adopt, commit}. The object satisfies the following properties:
Termination: Each invocation by a correct process terminates. Validity: If a process
decides (dec, v) then some process invoked AC.propose(v). Agreement: If a process
decides (commit, v), then every decision is (·, v). Convergence: If every process pro-
poses the same v, then (commit, v) is the only possible decision.

Note that these properties ensure that the only case when distinct values v are
returned by processes is when every process returns (adopt, ·). Wait-free implemen-

1For two vectors v and v′, v ⊆ v′ if ∀i,1 ≤ i ≤ n : v[i] �= ⊥ ⇒ v[i] = v′[i]. Recall that each register is
written to at most once in our simulations.



600 Algorithmica (2012) 62:595–629

tations of adopt-commit objects in ASn,kcan be found in [12, 22]. These implemen-
tations also satisfy: Commit Validity: Assume pj invokes AC.propose(v); then pj

cannot get back (commit, v′) with v �= v′.

3 Simulating Synchronous Views: a Lower Bound for k-Set Agreement

In this section, we present an algorithm for simulating executions of the partially
synchronous model ESn,t in the asynchronous system ASn,k . Assuming an algorithm
for solving k-set agreement in a window of synchrony of size at most � t

k
� + 1, we

use the simulation to derive a k-set agreement algorithm in ASn,k .2 This leads to a
contradiction, as k-set agreement is impossible in the ASn,k model.

Preliminaries. Let A be a protocol designed for the round based model ESn,t , and
let α be an execution of A. We can assume without loss of generality that algorithm
A directs each non-failed process to send a message to all processes in each round.3

A trace of the execution α is a sequence of vectors (REC1,REC2, . . .), with the prop-
erty that vector RECr is associated with round r and describes the set of messages
received by each process in that round. In particular, if process pi has not failed by
the end of round r , RECr [i] is the set of processes from which process pi receives
messages in round r . If pi has not failed by the end of round r , then we assume that
it always receives its own message in that round, i.e., pi ∈ RECr [i]. On the other
hand, if process pi crashes during round r , then RECr [i] = ⊥. Also, since a failed
(crashed) process does not recover, RECr [i] = ⊥ implies that RECr+1[i] = ⊥, and
pi /∈ RECr+1[j ] for each process pj that has not failed by the end of round r . More-
over, by our model assumptions, any set RECr [j ] �= ⊥ is of size at least n − t .

A round r is synchronous if every non-failed process receives a message from
each non-failed process in round r . A window of synchrony of size � is a sequence
of � consecutive synchronous rounds. Formally, rounds r1, . . . , r1 + � − 1 form a
window of synchrony if the following properties hold: (1) ∀r1 ≤ r < r1 + � − 1,∀i, j

such that RECr+1[j ] �= ⊥ and RECr [i] �= ⊥, RECr+1[j ] ⊆ RECr [i] and (2) ∀i, j

such that RECr [j ] �= ⊥ and RECr [i] �= ⊥, pj ∈ RECr [i].
We say that process pi has a synchronous view of rounds r ′, r ′ + 1, . . . , r in α if

the state of pi is the same at the end of round r and at the end of an execution α′ that
consists in r rounds and in which rounds r ′, r ′ + 1, . . . , r are synchronous.

Overview. The simulation pseudocode is presented in Fig. 1. The aim is to sim-
ulate an execution of algorithm A in model ESn,t in which some processes have
synchronous views of a large number of rounds, namely at least � t

k
� + 1 consecu-

tive rounds. The basic idea is similar to that of [12]—we simulate each synchronous
round by writing messages to shared memory, and we then run a weak agreement pro-
tocol to determine which messages to “deliver” to each simulated process. In order
to maintain synchronous views, we might have to mute some processes. Intuitively,

2It is essential for the parameter k of the set agreement problem to be the same as the maximum number
of failures k among the simulators, since we reduce from the impossibility of k-set agreement in ASn,k .
3Any algorithm A can be easily modified to satisfy this property.



Algorithmica (2012) 62:595–629 601

Parameters:1
Algorithm A, number of phases numP, round array [R1, . . . ,RnumP+1]2

Shared variables:3
AC[1..RnumP+1][1..n], array of adopt-commit objects4
DEC[1..n],VAL[1..RnumP+1][1..n], array of SWMR registers. Each entry is initially ⊥.5

Local variables:6
Si , sFlagi , variables with global scope7

procedure propose(vi ): start Task T1; start Task T2;8

Task T1:9
(_,mi) ← compute(0, vi , true) % messages for the first round10
for ρ = 1 to numP do11

% Begin a new phase:12
Si ← ∅ ; sFlagi ← true % these variables will be modified in simulate13
for r = Rρ to Rρ+1 − 1 do14

reci ← simulate(mi , r) % Simulate send/receive of round r .15
(di ,mi) ← compute(r, reci , sFlagi ) % Compute message for the next round.16
if di �= ⊥ then DEC[i].write(di ); stop T2; return di17

Task T2:18
repeat for j = 1 to n do deci [j ] ← DEC[i] until (∃� : deci [�] �= ⊥)19
stop T1; return deci [�]20

procedure simulate( mi , r ) % Simulate round r where pi sends message mi .21
reci ← ∅; VAL[r][i].write(mi)22
repeat viewi ← VAL[r].snapshot() until |{j : viewi [j ] = ⊥}| ≤ k23

Mi ← {j : viewi [j ] = ⊥} ;24

for j = 1 to n do25
if j ∈ Si ∪ Mi then statei [j ] ← AC[r][j ].propose(suspect)26
else statei [j ] ← AC[r][j ].propose(alive)27

if statei [j ] = (commit, suspect ) then Si ← Si ∪ {j}28
else if statei [j ] = (adopt, suspect ) then Si ← Si ∪ {j}; reci ← reci ∪ {〈j,VAL[r][j ]〉}29
else reci ← reci ∪ {〈j,VAL[r][j ]〉}30

% Complete view of round r , if necessary:31
if |reci | < n − t then reci ← {〈j, viewi [j ]〉 : viewi [j ] �= ⊥} ; sFlagi ← false32
if 〈i,mi 〉 /∈ reci then reci ← reci ∪ {〈i, viewi [i]〉} ; sFlagi ← false33

return reci34

Fig. 1 Simulating A in ASn,k , code for simulator pi

a muted process continues receiving messages, but its messages are not received by
other, non-muted processes. If the message of some process pj is not received by
some process pi in round r (this implies in a synchronous execution that pj fails in
round r), then allowing in round r + 1 the message of pj to be delivered to pi causes
the view of pi to be no longer synchronous. As our goal is to maintain a synchronous
view for at least one process, it might thus be required to mute some processes. Muted
processes may however receive arbitrary messages, even from other muted processes.
As long as no messages from muted processes are received by a non-muted process,
the views of the non-muted processes remain synchronous.

As we will see, in each simulated round, the messages from at most k non-muted
processes may be delivered to some but not all processes. Thus, the simulation mutes
at most k new processes per round, where k is the number of processes that may crash
in ASn,k . In the following, we refer to processes in ASn,kas simulators. As at most k



602 Algorithmica (2012) 62:595–629

simulated processes may be muted in a simulated round, by the end of the simulation
of the first � t

k
� simulated rounds, at most t simulated processes may have been muted.

Therefore, in round � t
k
�, a simulated process pi that has a synchronous view of the

first � t
k
� rounds may receive as few as n − t messages (but not fewer) from distinct

processes. More precisely, at most k� t
k
� processes are muted in the simulation of the

first � t
k
� rounds and in addition, at most k messages from non-muted processes might

be not delivered to pi in round � t
k
� + 1.

We are able to extend this synchronous view by one more round, i.e., we show
that in round �t/k� + 1, at least one process pj has a synchronous view of size
�t/k� + 1. Thus, assuming an algorithm where every process decides by the end of
round GST + �t/k� + 1, we conclude that simulated process pj must decide. Each
process is simulated by one simulator. If the simulator of pj does not fail, it then
can write this decision in shared memory thereby enabling every other simulator to
decide. Otherwise, the simulator of pj fails. In this case, we continue, repeating the
simulation for another �t/k� + 1 rounds, again resulting in either a process deciding
or the failure of its simulator. Eventually, after k + 1 repetitions (which we refer to as
phases), we argue that some process decides and its associated simulator does not fail.

This simulation implies a lower bound on the round complexity of k-set agreement
in ESn,t . We assume, for the sake of contradiction, that there exists an algorithm A for
ESn,t in which, for every execution, every correct process decides by the end of round
GST + �t/k� + 1. We then show that our simulation of A solves k-set agreement in
ASn,k , which is impossible [5, 16, 20].

3.1 Basic Setup

The simulation depends on three parameters: the algorithm A being simulated, the
number of phases numP, and an array R1,R2, . . . ,RnumP+1 where each Ri indicates
the first round in the ith phase, with R1 = 1. That is, each phase i consists in Ri+1 −
Ri rounds.

For process pi , the algorithm A is described by a function compute(r, rec, sFlag),
where r is a round number and rec a set of messages received by pi in round r . (The
third parameter, sFlag, indicates whether the view of pi of the rounds of the phase is
so far synchronous, and is used primarily in Sect. 4.) The compute function returns
a pair (di,mi), where mi is the message to be sent in the next round, and di is the
decision value or ⊥, if no decision has been reached. Without loss of generality, we
assume that each process sends the same message to all processes, including itself.

3.2 Simulating Synchronous Rounds

Each process in ASn,ksimulates one process in ESn,t . We will refer to the processes in
ASn,kas simulators. We denote simi the simulator in ASn,k that simulates the process
pi in ESn,t . The simulation begins with a call to propose(vi) (line 8), where vi is
simi ’s proposal (recall that the aim of the simulators is to solve k-set agreement in
ASn,k). The simulation is divided into phases (lines 11–17); each phase is divided
into rounds.

Simulation Overview. The simulation at simi begins with an invocation of
propose(vi) (line 8), where vi is simi ’s proposal and also the input to A of the



Algorithmica (2012) 62:595–629 603

simulated process pi . This launches two tasks T 1 and T 2 that run in parallel. In task
T 1 (lines 9–17), simi simulates steps of algorithm A in order to obtain a decision
di for pi . When a decision is reached, simi writes it in DEC[i], decides, and exits
(line 17). In task T 2 (lines 18–20), simi periodically reads the shared array DEC.
When it observes a non-⊥ value, the simulator decides that value and exits.

Round Overview. In order to simulate round r (lines 14–17), simulator simi invokes
simulate(mi, r) (line 15), where mi is pi ’s message for round r , which was computed
at the end of the simulation of the previous round. The simulate procedure returns a
set of pairs 〈j,mj 〉, where mj is the message received from pj by pi in the simulated
round r , and modifies the local variables Si and sFlagi . The simulator then calls the
compute function (line 16), which returns di , a possible decision, and mi , the next
message to send.

Failed, Muted and Suspected Processes. A simulated process pi fails in the simu-
lated execution whenever its dedicated simulator simi fails. Let us fix a phase ρ. To
simplify the discussion, the rounds of this phase are numbered 1, . . . ,R. The goal is
to simulate an execution in which in each phase a process has a synchronous view of
the rounds of the phase.

To that end, each simulator maintains a set of suspected processes Si and a flag
sFlagi . The set is emptied and the flag is set to true at the beginning of each phase
(line 11). sFlagi = true at the end of round r indicates that process pi has a syn-
chronous view of rounds 1, . . . , r . The fact that process pj is in Si at the end of
round r means that simulator simi suspects that there exists some round r ′ ≤ r in
which the message of pj was not delivered to every process. Suspicions might not
be accurate but they are complete in the following sense: if the message of pj is
not delivered to some non-failed process in round r ′, then pj is suspected by every
simulator by the end of the next round r ′ + 1. Process pj is muted at round r if it
is suspected by every non-failed simulator at the end of round r . As within a phase
no processes are ever removed from the sets Si , a muted process never recovers from
this state during a phase. Furthermore, we ensure that for every muted process pj

at round r , no process pi with sFlagi = true delivers a message from pj in round
r + 1, for every round r of phase ρ. This property is central to show the existence of
a process with a synchronous view at the end of each phase.

Simulating a Round. The simulate function (lines 21–34) carries out the send/receive
step. For round r , simulator simi writes the message mi into the register VAL[r][i]
(line 22), and then performs repeated snapshots of VAL[r] (line 23) to discover the
messages proposed by other simulators. Since k simulators may fail in ASn,k , the
simulator cannot wait for all n simulators to write a value to the array VAL[r]. As
soon as simi discovers (n − k) messages in its snapshot of VAL[r], it continues. The
variable Mi then stores the set of up to k processes from which a message has not
been received in this simulated round. Since the array VAL[r] is read by snapshot
operations, the sets Mi are ordered by containment. Moreover, the largest set is of
size at most k.

The simulators then agree on which messages to deliver in round r using a se-
quence of n adopt-commit objects (lines 25–30). Simulator simi records the set of



604 Algorithmica (2012) 62:595–629

messages pi receives in round r in the local variable reci , which is empty at the be-
ginning of the simulation of the round (line 22). If a simulator simi misses a message
from a process pj in round r (i.e., if pj ∈ Mi ), or if simulator simi suspects pj (i.e.,
if pj ∈ Si ), then it proposes suspecting pj to the j th adopt-commit object AC[r][j ]
of the sequence (line 26). Otherwise, the simulator proposes that pj is alive (line 27).
Three decisions are possible.

1. (commit, suspect) (line 28): In this case, the simulator mutes process pj in round
r . By agreement, we know that every simulator either adopts or commits to sus-
pecting pj , and so every non-failed simulator sim� adds pj to S�. The round r

message mj of pj (if any) is not received by pi . This is materialized by the fact
that reci remains unchanged.

2. (adopt, suspect) (line 29): In this case, we cannot determine whether pj is sim-
ulated as muted or not in round r , as the decision of other simulators may be
(adopt, suspect), (commit, suspect), or (adopt,alive); even so, to be safe, simula-
tor simi adds pj to Si . We know, however, by validity, that some process proposed
pj as alive, and so VAL[r][j ] must contains the message from pj , which we add
to the set reci of messages to be received.

3. (·, alive) (line 30): As in the second case, we add the message from VAL[r][j ] to
reci .

Notice that if any simulator commits to suspect pj , then by agreement every other
simulator sim� either adopts or commits to suspect pj and adds pj to S�. Then, in
the following round, every simulator proposes suspect pj (line 26) which implies
by convergence that every simulator commits to suspect pj . It thus follows that the
message from pj , if any, is ignored. By using the adopt-commit objects in this way,
we ensure that once a process is simulated as muted, it stays in this state in each
subsequent round.

The End of the Phase. This approach results in not delivering messages from up to k

new processes in each round (see Lemma 6). Eventually, the set of messages received
by a process may fall below n − t , the bound on the minimal number of messages
received per round in ESn,t . In this case, not all simulated processes may maintain a
synchronous view. We establish however the existence of a process that receives at
least n− t messages per round and has a synchronous view of size � t

k
�+ 1 at the end

of the phase (Lemma 4).
If simulator simi discovers that the set of messages reci is too small or does not

contain the message of pi , the set reci is augmented to ensure that it contains enough
messages (|reci | ≥ n − t , line 32) and that it contains the round r message of pi

(line 33). This augmentation is always possible since the number of missing messages
in the array VAL[r] is bounded by k ≤ t and hence pi observes at least n − t round r

messages. Since the view of pi is then no longer synchronous, the flag sFlagi is set
to false.

Finally, we examine whether and when processes decide. Assume we are simulat-
ing an execution of a set agreement protocol that decides by round GST + �t/k� + 1,
and assume that each phase is of size at least �t/k� + 1. Then, since at least one sim-
ulated process pi has a synchronous view of the entire phase, we conclude that pi



Algorithmica (2012) 62:595–629 605

decides by the end of the phase. Either the simulator of pi fails, or it writes the deci-
sion to the shared memory DEC[i]. In the latter case, every other simulator eventually
observes the decision (lines 18–20) and terminates. Thus, if no decision is reached,
then a simulator fails in each phase. Since there are only k possible failures in ASn,k ,
by the end of phase k +1 every simulator reaches a decision, completing a successful
simulation of a k-set agreement protocol for ESn,t in ASn,k .

3.3 Analysis of the Simulation

We now provide some basic lemmas showing that the simulation is correct. The main
claims are Lemma 2, which shows that the simulated execution is a correct execution
of ESn,t , and Lemma 4, which shows that in every phase, there is at least one process
that has a synchronous view of the entire phase.

We say that a simulator participates in the simulation of round r if it reaches the
r-th iteration of the inner loop of task T1 (line 15). When we refer to the value of the
variable vari of some simulator simi at some point in the execution, we implicitly
assume that at this point simi has not failed. We first argue that the simulation is
non-blocking. The only blocking statement is the repeat on line 23; since there are
at most k failures, it never delays a simulator forever:

Lemma 1 If no simulator decides and writes its value to DEC prior to round r , then
no simulator is blocked forever while simulating round r .

Proof The only possibility for a simulator to be blocked while simulating a round
is in the repeat statement of line 23. Fix r ′ ≤ r to be the smallest round such that
an invocation of simulate(·, r ′) by a correct simulator pi never terminates. As no
simulator has decided while simulating rounds 1, . . . , r ′ − 1, and there are at most k

failures possible in the system, at least n − k simulators eventually start simulating
round r ′. Therefore, the number of non-⊥ entries in VAL[r ′] is eventually ≥ n − k.
Consequently, every participating simulator terminates the simulation of round r ′. �

Next, we observe that the algorithm simulates an execution of A in ESn,t , meaning
that there is an execution of ESn,t where each process sends and receives the same
messages as in the simulation.

Lemma 2 For every r ≥ 1, there exists an execution α of ESn,t executing A where in
every round r ′ ≤ r of α, every process pj ∈ Π receives exactly the messages returned
by simulate(mi, r

′).

Proof For contradiction, let r ≥ 1 be the first round for which no such execution α

exists. Let α be the r −1 round execution that satisfies the requirements of the lemma
through round r − 1, i.e., such that for every pj ∈ Π , for every round r ′ ≤ r − 1,
process pj receives exactly the set of messages returned by simulate(mj , r

′) in round
r ′ of α.

Fix some process pj that does not receive the messages returned by the call to
simulate(mj , r) in round r of α. First, it is easy to observe that every message returned



606 Algorithmica (2012) 62:595–629

by the call to simulate(mj , r) was sent by some process in round r of α, as every
such message was previously written in VAL[r], and hence was computed (line 16)
at the end of round r − 1. Second, notice that the set rec returned is of size at least
n − t : otherwise, additional messages are selected from viewj to ensure that this is
the case (line 32); moreover, it is clear that the simulate procedure only proceeds
when |viewi | ≥ n − k. Thus we can extend the execution α with the delivery to pj

of the messages returned by the call to simulate(mj , r). Execution α remains a valid
execution of ESn,t , contradicting our hypothesis that no such execution existed. �

For each simulator pi , let RECr
i denote the value of the variable reci after pi has

executed the adopt-commit protocol, and before the completion steps of line 32 and
line 33. That is, RECr

i is the value of reci on line 31 of the instance simulate(mi, r).
We say that pj ∈ RECi if 〈j,_〉 ∈ reci . Let Sr

i be the value of Si when simi completes
the simulation of round r . The set S[r] = ⋃

simi∈Π Sr
i is the set of suspected processes

at the end of the simulation of round r . We now show that, within a phase, each RECr
i

set could have been received in a synchronous execution. In particular, if a process pi

does not receive a message in round r from some process p� (p� /∈ RECr
i ), then p� is

simulated as muted in round r + 1, and no sets RECr ′
j with r ′ > r ever again contain

a message from p�. This follows from the agreement and convergence properties of
adopt-commit objects.

Lemma 3 For every round r in phase ρ (except for the last), for every pi,pj ∈ Π :
RECr+1

j ⊆ RECr
i .

Proof Fix pi,p� and r such that for some round r , p� /∈ RECr
i . Then we conclude that

the status of p� from pi ’s point of view is (commit, suspect). Due to the agreement
property of adopt-commit, for every participating simulator simj , the state of p� is
(·, suspect), and so simj adds p� to Sr

j . Thus, in round r + 1, every participating
simulator proposes suspect for p�. Due to the convergence property of adopt-commit,
every simulator gets back (commit, suspect) for p�, and hence no set RECr+1

j includes
p�. �

We now show that some process has a synchronous view of size r − Rρ + 1 for
every round Rρ ≤ r ≤ Rρ+1 − 1. In other words, there exists an execution α of the
system ESn,t in which (1) some process pi receives exactly the same sets of messages
in α as in the simulation and, (2) every round Rρ, . . . , r in α is synchronous.

Lemma 4 Let r be some arbitrary round in phase ρ. If there is some simulator
simi such that pi ∈ RECr

i and |RECr
i | ≥ n − f , for some f ≤ t , then there is an

execution α of ESn,t executing A such that (1) every round Rρ, . . . , r is synchronous
in α, (2) process pi receives exactly the set of messages returned by simulate(_, r ′) in
each round r ′ of α and, (3) at most f processes fail in α.

Proof By Lemma 2, there exists a (Rρ − 1)-rounds execution β of system ESn,t in
which each process receives exactly the set of messages returned by the successive
invocations of simulate(_, r ′′) in each round 1 ≤ r ′′ ≤ Rρ − 1. Let γ be the suffix of



Algorithmica (2012) 62:595–629 607

β defined as follows. Without loss of generality, we assume that in β no process has
failed by the end of round Rρ − 1. For every round r ′ in {Rρ, . . . , r − 1}:
1. ∀pj ∈ Π , process pj fails in round r ′ if and only if pj has not failed prior to

round r ′ and there exists a simulator sim� that does not simulate the reception of
the message from pj in round r ′, i.e., pj /∈ RECr ′

� .
2. For every pair of processes pj ,p� that have not failed by the end of round r ′ − 1

according to the previous item, process p� receives a message from process pj in
round r ′ if and only if we have at simulator sim� pj ∈ RECr ′

� .

In round r ′ = r , process pj ∈ Π fails if and only if pj has not failed by the end of
round r − 1 and pj /∈ RECr

i . In that case, no processes receive a message from pj in
round r .

Let α = β · γ . Consider a round r ′ in {Rρ, . . . , r}. Let pj and p� denote a pair of
processes that have not failed by the end of round r ′. It follows from item 1 above
that pj ∈ RECr ′

� and therefore p� receives a message from pj in round r ′. Moreover,
for every round r ′ < r in phase ρ and every pair of processes pj ,p� that have not

failed before round r ′ + 1, RECr ′+1
i ⊆ RECr ′

j by Lemma 3. Thus, γ forms a window
of synchrony. Finally, by construction, at most f failures occur in execution α and
process pi receives the same sets of messages in α and in the simulation. �

Let Mr
i denote the set of simulator ids from which simi misses messages at line 24

in the invocation of simulate(·, r). Let viewr
i denote the value of the variable viewi at

simulator simi after the repeat loop (line 23). We next establish that for every round
r , the sets Mr

i at different simulators are ordered by containment.

Lemma 5 Let i1 ≤ · · · ≤ ix the ids of the simulators that invoke simulate(·, r)
and execute line 24 in these instances. Denote X this set. There exists a bijection
σ : X → {1, . . . , |X|} such that Mr

iσ(1)
⊆ · · · ⊆ Mr

iσ(x)
. Moreover, we have viewr

iσ(1)
⊇

· · · ⊇ viewr
iσ(x)

.

Proof The array VAL[r] is read by each simulator simij in snapshots. By the contain-
ment property of snapshot operations, the views viewr

ij
obtained by each simulator

at line 23 are ordered by containment. Let σ : X → {1, . . . , |X|} a bijection such that
σ(ij ) ≤ σ(i�) if and only if viewiσ (j) ⊇ viewiσ (�), for every ij , i� ∈ X. It then follows
that Mr

iσ(1)
⊆ · · · ⊆ Mr

iσ(x)
since Mr

i = {1, . . . , n}\{� : viewi[�] = ⊥}4 for every i ∈ X.
The second part of the lemma follows from the definition of σ . �

The next lemma shows a bound on the increase in suspicions in each simulated
round:

Lemma 6 For every r in phase ρ (except for the last), |S[r + 1]\S[r]| ≤ k.

4Recall that for two size n vectors v, v′, v ⊆ v′ if and only if ∀i,1 ≤ i ≤ n : v[i] �= ⊥ ⇒ v[i] = v′[i], given
that our simulation has the property that a register is written to only once.



608 Algorithmica (2012) 62:595–629

Proof During the simulation of round r + 1, new suspicions may only be introduced
when some simulator simi misses a round r +1 message at line line 23 from a process
that has not been suspected before. Observe also that for every simulator simi , the
set of missed messages has the property that |Mr

i | ≤ k. Moreover, the sets Mr
i at

different simulators are ordered by containment (Lemma 5). Consequently, at most
k new suspicions are introduced in the simulation of round r + 1, from which we
conclude that |S[r + 1]\S[r]| ≤ k. �

Finally, we show that new suspicions do not necessarily imply that less messages
are received by all processes. Even when there are x new processes suspected in
a simulated round, there are some processes that deliver the messages from these
suspected processes. This fact allows us to extend the simulation one round further
than it might be expected.

Lemma 7 Let r be a round in phase ρ such that |S[r − 1]| ≤ f for some f ≤ t . Let
Δ = S[r]\S[r − 1]. (1) At least n − |S[r]| simulators simi are such that pi ∈ RECr

i

and |RECr
i | ≥ n − |S[r]|; (2) For every x ≤ |Δ|, there exist x simulators simi ∈ Δ

such that pi ∈ RECr
i and |RECr

i | ≥ n − f − (x − 1).

Proof Let j such that pj /∈ S[r]. By definition of S[r], no simulators decide
(commit, suspect) of (adopt, suspect) for pj in round r . Hence, every simulator simi

adds pj to RECr
i (line 30). This holds in particular for each simulator simi such that

i ∈ Π \ S[r] which proves (1).
For (2), let C = Π\S[r − 1] denote the set of processes that have not been sus-

pected by the end of round r − 1. Fix x ≤ |Δ|. Consider the simulation of round r .
We order the simulators in Δ according to the size of their snapshot5 of VAL[r] at the
end of the repeat loop (line 23), breaking ties using the order of ids. Since snapshots
are related by containment, a simulator with higher rank has a larger snapshot, miss-
ing fewer messages from other simulators. Notice also that due to the self-inclusion
property of the snapshot operations, a simulator always finds its own round r mes-
sage included in the snapshot.

Consider the last x simulators simy1 , . . . , simyx in the order defined above, and fix
some simulator simy�

for 1 ≤ � ≤ x. It follows from Lemma 5 that (1) Myx ⊆ · · · ⊆
My2 ⊆ My1 and, (2) y� /∈ My�

. Observe also that by definition of S[r], each simulator
sees a value in VAL[r] for every process pi ∈ Π\S[r]. And the only ids in C that
can be missed by simy�

are the ids of the simulators that are ordered after it, i.e.,
C ∩ My�

⊆ {y�+1, . . . , yx}.
Consider the proposals made by the simulator simy�

for the adopt-commit ob-
jects (line 25). Notice that simy�

proposes suspect only for processes in Sy�
∪ My�

.
By definition of C , C ∩ (Sy�

∪ My�
) = C ∩ My�

⊆ {y�+1, . . . , yx}. Consequently, for
each i ∈ C\{y�+1, . . . , yx}, simy�

proposes (alive) to the adopt-commit object asso-
ciated with pi . Therefore, it follows from the commit validity property of adopt-
commit objects that simy�

cannot decide (commit, suspect) for each process in the
set C\{y�+1, . . . , yx}, from which we obtain that C\{y�+1, . . . , yx} ⊆ RECr

y�
. Hence,

5Here, the size of a snapshot in the number of non-⊥ entries in the vector view.



Algorithmica (2012) 62:595–629 609

|RECr
y�

| ≥ |C| − (x − �) = |Π | − |S[r − 1]| ≥ n − f − (x − �) and py�
∈ RECr

y�
, as

desired. �

3.4 Lower Bound on Set Agreement in ESn,t

We now show how to use the simulation technique to prove a lower bound on
set agreement in ESn,t . We begin, for the sake of contradiction, by assuming that
algorithm A solves k-set agreement in ESn,t in any window of synchrony of size
�t/k� + 1. The simulation uses k + 1 phases, each of length �t/k� + 1, i.e., Rρ =
(ρ − 1)(�t/k� + 1) + 1. We show that the resulting simulation of A solves k-set
agreement in ASn,k , which is known to be impossible, implying that no such algo-
rithm A exists. Therefore, any k-set agreement protocol requires at least �t/k� + 2
synchronous rounds to decide.

In Sect. 3.3, we showed that the simulation is consistent with an execution of
ESn,t . The crux of the proof is to establish that at least one simulated process has a
synchronous view of the rounds of each phase. Since each phase is of length �t/k�+
1, and since A guarantees a decision in a window of synchrony of size �t/k� + 1,
either such a process decides by the end the phase, having seen the entire phase as
synchronous, or its dedicated simulator fails.

Informally, Lemma 4 indicates that whenever RECr
i is the set of messages deliv-

ered to pi in round r , pi has a synchronous view of the first r −Rρ + 1 rounds of the
phase and sees f = n − |RECr

i | failures. That is, at the end of round r , the simulated
execution is indistinguishable for pi from an execution in which rounds Rρ, . . . , r

are synchronous and no more than f failures occur. As at most t processes may fail
in model ESn,t , we want to show that there exists simulator simi such that pi ∈ RECR

i

and |RECR
i | ≥ n − t , where R is the last round of the phase. By the code, the sets of

messages received by the simulated process pi is then RECR
i , and thus per Lemma 4,

pi has a synchronous view of the entire phase. The desired property is derived from
Lemmas 6 and 7. From Lemma 6, we obtain an upper bound on the number of sus-
pected processes at the end of round R − 1, namely at most t , as well as an upper
bound, k, on the number of newly suspected processes in round R. Recall that each
suspected processes pj may not be included in sets RECR

i . This, however, may not
hold for every simulator: by part (2) of Lemma 7, we have that, |RECR

i | ≥ n− t for at
least one simulator simi . Moreover, for such a simulator, pi ∈ RECR

i .

Lemma 8 For every phase ρ, if no simulators decide and write their decision to
DEC prior to the end of phase ρ, then at least one simulator that begins phase ρ fails
before beginning phase ρ + 1.

Proof Assume for the sake of contradiction that no simulators that begin phase ρ fail
prior to the end of phase ρ, and that no simulators decide by the end of phase ρ.

Let Rρ, . . . ,RD be the � t
k
� + 1 simulated rounds of phase ρ. First, we bound

the number of suspected processes |S[RD − 1]| at the end of round RD − 1: at the
beginning of the phase, S[Rρ] = ∅ since every simulator empties Si at the beginning
of the phase (line 13); per Lemma 6, each round introduces at most k new suspicions;



610 Algorithmica (2012) 62:595–629

hence, |S[RD − 1]| ≤ k�t/k� ≤ t . Consequently, the precondition of Lemma 7 is
satisfied.

Let Δ = S[RD] \ S[RD − 1]. If Δ = ∅, there must exist a simulator sim� such that
p� ∈ REC

RD

� and |REC
RD

� | ≥ n − |S[RD]| ≥ n − t per property (1) of Lemma 7. If

Δ �= ∅, per Lemma 7(2), there must also exist a simulator sim� such that |REC
RD

� | ≥
n − t and p� ∈ REC

RD

� .
Finally, by Lemma 4, process p� has observed a valid execution of algorithm A in

system ESn,t in which rounds Rρ, . . . ,RD appear synchronous to p�. Therefore, since
there are �t/k� + 1 rounds in phase ρ, and since algorithm A guarantees a decision
in any window of synchrony of size �t/k� + 1, either process p� outputs a decision
at the end of round RD and its simulator writes it to DEC or the simulator of p� fails,
leading to a contradiction. �

We conclude that our simulation of algorithm A solves k-set agreement in ASn,k .
Agreement follows from the fact that our simulation is a valid simulation of A in
ESn,t (Lemma 2), and termination follows from Lemma 8, which shows that if there
is no decision, then at least one simulator fails in every phase; since there are only k

failures in ASn,k , by the end of phase k + 1, some simulator must decide.

Lemma 9 The algorithm in Fig. 1 simulating A solves k-set agreement in ASn,k .

Proof Termination: Eventually, every correct simulator decides: Assume for the sake
of contradiction that some correct simulator never decides, which implies that no
simulator ever writes out a decision to DEC. By Lemma 8, we know that in each phase
ρ, some simulator must fail. Moreover, by Lemma 1, simulators continue to complete
each phase. Thus, k + 1 simulators fail by the end of phase k + 1, contradicting the
fact that most k simulators can fail.

Agreement: |{v | ∃i : DEC[i] = v ∧ v �= ⊥}| ≤ k, Validity: ∀i : DEC[i] �= ⊥ ⇒
DEC[i] = v, where v is the initial value of some process: From Lemma 2, we know
that the sets of messages produced at each round by the simulation are the sets of
messages received by the processes in some execution of A in system ESn,t . Thus,
agreement and validity follows immediately from the same properties of A. �

Since k-set agreement is impossible in ASn,k , we conclude:

Theorem 1 There is no algorithm A for ESn,t that decides by round GST+�t/k�+1,
i.e., within a window of synchrony of size �t/k� + 1.

4 The Complexity of Early Deciding Synchronous Set Agreement

We now show that the simulation presented in Sect. 3 can be used to derive lower
bounds on the round complexity of early deciding synchronous k-set agreement. We
say that a k-set agreement algorithm A is early deciding if in every execution in
which at most f failures occur, processes decide by the end of some early round
R + 1 < �t/k� + 1. We make this more precise as follows.



Algorithmica (2012) 62:595–629 611

Let A denote a synchronous k-set agreement algorithm. As our purpose is to estab-
lish lower bounds on the round complexity of set agreement algorithms, we assume
without loss of generality that in every execution of A every process that has not
failed sends a message to every process, including itself, in every round.6 Given an
execution of an algorithm that satisfies this property, we say that a process pi sees
at most f failures by the end of round r if pi receives at least n − f messages in
round r . That is, at the end of round r , process pi cannot distinguish the current
execution from an execution in which at most f failures occur.

Definition 1 Let d and R be positive integers, and let A be a k-set agreement algo-
rithm in the Sn,t model. We say that A is in ED(R,d) if in every run of A, for every
f such that �f

k
� ≤ R, among the x processes that see at most f failures, at least

min(x, d) of them decide by the end of round R + 1.

The main result of this section shows that every k-set agreement algorithm in
ED(R,d) pays a penalty for deciding early in terms of its worst-case running time.

4.1 Main Result and Corollaries

The following theorem demonstrates an inescapable tradeoff between the number d

of processes that can decide early, the early decision round R + 1, and the worst-case
decision round RD = �t/k� + 1 + E for deciding under any circumstances.

Theorem 2 Let k, t,R be integers such that 0 < k ≤ t < n and � k
d
� < � t

k
�−R. Then,

for any d > 0, the following hold:

1. If d ≥ k, then there is no algorithm in ED(R,d);
2. If d < k, then any algorithm in ED(R,d) has a run in which some process de-

cides at round RD = (� t
k
� + 1 + E(d, k, t,R)) or later, where E(d, k, t,R) =

� d(� t
k
�−R−1)−k+(t mod k)

k−d
�.

We know that every k-set agreement algorithm tolerating t failures requires
�t/k�+ 1 rounds to decide in the worst-case [9, 12]. This theorem shows that achiev-
ing property ED(R,d) implies sub-optimal worst case time complexity. We say that
E is the price of deciding very early.

Before discussing the proof, we state two corollaries. The first shows a (global)
lower bound on the number of rounds for every process to decide early. It follows
from Theorem 2 where d = n:

Corollary 1 Let k, t,R be integers such that 0 < k ≤ t < n and 1 < � t
k
� − R. Every

k-set agreement algorithm in Sn,t has a run with f failures, for some f such that
�f/k� ≤ R, in which some process decides after round R + 1.

6If this property does not hold for algorithm A, it is not hard to see that A can be modified to satisfy it
while retaining the same round complexity.



612 Algorithmica (2012) 62:595–629

Proof For the sake of contradiction, let B be a k-set agreement algorithm such that
for every f, �f

k
� ≤ R, in every run with f failures, every process decides by the end

of round R + 1. Notice that in every run of B, each process that observes f failures
with �f

k
� ≤ R must decide by the end of round R + 1. Thus B is in ED(R,d) for

d ≥ k, which implies that B does not exist. �

This bound is tight; matching algorithms can be found in [14, 19]. Herlihy et
al. prove the same result in [15].7 However, their proof is based on combinatorial
algebraic topology, whereas we rely on algorithmic reduction.

The second corollary states a (local) lower bound on the number of rounds needed
for even one process to decide early, and relies on Theorem 2 where d = 1:

Corollary 2 Let k, t,R be integers such that 1 < k ≤ t < n, and 2k − 1 < � t
k
� − R.

Every k-set agreement algorithm in Sn,t with worst-case round complexity �t/k� + 1
has a run with f failures, for f such that �f/k� ≤ R, in which no process decides by
the end of round R + 1.

Proof Suppose for contradiction that there exists an algorithm B with worst-case
round complexity �t/k� + 1 such that in any run with f failures, at least one pro-
cess decides by the end of round R + 1. Then B is in ED(R,1). Note that for

R ≤ � t
k
� − 2k and d = 1, E(d, t, k,R) = � (� t

k
�−R−1)−k+(t mod k)

k−1 � ≥ 1. Therefore, the
worst-case complexity of any algorithm in ED(R,1) is at least �t/k�+2 by Theorem
2: a contradiction. �

A complementary local early deciding lower bound is derived in [14], for systems
with an unbounded number of processes, in which an unbounded number of failures
can occur. The two results are incomparable, since the models considered are dis-
tinct. By contrast, our theorem holds in the standard model in which the number of
processes n and the number of failures t are both bounded and known.

Thus Theorem 2 not only allows us to derive previous lower bounds on local and
global early decision, but also unifies those results by considering the more general
question of the worst-case round complexity, given d processes that decide early.

4.2 Overview of the Analysis

Fix parameters k, t,R and d,E matching the conditions of Theorem 2. In this section,
we focus on the (interesting) case where d ≤ k + 1 and E ≥ 0. For contradiction,
assume that there exists an early deciding k-set agreement algorithm A in ED(R,d)

such that d ≥ k or that has worst case round complexity RD < � t
k
�+1+E. We show

that this implies the existence of a k-set agreement algorithm in ASn,kby simulating A
using the algorithm described in Fig. 1 with only one phase of length RD = �t/k� +
1 + E.

7Although, for technical reasons, the statements of the results are expressed differently, a careful analysis
of the arguments reveals that the claims are equivalent.



Algorithmica (2012) 62:595–629 613

Assume, without loss of generality, that the compute(·, ·, sFlag) procedure for al-
gorithm A always returns (⊥,�) if sFlag = false. (In the simulated execution, a pro-
cess never receives � as a message since a process “sending” �, i.e., whose simulator
writes � to VAL is muted—see Lemma 10.)

The crux of the proof lies in identifying simulated processes that observe a syn-
chronous execution with (1) no more than f failures, where �f/k� ≤ R, by the end of
round R + 1 or (2) no more than t failures by the end of round RD < �t/k� + 1 + E.
Such a process decides because A is in the class ED(R,d) and RD is the worst-case
round complexity of A. If there are at least k + 1 such processes, the dedicated sim-
ulator of at least one them is correct. This simulator can write the decision in shared
memory, enabling other simulators to decide.

By a careful analysis of the sets of messages delivered to the processes in the first
R + 1 rounds of the simulation, we identify a non-empty set D of processes that
either see less than f failures at the end of round R + 1, or whose simulator fails
while simulating the first R + 1 rounds (Lemma 11).

A simulator whose simulated process decides writes this decision to shared mem-
ory, allowing this value to be decided by other simulators (line 17). If this does not oc-
cur, the simulation of rounds r > R+1 proceeds with at most k−|D| failures remain-
ing among the simulators. Thus we can simulate “more” rounds (Lemma 12). We are
then able to identify a set of k + 1 − |D| processes that see at most t failures at the
end of round RD , from which we conclude that at least one correct simulator obtains
a decision (Lemmas 13 and 14). Finally, as there exists a single run of Sn,t executing
A in which each process receives the same set of messages (Lemma 15), we conclude
that at most k proposed values are decided.

4.3 Proof of Theorem 2

We proceed by contradiction. We assume the existence of an algorithm A in ED(R,d)

that solves k-set agreement in Sn,t such that d ≥ k or with worst-case round complex-
ity RD < � t

k
� + E + 1. Notice if E < 0, A trivially does not exist since every k-set

agreement has a run in which at least one correct process has not decided by the end
of round �t/k� [9, 12]. So, in the following we suppose that E(d, t, k,R) ≥ 0. More-
over, we consider without loss of generality that 1 ≤ d ≤ k + 1, as each algorithm in
ED(R,d) is also in ED(R,d ′) for every d ′ < d .

Notation. We first fix some notation.

– Let F [r] denote the set of processes pi whose dedicated simulator simi has failed
before starting the simulation of round r + 1.

– Let D[r] denote the set of processes pi whose dedicated simulator has decided
before starting the simulation of round r + 1.

– As in Sect. 3.3, S[r] = ⋃
pi∈{p1,...,pn} Sr

i is the set of the suspected processes at the
end of the simulation of round r .

Similarly, RECr
i is the value of the variable reci at simulator simi at line 31 of the

instance simulate(mi, r) (and before the completion steps of line 32 and line 33).
– Let G[r] = {pi : pi ∈ RECr

i ∧ |RECr
i | ≥ n − t}. G[r] is the set of processes pi that

have sFlagi = true at the end of round r . For each process pi ∈ G[r], pi receives



614 Algorithmica (2012) 62:595–629

in round r of the simulated execution a message from each process pj ∈ RECr
i .

None of the processes in G[r] have been muted by the end of round r .
– RD is the worst-case decision round for algorithm A.

Notice that Lemmas 1, 3, 4, 5 , 6 and 7 refer to only one phase of the simulation.
Therefore, they still hold in the context of this proof. First, we use Lemma 3 to obtain
that if a process is not in G[r] for round r , then none of the processes in G[r + 1]
will receive its messages in the simulation of round r + 1. In other words, G[r] is the
set of alive processes at the end of round r in the simulated execution.

Lemma 10 For every round r ∈ {1, . . . ,RD − 1} and process p� ∈ Π , if p� /∈ G[r],
for all processes pi ∈ G[r + 1], p� /∈ RECr+1

i .

Proof Assume that p� /∈ G[r]. By definition of G[r], p� /∈ RECr
� ∨ |RECr

�| < n − t .
Consider a process pi ∈ G[r + 1]. By Lemma 3, RECr+1

i ⊆ RECr
�. |RECr+1

i | ≥ n − t

since pi ∈ G[r + 1]. Therefore, |RECr
�| ≥ n − t and thus p� /∈ RECr+1

i . �

The following lemma is central to the proof. It states that at least min(k, d) simu-
lators decide or fail before they start simulating round R + 2.

As algorithm A is in the class ED(R,d), a process that has a synchronous view
of the first R + 1 rounds in which no more than fm = kR + k − 1 failures occur
might decide. We notice that (1) “late” simulators, namely simulators associated with
processes that are newly suspected in round R + 1, see at most fm failures (putting
together Lemmas 7(2) and 6, which gives an upper bound on |S[R]|). Moreover,
if at most kR + k − 1 suspicions are generated, i.e., (2) |S[R + 1]| ≤ kR + k − 1,
each non suspected process observes at most fm failures at the end of round R + 1
(Lemma 7(1)). By combining (1) and (2), we are able to identify at least min(k, d)

simulators that either decide or fail, which proves the lemma.

Lemma 11 |D[R + 1] ∪ F [R + 1]| ≥ min(k, d).

Proof Let fm = kR + (k − 1). Let pi be a process such that pi ∈ RECR+1
i and

|RECR+1
i | ≥ n − fm, i.e., simulator simi simulates the reception of at least n − fm

messages including a message from pi in round R + 1. We know by Lemma 4 that
there is a an (R+1)-rounds execution α of system Sn,t with f ≤ fm failures in which,
for every round r , pi receives exactly messages recr

i . Therefore, pi may decide by
the end of round R + 1 as algorithm A is in the class ED(R,d). Let CD be the set of
processes that may decide in this way by the end of round R + 1.

Next, let Δ = S[R + 1] \ S[R] be the set of processes that are newly suspected
during the simulation of round R + 1. Let pj be a process in Δ. It follows from
Lemma 7 that pj ∈ RECR+1

j and |RECR+1
j | ≥ n−(|S[R]|+|Δ|−1). By Lemma 6 and

as no processes are initially suspected, |S[R]| ≤ kR. Also, the same lemma implies
that |Δ| ≤ k. We thus obtain |RECR+1

j | ≥ n − ((k + 1)R − 1) = n − fm. Hence, for
every process in Δ, the simulated execution is indistinguishable from a (R + 1)-
rounds synchronous execution in which at most fm failures occur. Thus, Δ ⊆ CD.



Algorithmica (2012) 62:595–629 615

Consider now some process pj ∈ Π \ S[R + 1]. By Lemma 7(1), pj ∈ RECR+1
j

and |RECR+1
j | ≥ n−|S[R+1]| = n−(|S[R]|+|Δ|). If |Δ| ≤ k−1, then |RECR+1

j | ≥
n− (kR + k − 1) = n−fm and thus Π \S[R + 1] ⊆ CD. Therefore, Δ∪ (Π \S[R +
1]) ⊆ CD, from which we obtain that |CD| ≥ |Δ ∪ (Π \ S[R + 1])| = |Π \ S[R]| ≥
n − kR ≥ n − k(� t

k
� − 1) ≥ k + 1 ≥ d , as n − t ≥ 1. Otherwise, we have |Δ| = k and

thus, as Δ ⊆ CD, |CD| ≥ k. Therefore in both cases we have |CD| ≥ min(k, d).
As algorithm A is in the class ED(R,d), at least min(|CD|, d) ≥ min(k, d) pro-

cesses in CD decide by the end of round R + 1. A simulator whose simulated process
decides departs from the simulation and decides (line 17), unless it fails. Hence, we
have |F [R + 1] ∪ D[R + 1]| ≥ min(d, k). �

We now analyze suspicions generated in the simulations of the rounds r ≥ R + 3.

Lemma 12 For every r ≥ R + 3, |S[r] \ S[r − 1]| ≤ k − min(k, d).

Proof Let us first observe that a simulator simi that has decided or failed before
starting to simulate round r does not participate in the simulation of round r . More
precisely, for every r ′ ≥ r , simi never writes in VAL[r ′][i] and consequently i in
is the set Mr ′

j for each simulator simj that participates in round r ′. So, in round r ′,
every simulator proposes (suspect) for pi , and, by the convergence property of adopt-
commit objects, every simulator decides (commit, suspect) for pi . Hence pi ∈ S[r ′].
In particular, this means that for r ≥ R + 2,D[R + 1] ∪ F [R + 1] ⊆ S[r] (P1).

Let r ≥ R + 3 and p� ∈ S[r] \ S[r − 1]. This can occur only if a simulator simj

misses the round r message of p�, i.e., � ∈ Mr
j . Per Lemma 5, we know that sets Mr

j

are ordered by containment. Let M be the largest set. It thus follows that S[r] \S[r −
1] ⊆ M . Notice also that, by line 23 of the code, we have that |M| ≤ k.

As noted earlier, for each simulator simi that does not participate in round r , we
have i ∈ Mr

j where simj is any participating simulator. In particular, this implies that
D[R + 1] ∪F [R + 1] ⊆ M . Finally, note that (D[R + 1] ∪F [R + 1])∩ (S[r] \S[r −
1]) = ∅ since D[R+1]∪F [R+1] ⊆ S[r −1] by property P1 noted above. Therefore,
|S[r] \ S[r − 1]| ≤ |M| − |D[R + 1] ∪ F [R + 1]| = k − |D[R + 1] ∪ F [R + 1]| ≤
k − min(k, d). The last inequality follows from Lemma 11. �

Next, we establish an upper bound of t on the number of suspected processes at the
end of round RD . If in round r the message from some process pj is not delivered to
some other process by the end of round r , pj must be suspected, i.e., pj ∈ S[r]. This
upper bound is then used to prove that in the last round, some simulated processes
receive at least n − t messages.

Lemma 13 |S[RD − 1]| ≤ t − (k − min(k, d)) and |S[RD]| ≤ t .

Proof It follows from the fact that S[0] = ∅ and from Lemma 6 that S[R + 2] ≤
(R + 2)k. For the remaining round r = R + 3, . . . ,RD − 1, we know by Lemma 12
that |S[r] \ S[r − 1]| ≤ k − min(k, d). Hence,

|S[RD − 1]| ≤ k(R + 2) + (RD − (R + 3))(k − min(k, d))

We consider two cases, according to the value min(k, d).



616 Algorithmica (2012) 62:595–629

– k ≤ d . In this case min(k, d) = k, and thus |S[RD − 1]| ≤ k(R + 2). Moreover,
R,k and d are such that � k

d
� < � t

k
� − R. Hence, (R + 2) ≤ � t

k
� from which we

conclude that |S[RD] − 1| ≤ k(R + 2) ≤ t .
– k > d . In that case we have:

|S[RD − 1]| ≤ k(R + 2) + (RD − (R + 3))(k − d)

≤ k(R + 2) − k(R + 2) + d(R + 2) + (RD − 1)(k − d)

≤ d(R + 2) +
(⌊

t

k

⌋

+ E

)

(k − d)

≤ −d

(⌊
t

k

⌋

− R − 2

)

+ t − (t mod k) + E(k − d)

By definition of E, E(k − d) ≤ d(� t
k
� − R − 1) − k + (t mod k). Therefore,

|S[RD − 1]| ≤ d − k + t = t − (k − min(d, k))

As observed earlier, at most k − min(k, d) new suspicions are generated in round
RD (Lemma 12). Therefore, |S[RD]| ≤ |S[RD − 1]| + k − min(k, d) and thus
|S[RD]| ≤ t . �

We can now state the main termination Lemma. It follows from Lemma 11 and
from the analysis of the number of suspicions generated during the simulation of
rounds R + 3, . . . ,RD (Lemmas 12 and 13).

Lemma 14 (Termination) Every correct simulator decides.

Proof Let us assume for contradiction that some correct simulator never decides. As
every correct simulator eventually decides if one simulator writes a decision value in
the shared array DEC (Task T2), it follows that no simulator ever writes a decision
value to DEC. Consequently, for all rounds r , we have that D[r] = ∅. It follows from
Lemma 1 that every correct simulator completes the simulation of rounds 1, . . . ,RD ,
for a total number of at most � t

k
� + E + 1 simulated rounds. We know by Lemma 11

that at least min(d, k) simulators must have failed during the simulation of the first
R + 1 rounds. If each of these simulators fails before deciding, we show that one
simulated process has a synchronous view of the RD rounds in which at most t fail-
ures occur. Moreover, the dedicated simulator of this process is correct. Hence, this
simulator must decide: a contradiction.

Consider the last round RD . Let Δ = S[RD] \ S[RD − 1] and X = Δ ∪ (Π \
S[RD]). For every pi ∈ X, it follows from Lemma 7 that pi ∈ REC

RD

i and |REC
RD

i | ≥
n − |S[RD]|. Notice that |S[RD]| ≤ t (Lemma 13). So, by Lemma 4, each process
pi ∈ X has a synchronous view of rounds 1, . . . ,RD in which at most t failures occur.
Therefore, as in every execution of A, every non-faulty process has decided by the
end of round of RD , each pi ∈ X must decide in round RD . It remains to show that
the dedicated simulator of at least one of the processes in X is correct.

Observe that X = Π \ S[RD − 1]. Hence, |X| = n − |S[RD − 1]| ≥ n − t + k −
min(k, d) ≥ 1 + k − min(k, d) by Lemma 13 and the fact that n > t . We then no-
tice that by Lemma 11 and the assumption that no simulator decides, |F [R + 1]| ≥



Algorithmica (2012) 62:595–629 617

min(k, d). Recall that F [R + 1] is the set of simulators that fail before starting the
simulation of round R + 2. As in total at most k simulators may fail, this means that
among the simulators that participate in the simulation of rounds R + 2, . . . ,RD , at
most k − min(k, d) are not correct. As |X| ≥ 1 + k − min(k, d), there exists pi ∈ X

such that the associated simulator simi is a correct simulator. �

The next lemma establishes that the simulated execution is a valid execution of
algorithm A executing in Sn,t .

Lemma 15 Let r such that G[r] �= ∅ and |S[r]| ≤ t . There is an execution α of system
Sn,t executing algorithm A such that ∀r ′ ≤ r,∀pi ∈ G[r ′], process pi receives exactly
the set of messages returned by simulate(_, r ′) in round r ′ of α.

Proof Let α be the r-rounds execution defined as follows. ∀r ′ ∈ {1, . . . , r}:
1. ∀pi ∈ {p1, . . . , pn}, process pi fails in round r ′ if and only if pi has not failed

prior to round r ′ and pi /∈ ⋂
pj ∈G[r ′] RECr ′

j .

2. ∀pi ∈ G[r ′], process pi receives a message from each process pj ∈ RECr ′
i dur-

ing round r ′. ∀pi /∈ G[r ′], process pi receives a message from each process in⋂
pj ∈G[r ′] RECr ′

j .

We first verify that α is a valid synchronous execution. Let r ′ ∈ {1, . . . , r}. Let
pi denote a process that has not failed by the end of round r ′. By definition,
pi ∈ ⋂

pj ∈G[r ′] RECr ′
j and it thus follows from the second condition that every non-

failed process receives a message from pi in round r ′. Suppose now that some pro-
cess does not receive process pi ’s message in round r ′. Hence, pi /∈ ⋂

pj ∈G[r ′] RECr ′
j ,

and there exists a process p� ∈ G[r ′] such that pi /∈ RECr ′
� . It then follows from

Lemma 3 that every pj has the property that pi /∈ RECr ′+1
j . In particular, no pro-

cesses in G[r ′ + 1] receive pi ’s message during round r ′ + 1, and no processes in
Π − G[r ′ + 1] receive pi ’s message since pi /∈ ⋂

pj ∈G[r ′+1] RECr ′+1
j .

Second, we count the number of failures in α. Process pi fails if and only
if pi /∈ ⋂

pj ∈G[r ′] RECr ′
j for some r ′ ≤ r . As per Lemma 10, G[r ′ + 1] ⊆ G[r ′],

Π − ⋂
pj ∈G[r] RECr

j is the set of faulty processes in α. Thus, pi fails implies that
pi /∈ RECr

j for some processes pj in G[r]. Hence, by definition of S[r], pi ∈ S[r].
Therefore, at most t processes fail in execution α, since we assume that |S[r]| ≤ t .

Finally, by the definition of G[r ′], ∀pi ∈ G[r ′], simulate(_, r ′) returns RECr ′
i .

Therefore, it follows from the definition of α that every process in G[r ′] receives
the same sets of messages in the simulation of round r ′ and in the r ′th round of
execution α. �

Together with Lemma 14, the following lemma establishes that the simulators
solve k-set agreement in model ASn,kby simulating an execution of A in model Sn,t .

Lemma 16 (Agreement) |{v | ∃i : DEC[i] = v ∧ v �= ⊥}| ≤ k.
(Validity) ∀i : DEC[i] �= ⊥ ⇒ DEC[i] = v where v is the initial value of some

process.



618 Algorithmica (2012) 62:595–629

Proof Every decision value v written in the array DEC is computed during the simu-
lation of some round r ≤ RD and v is the decision of some process pi in the simulated
execution. When simulator simi decides at round r , the simulated process pi has not
failed in the simulated run, i.e, pi ∈ G[r].

Let r ′ ≤ RD the last round in the simulated execution in which a decision oc-
curs. S[r ′] ⊆ S[RD] and thus |S[RD]| ≤ t by Lemma 13. Therefore, it follows from
Lemma 15 that there exists a r ′-rounds execution α of system Sn,t executing A such
that, for every r,1 ≤ r ≤ r ′ and every pi ∈ G[r], simulate(_, r) returns the set of
messages received by pi in round r of α.

The values written out in DEC are a subset of the values decided in α. The cor-
rectness of A thus implies that decision values written in DEC satisfy validity and
agreement. �

5 A k-Set Agreement Algorithm for ESn,t

In this section, we present an algorithm named K4 which solves k-set agreement in a
window of synchrony of size �t/k� + 4. This is the first algorithm, to the best of our
knowledge, for k-set agreement in ESn,t . The pseudocode can be found in Fig. 2.

5.1 Description

K4 is a round-based full-information protocol, and it assumes that t , the number of
failures, is less than n/2. Each process maintains a local estimate esti , representing its
preferred decision, and sets Activei and Failedi , which denote the processes that pi

believes to be alive and failed, respectively. In every round, each process broadcasts
its entire state (line 5), and receives all the messages for the current round (line 6),
updating its view of which processes have failed and which rounds are synchronous
(lines 7–10). A process decides if it receives a message from another process that
has already decided (lines 11–13), or if it sees �t/k� + 4 consecutive synchronous
rounds (line 16). In case it decides, the algorithm returns the decided value esti to
the caller (lines 14 and 17), and continues to run the protocol by sending messages
announcing its decision. If no decision is reached, then the estimate esti is updated in
lines 19–22. There are two key components to K4: accurately determining whether
rounds are synchronous (which is critical for ensuring liveness), and updating the
estimate (which is critical for ensuring agreement).

Detecting Asynchrony. The procedure updateSynchDetector() merges information
into the Active and Failed sets; if a process believes that p� was active in round r

(e.g., it receives a message from p�), then p� is added to Active[r]; if it believes
that p� was failed during round r (e.g., it did not receive a message from p�), then
p� is added to Failed[r] (see lines 25–28). It then determines based on Active[r]
and Failed[r] sets whether round r seems synchronous (lines 29–33). A round r

is deemed asynchronous if some process p� is believed to have failed in round r

(i.e., p� ∈ Failed[r]), and yet is also believed to be alive at some later round k > r



Algorithmica (2012) 62:595–629 619

procedure propose(vi )i1

esti ← vi ; ri ← 1; msgSeti ← ∅; sFlagi ← false2

Activei ← []; Failedi ← []; AsynchRoundi ← [ ]3

while true do4

send( esti , ri , sFlagi , Activei , Failedi , AsynchRoundi , decidedi ) to all5

wait until received messages for round ri from at least n − t processes6

msgSeti [ri ] ← messages that pi receives in round ri7

Activei [ri ] ← processes from which pi gets messages in round ri8

Failedi [ri ] ← Π \ Activei [ri ]9

updateSynchDetector() % Update the state of pi based on messages received.10

% Has anyone else decided?
if ( ∃ process p such that msgp ∈ msgSeti with msgp.decidedp = true ) then11

decidedi ← true12

esti ← msgp.estp13

return esti14

if (sCounti = �t/k� + 4) then15

decidedi ← true16

return esti17

if (decidedi = false) then18

% Identify the processes p that have sFlagp set at the previous round

flagProcsi ← { p ∈ Activei [ri ] | sFlagp[ri − 1] = true }19

if flagProcsi �= ∅ then20

esti ← minq∈flagProcsi (estq) % Adopt minimum flagged estimate.21

else esti ← minq∈Activei [ri ](estq) % Otherwise, adopt minimum estimate.22

% increment round counter
ri ← ri + 123

procedure updateSynchDetector()24

% Update the Active and Failed sets for each previous round based on messages
received

for every msgj ∈ msgSeti [ri ] do25

for round r from 1 to ri − 1 do26

Activei [r] ← msgj .Activej [r] ∪ Activei [r]27

Failedi [r] ← msgj .Failedj [r] ∪ Failedi [r]28

% Analyze the current view to detect asynchrony
for round r from 1 to ri − 1 do29

AsynchRoundi [r] ← false30

for round k from r + 1 to ri do31

if (Activei [k] ∩ Failedi [r] �= ∅) then32

AsynchRoundi [r] ← true33

% The current round is assumed to be synchronous
AsynchRoundi [ri ] ← false34

% Compute the number of consecutive synchronous rounds seen
sFlagi ← false35

sCounti ← max�(∀r ′ ∈ [ri − �, ri ],AsynchRoundi [r ′] = false)36

% If the last �t/k� + 3 are seen as synchronous, then set sFlagi

if sCounti ≥ �t/k� + 3 then sFlagi ← true37

Fig. 2 The K4 algorithm, at process pi



620 Algorithmica (2012) 62:595–629

(i.e., p� ∈ Active[k]). Finally, process pi sets a flag sFlag to true if it sees the previous
�t/k�+3 rounds as synchronous (line 37). Note that the sets Activei[r] and Failedi[r]
need not be disjoint: this can occur in rounds where process p receives a message
from a process q , but another process does not receive the message from q , either
because of q’s failure or because of asynchrony.

Updating the Estimate. Each process updates the estimate in every round. Estimates
have two levels of priority: if a process has seen �t/k� + 3 synchronous rounds, i.e.,
if it is “ready to decide,” then its estimate is awarded high priority; all other estimates
are awarded normal priority. Process pi stores prioritized estimates in flagProcsi

(line 19), and adopts the minimum prioritized estimate, if one exists (line 21). Other-
wise, process pi adopts the minimum estimate received in the current round (line 22).

5.2 Analysis

We prove that the algorithm K4 solves k-set agreement in ESn,t . Validity and Termi-
nation are straightforward, so we focus on showing Agreement. The proof of agree-
ment is based on the idea that in order for processes to maintain at least k + 1 distinct
estimates, at least k failures have to occur in each round. This is obvious if the system
is synchronous—and yet quite non-trivial when the system may be asynchronous for
certain periods. We identify a trade-off between the number of processes that have
a synchronous view of an execution suffix, and the number of distinct estimates that
these processes can carry. In particular, we prove that processes which have a syn-
chronous view of �t/k�+3 consecutive rounds may hold at most k distinct estimates,
which, after some consideration, implies that there is no execution of the algorithm
in which processes decide on more than k values. The key lemma, whose proof is
presented in full in Sect. 5.3, is the following.

Lemma 17 (Elimination) Let rm > 0 be a round and p1,p2, . . . , pk+1 be k + 1 pro-
cesses that, at the end of round rm, perceive the previous �t/k� + 3 rounds as syn-
chronous. Then at least two such processes have the same estimate.

Assuming that Lemma 17 holds, we can prove that the K4 algorithm preserves
agreement.

Theorem 3 (Agreement) In every execution, processes decide on a set of at most k

distinct values.

Proof Consider an arbitrary execution of K4 and let rd be the first round in which a
process decides. Let pd be a process that decides in round rd and let Suppd be the set
of processes with sFlag = true at the beginning of round rd—we say that processes
in Suppd support decision in round rd .

First, notice that, since process pd is the first process to decide, it must neces-
sarily set the decidedi variable to true on line 16 of the propose procedure. This
implies that sCounti = �t/k� + 4. Therefore, each of the processes whose message
pd receives in round rd must have perceived the previous �t/k� + 3 as synchronous



Algorithmica (2012) 62:595–629 621

at the end of round rd − 1 (otherwise, pd also notices an asynchrony at line 33 of
updateSynchDetector and cannot decide). Hence, each such process s ∈ Suppd must
have sFlags = true at the end of round rd − 1. Since pd receives n − t messages in
every round, we obtain that |Suppd | ≥ n − t .

On the other hand, Lemma 17 ensures that processes in Suppd have at most k

distinct estimates at the beginning of round rd . Denote the set of these values by Vk .
We prove that decisions in round rd or in later rounds are necessarily made on a value
in Vk .

First, if a process decides at the end of round rd (in line 14), then it maintains its
previous estimate. The deciding process supported decision at the end of the previous
round, therefore its estimate is in Vk . Second, if the process does not decide at the end
of rd , then, since |Suppd | ≥ n− t > �n/2�, the process necessarily receives a message
from a process in Suppd in round rd . In this case, the process updates its estimate
in line 21 of procedure propose(), thereby adopting the minimum estimate that it
receives from a process in Suppd , which is in Vk . This implies that any decisions
made in later rounds also occur on elements of Vk .

Since |Vk| ≤ k, we conclude that all decisions in this execution occur on at most k

distinct values, which is equivalent to k-agreement. �

5.3 Proof of the Elimination Lemma

In this section, we prove the following result:

Lemma 18 (Elimination) Let rm > 0 be a round and p1,p2, . . . , pk+1 be k + 1 pro-
cesses that, at the end of round rm, perceive the previous �t/k� + 3 rounds as syn-
chronous. Then at least two such processes have the same estimate.

Notation. We proceed by contradiction. Suppose there exists a round rm > 0 and
processes p1,p2, . . . , pk+1 such that est1 < est2 < · · · < estk+1 and all these pro-
cesses see the previous �t/k� + 3 rounds as synchronous at the end of round
rm (i.e., the processes have sFlag = true at the end of round rm). For clarity, let
rm = r0 + �t/k� + 3, with r0 ≥ 0 and define the set P = {p1,p2, . . . , pk+1}. Also,
we use the notation [1, �] for the set {1,2, . . . , �}. In the following, we use a su-
perscript to denote the round from which a local variable is perceived. For example,
Activer0+2

i [r0 +1] is the Active set of process pi for round r0 +1, as seen from the end
of round r0 + 2. Unless otherwise stated, we omit the superscript when we consider
variables from the end of round r0 + �t/k� + 3.

Proof Outline. We begin by establishing some basic properties of the processes’
views, in Propositions 1–4. We then aim to show that, in order for k + 1 estimates to
be maintaned in the system by the processes in P (i.e., the processes have sFlag =
true at the end of round rm), at least k failures have to occur in each round seen as
synchronous by the processes in P . Proposition 5 makes this intuition precise. Next,
Proposition 6 establishes that there exists a process q from which all processes in
P received a message in round r0 + �t/k� + 2, and Proposition 7 shows that this
process has to perceive k distinct failures per round in rounds r0 + 1, . . . , r0 + �t/k�.



622 Algorithmica (2012) 62:595–629

This implies that process q has already experienced at least t − (t mod k) failures by
the end of round r0 + �t/k� + 1. Since each process in P receives a message from
q , this implies that each of these processes may see at most k − 1 new failures in
rounds r0 + �t/k� + 2 and r0 + �t/k� + 3. To conclude, we show that this number of
failures is not enough to maintain k + 1 distinct values in the system through the end
of round r0 + �t/k� + 3, which contradicts our initial assumption on the existence of
processes p1, . . . , pk+1. We note that throughout the proof we assume the existence
of the k + 1 processes in P .

We first analyze the synchronous views of processes p1,p2, . . . , pk+1.

Proposition 1 (Synchrony) Let r be a round and p be a process such that
at the end of round r , p sees the previous � > 0 rounds as synchronous, i.e.
AsynchRoundr [r ′] = false,∀r ′ ∈ [r − � + 1, r]. Then

Activer
p[r − � + 1] ⊇ Activer

p[r − � + 2] ⊇ · · · ⊇ Activer
p[r].

Proof Assume there exists a round r − � + 1 ≤ r ′ ≤ r − 1 such that Activer
p[r ′ +

1] � Activer
p[r ′]. Then there exists a process q ∈ Activer

p[r ′ + 1] \ Activer
p[r ′], which

implies that q /∈ Activer
p[r ′], therefore, by the way the sets Active and Failed are

built, q ∈ Failedr
p[r ′]. It follows that q ∈ Failedr

p[r ′] ∩ Activer
p[r ′ + 1], therefore r ′ is

asynchronous from the point of view of p at round r : contradiction. �

The second proposition formalizes the intuition that if process p receives process
q’s message sent in some round r (either directly or through a relay), then p has the
entire information about q’s state at the end of round r − 1.

Proposition 2 (Information Gathering) Let pi and pj be two processes in Π and
let rc ≥ r ≥ 2 be two rounds. If pi ∈ Activerc

j [r], then for any round r ′ < r ,

Activer−1
i [r ′] ⊆ Activerc

j [r ′] and Failedr−1
i [r ′] ⊆ Failedrc

j [r ′].

Proof Fix r > 0 and r ′ < r . We proceed by induction on rc ≥ r .
Base case: If r = rc , then pj has received pi ’s message in round rc, and by

lines 25–28 of the updateSynchDetector() procedure, Activerc−1
i [r ′] ⊆ Activerc

j [r ′]
and Failedrc−1

i [r ′] ⊆ Failedrc
j [r ′] for all r ′ < r .

Induction step: Let ri be the first round ≥ r in which pi ∈ Activeri
j [r]. If ri = r ,

then pj receives a message from pi in round r and the claim is true.
If ri > r , then pj receives a message in round ri from a process pm such that pi ∈

Activeri−1
m [r]. Since pi ∈ Activeri−1

m [r], we can apply the induction hypothesis with
rc := ri − 1 and r := r to obtain that Activer

i [r ′] ⊆ Activeri−1
m [r ′] and Failedr

i [r ′] ⊆
Failedri−1

m [r ′], for all r ′ < r . Since pj receives a message from pm in round ri , the
claim follows by the same reasoning as in the base case above. �

The idea behind the third proposition is that if an estimate is held by some process
at round r , then there exists at least one process which “carries” it in every previous
round.



Algorithmica (2012) 62:595–629 623

Proposition 3 (Carriers) Let r > 0 and p ∈ Π . If p has estimate v at the end of
round r , then for all rounds 0 ≤ r ′ ≤ r , there exists a process qr ′ ∈ Activer

p[r ′] such

that estr
′−1

qr′ = v.

Proof Assume that process p has estimate v at the end of round r , yet there exists
a round 0 ≤ r0 ≤ r such that no process with estr0−1 = v exists in Activer

p[r0]. First,

notice that there has to exist a process s in Activer
p[r] such that estr−1

s = v—this
follows since a process may only adopt an estimate that has been proposed in the
current round.

Let r ′ < r be the minimum round such that there exists a process s in Activer
p[r ′ +

1] such that estr
′

s = v—the observation above ensures that such a round exists.
As s ∈ Activer

p[r ′ + 1], Proposition 2 ensures that Activer ′
s [r ′] ⊆ Activer

p[r ′]. Since

Activer
p[r ′] contains no processes with estr

′−1 = v, it follows that Activer ′
s [r ′] con-

tains no processes with estr
′−1 = v, and hence s has adopted estimate v at the end of

r ′ without receiving any messages with estimate v, which contradicts the structure of
the estimate-update mechanism. �

The next proposition proves that two processes with synchronous views see the
same information, with a maximum delay of one round.

Proposition 4 (View Consistency) Given processes p and q that see rounds r0 +
1, . . . , r0 + � + 1 as synchronous, for all r ∈ [r0 + 1, r0 + �],Activer0+�+1

p [r + 1] ⊆
Activer0+�+1

q [r].
Proof In order to simplify notation, we omit the superscript for the state variables
that are seen from the end of r0 + � + 1, e.g. Activep[r0 + �] = Activer0+�+1

p [r0 + �].
We make the distinction when necessary.

Assume by contradiction that there exists a round r ∈ [r0 +1, r0 +�] and a process
s ∈ Activep[r +1] \Activeq [r]. Since s /∈ Activeq [r], no process x in Activeq [r0 +�+
1] can have s ∈ Activer0+�

x [r]. Therefore, ∀π ∈ Activeq [r0 +�+1], s ∈ Failedr0+�
π [r].

However, since |Activep[r0 +�+1]| ≥ n− t , |Activeq [r0 +�+1]| ≥ n− t and n− t >
n
2 , p receives at least one message from a process in Activeq [r0 + � + 1] in round
r0 + � + 1. Since Failedp[r] is the union of all Failed sets pi received, it follows
that s ∈ Failedp[r]. At the same time, s ∈ Activep[r + 1], and therefore p notices an
asynchrony in round r ∈ {r0 + 1, . . . , r0 + �}: contradiction. �

The next step is to show that in order for k + 1 estimates to be maintained in the
system in a round, at least k failures have to occur in that round (these failures may
be either process crashes, or messages not delivered in a timely manner because of
asynchrony). More precisely, we identify one carrier that does not receive k messages
which are received by at least one of the other carriers.

Proposition 5 Let r be a round and c1, . . . , ck+1 be processes such that estri <

estri+1,∀i ∈ [1, k]. Then there exists a process c� ∈ {c1, . . . , ck+1} such that c� does
not see k processes that were active in round r , i.e.



624 Algorithmica (2012) 62:595–629

∣
∣
∣
∣Failedr

c�
[r] ∩

⋃

i∈[1,k+1]
Activer

ci
[r]

∣
∣
∣
∣ ≥ k.

Proof Processes c1, . . . , ck+1 are carriers for values v1, . . . , vk+1, respectively, at the
end of round r . Proposition 3 ensures that there exist processes q1, . . . , qk+1 that are
carriers for these values at the end of the previous round r − 1 and qi ∈ Activeci

[r],
for all i ∈ [1, k + 1].8 We prove that there exists an index j such that process cj does
not receive messages from any of the processes qi with i �= j .

Consider process ck+1. Assuming that ck+1 receives a message from one of the
processes qi with i �= j , it follows that ck+1 “sees” an estimate less than estk+1 in
round r . In this case, the only possibility for ck+1 to stick to estimate estk+1 at the
end of round r is for it to receive estk+1 in a message with sFlagi = true. Without
loss of generality, assume that the message comes from process qk+1. At this point,
we turn our attention to process ck . Again, there are two possibilities: process ck

adopted estimate estk either because it received it in a message with sFlag = true
(line 21), or adopts it in line 22, which means that it receives no messages with
sFlag = true, and no message with estimate < estk . However, in the latter case we
are done, since it means that ck does not receive messages from any of the processes
in {q1, q2, . . . , qk−1, qk+1} which is enough to prove the claim.

Therefore, we still have to analyze the case when process ck receives estimate vk

in a message with sFlag = true. Again, without loss of generality, we assume that
this message comes from process qk . At this point, we are in the case where qk+1 has
sFlag = true and qk has sFlag = true. Considering process ck−1, we can apply the
same rationale to obtain that process qk−1 necessarily has sFlag = true. We proceed
in this fashion to obtain that processes qk−2, . . . , q1 must have sFlag = true as well.
However, returning to process qk+1, we obtain a contradiction, since if processes
q1, q2, . . . , qk have sFlag = true, process qk+1 cannot receive a message from any
one of them (otherwise it will adopt an estimate < estk+1 in line 21 of propose()).

Therefore, at least one process cj ∈ {c1, c2, . . . , ck+1} has to fail all processes qi

with i �= j in round r . Since, by definition, qi ∈ Activeci
[r], for all i ∈ [1, k + 1], this

concludes the proof. �

At this point, we have gathered enough information to proceed with the final ar-
gument.

We show that the synchrony requirements on the views of p1,p2, . . . , pk+1 imply
that there exists a process q which they all perceive as active in round r0 +�t/k�+ 2.
In fact, we show in Proposition 6 that q may be any process in P . This means that
process q’s message in round r0 + �t/k� + 2 reaches all processes p1,p2, . . . , pk+1,
either directly or through a relay. This implies that the view of process q at the end
of round r0 + �t/k� + 1 has to be consistent with that of processes p1,p2, . . . , pk+1,
i.e. upon receiving q’s message, no process in P notices an asynchrony in rounds
r0 + 1, r0 + 2, . . . , r0 + �t/k� + 1. Since processes p1,p2, . . . , pk+1 all hold distinct
estimates at the end of r0 + �t/k� + 3, we show that q’s view has to contain k new

8To simplify notation, we omit the superscript for the local variables, assuming that all such variables are
seen from the end of round r .



Algorithmica (2012) 62:595–629 625

failures in each round r0 +1, . . . , r0 +�t/k�. This will imply that, in order to maintain
a synchronous view, processes in P have to see k · �t/k� = t − (t mod k) failures in
rounds r0 + 2, . . . , r0 + �t/k� + 1, which means that processes p1, . . . , pk+1 have at
most t mod k failures “left” at the end of round r0 + �t/k� + 1. Finally, we apply
Proposition 5 to obtain that at least one of the processes pi has to see k new failures
in round r0 + �t/k� + 3, which leads to a contradiction, since the model ensures that
all processes in P receive at least n − t messages in every round.

We first show that there exists a process from which all processes pi receive a
message in round r0 + �t/k� + 2, either directly or though a relay.

Proposition 6 (The common process) Given processes p1,p2, . . . , pk+1 as above,
there exists a process q such that

q ∈
k+1⋂

i=1

Activei[r0 + �t/k� + 2].

Proof Fix a process q ∈ {p1, . . . , pk+1}. For all processes pi ∈ {p1, . . . , pk+1},
Proposition 4 implies that Activeq [r0 + �t/k� + 3] ⊆ Activei[r0 + �t/k� + 2]. Since
q ∈ Activeq [r0 + �t/k� + 3] (a process always receives messages from itself), we
obtain that q ∈ ⋂k+1

i=1 Activei[r0 + �t/k� + 2]. �

Note that in the following, we omit the subscript when denoting q’s view and
assume the Activeq and Failedq sets are always seen from the end of round r0 +
�t/k� + 1. In other words, we are analyzing the view that process q broadcasts to
processes in P at the beginning of round r0 + �t/k� + 2.

The next proposition shows that process q defined above has to receive k less
messages in each round r0 + 2, . . . , r0 + �t/k� + 1.

Proposition 7 Given the process q as defined in Lemma 6, for all rounds r ∈ {r0 +
1, . . . , r0 + �t/k�},

|Activeq [r] \ Activeq [r + 1]| ≥ k.

Proof Proposition 3 ensures that at the beginning of round r + 1 there exist carriers
c1, c2, . . . , ck+1 for values v1, v2, . . . , vk+1 respectively, where estri = vi and ci ∈
Activerm

pi
[r + 1]. (Recall that the round rm has been defined as r0 + �t/k� + 3.)

The key to proving the claim is to look at which of these carriers process q receives
a message from in round r + 1. If process q receives no message from these carriers
in r + 1, then we are done, since there are k + 1 carriers. Otherwise, we show that if
process q receives a message from m such carriers (for m ≥ 1), then it has to perceive
at least m − 1 failures in round r just because it sees m distinct values propagated in
the following round. Next, we show that q has to perceive a failure in round r for each
of the other k + 1 − m values whose carriers did not successfully send q a message
in round r + 1. The final argument shows that the two sets of failures (the m − 1
corresponding to the “seen” carriers and the k +1−m corresponding to the “unseen”
ones) are necessarily distinct.



626 Algorithmica (2012) 62:595–629

We start the formal argument by noting that processes c1, c2, . . . , ck+1 are neces-
sarily in Activeq [r]: if ci /∈ Activeq [r], since pi receives q’s message in r0 + �t/k� +
2, process pi perceives an asynchrony in round r . Next, denote by M the set of pro-
cesses in the intersection {c1, . . . , ck+1} ∩ Activeq [r + 1]. Let m = |M|, the cardinal
of M , and let {s1, . . . , sm} = M .

If m = 0, we have identified a set of at least k + 1 processes {c1, . . . , ck+1} that are
in Activeq [r], but not in Activeq [r + 1] and we are done.

If m > 0, we can apply Proposition 5 to the processes (or the process) in M to
obtain that there exists a process s ∈ M such that |Failedr

s [r] ∩ ⋃m
j=1 Activer

sj
[r]| ≥

m − 1. Let F denote the set Failedr
s [r] ∩ ⋃m

j=1 Activer
sj

[r], that is the set of pro-
cesses that carrier s missed in round r . Since s ∈ Activeq [r + 1], by Proposition 2,
Failedr

s [r] ⊆ Failedq [r]. Also, F ∩ Activeq [r + 1] = ∅ (otherwise, q notices an
asynchrony in round r , which propagates to the processes pi ). On the other hand,
since sj ∈ Activeq [r + 1] for all sj ∈ M , by applying Proposition 2 again we ob-
tain that F ⊂ Activeq [r]. Therefore, the set F has at least m − 1 processes and is in
Activeq [r] \ Activeq [r + 1].

In order to find more processes in Activeq [r] \ Activeq [r + 1], we analyze the
set of processes G = {c1, c2, . . . , ck+1} \ Activeq [r + 1], that is the set of carriers
whose message process q did not receive. By similar considerations as above, these
processes are elements of Activeq [r] \ Activeq [r + 1], and the cardinal of G is k +
1 − m. We show that G ∩ F = ∅.

Assume for the sake of contradiction that there exists a process ci ∈ F ∩ G. Since
ci ∈ F , it follows that ci ∈ Failedq [r]. On the other hand, since ci ∈ G, there exists
a process pi ∈ P such that c ∈ Activerm

i [r + 1], by the definition of ci . However,
since pi receives a message from q in round r0 + �t/k� + 2 > r + 1, it follows by
Proposition 2 that ci ∈ Activerm

i [r + 1] ∩ Failedrm
i [r], so pi perceives an asynchrony

in round r ∈ {r0 + 1, . . . , r0 + �t/k�}, which contradicts the definition of process pi .
Therefore G ∩ F = ∅. The processes in G ∪ F have the property that they are

in Activeq [r], but not in Activeq [r + 1]. The above claim ensures that |G ∪ F | ≥
(k + 1 − m + m − 1) = k, therefore |Activeq [r] \ Activeq [r + 1]| ≥ k. �

The last result implies that |Activeq [r0 + �t/k� + 1]| ≤ n − k · �t/k� = n −
t + t mod k, therefore |Failedq [r0 + �t/k� + 1]| ≥ t − (t mod k). Note that since
every process pi receives a message from q in round r0 + �t/k� + 2, no pro-
cess pi can receive a message in round r0 + �t/k� + 2 from a process that q

has failed in round r0 + �t/k� + 1. More precisely, for all i ∈ {1, . . . , k + 1},
Activer0+�t/k�+3

i [r0 + �t/k� + 2] ⊆ Activer0+�t/k�+1
q [r0 + �t/k� + 1].

This relation implies the following bound on the number of messages that pro-
cesses in P may receive in round r0 + �t/k� + 2:

∣
∣
∣
∣
∣

k+1⋃

i=1

Activei[r0 + �t/k� + 2]
∣
∣
∣
∣
∣
≤ n − t + t mod k.

Next, we show that this number of active processes is not enough to maintain
k + 1 distinct values in the system in the remaining rounds r0 + �t/k� + 2 and
r0 + �t/k� + 3. One way to see this is to first notice that the total number of



Algorithmica (2012) 62:595–629 627

messages received by processes in P may only decrease or remain the same, i.e.⋃k+1
i=1 Activei[r0 +�t/k�+2] ⊇ ⋃k+1

i=1 Activei[r0 +�t/k�+3] by Proposition 1. Then
|⋃k+1

i=1 Activei[r0 + �t/k� + 3]| ≤ n − t + t mod k. On the other hand, processes
p1,p2, . . . , pk+1 have k + 1 distinct estimates at the end of round r0 + �t/k� + 3,
therefore we can apply Proposition 5 to obtain that there exists a process pj ∈
{p1, . . . , pk+1} such that |Failedj [r0 +�t/k�+3] ∩ ⋃k+1

i=1 Activei[r0 +�t/k�+3]| ≥
k.

Then |Activej [r0 + �t/k� + 3]| ≤ |⋃k+1
i=1 Activei[r0 + �t/k� + 3] \ Failedj [r0 +

�t/k� + 3]| ≤ (n − t + t mod k) − k < n − t , so process pj receives less than n − t

messages in round r0 + �t/k� + 3, a contradiction with the assumption that each
process receives at least n − t messages in every round.

The contradiction arises from the initial assumption that there exist k+1 processes
with distinct estimates and synchronous views of rounds r0 + 1, . . . , r0 + �t/k� + 3
at the end of round r0 + �t/k� + 3. We conclude that the Elimination Lemma holds.

5.4 Improving the Algorithm

In fact, in some cases, processes can decide after seeing only �t/k� + 3 consecu-
tive synchronous rounds: in brief, a process sets sFlag = true after seeing �t/k� + 2
synchronous rounds, and decides one round later under the same conditions as K4.
In this case, however, the proof argument from the previous section works only if
�n−t+1

k+1 � ≥ 3k, which translates approximately into t ≥ 3k2. In order to improve fur-
ther, for example, to decide in �t/k� + 2 rounds, some new technique is needed.
We believe that an approach similar to that of [2] in which estimates are sometimes
de-prioritized can be used to obtain a matching algorithm.

6 Conclusion

We have presented a novel technique for simulating synchronous and partially syn-
chronous executions in asynchronous shared memory. Our technique allows us to
characterize the complexity of set agreement in partially synchronous systems, as
well as to refine earlier lower bounds for early-deciding synchronous set agreement
by determining the cost of early decision in terms of worst-case round complexity.
More generally, our simulation technique is applicable to any decision task, i.e. one
in which a process can safely copy its decision from others. We believe that our tech-
nique can also be expressed in terms of the standard BG simulation [5]. In particular,
instead of employing n simulators that agree through adopt-commit objects, we can
use k + 1 simulators that utilize BG-agreements to agree on the messages received in
every round. Thus, one direction of future work is to extend our lower bound results
to other families of tasks by encapsulating the Extended BG simulation [13]. Another
direction is to fill the gap between the lower bound and the upper bound in eventually
synchronous systems.

Proving distributed impossibility results and lower bounds often requires analy-
sis of distributed executions, which has proven quite challenging (e.g., techniques
involving algebraic topology). Moreover, there are a plethora of different models,



628 Algorithmica (2012) 62:595–629

multiplying the number of times each result needs to be re-proved. By contrast, dis-
tributed simulations offer the hope of deriving these results by direct reduction, thus
basing the edifice of distributed computing on a few fundamental results. We believe
that our results are one step toward developing just such a unified framework for
distributed computation.

Acknowledgements We would like to thank Hagit Attiya, Keren Censor-Hillel, and the anonymous
reviewers for their feedback on drafts of this paper.

Part of the work was performed as C. Travers was a Post-Doctoral Fellow at the Technion, Haifa,
supported by the “Sam & Cecilia Neaman” Fellowship. Part of the work was performed as S. Gilbert was
a Post-Doctoral Fellow at the Swiss Federal Institute of Technology, Lausanne, Switzerland.

References

1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory.
J. ACM 40(4), 873–890 (1993)

2. Alistarh, D., Gilbert, S., Guerraoui, R., Travers, C.: How to solve consensus in the smallest window of
synchrony. In: Proceedings of the 22nd International Symposium on Distributed Computing (DISC),
pp. 32–46 (2008)

3. Attiya, H., Rachman, O.: Atomic snapshots in O(n logn) operations. SIAM J. Comput. 27(2), 319–
340 (1998)

4. Biely, M., Schmid, U., Weiss, B.: Synchronous consensus under hybrid process and link failures.
Theor. Comput. Sci. 412(40), 5602–5630 (2011)

5. Borowsky, E., Gafni, E.: Generalized FLP impossibility result for t -resilient asynchronous compu-
tations. In: Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC),
pp. 91–100 (1993)

6. Cerf, V., Icahn, R.: A protocol for packet network intercommunication. Comput. Commun. Rev. 35(2),
71–82 (2005)

7. Charron-Bost, B., Schiper, A.: The heard-of model: computing in distributed systems with benign
faults. Distrib. Comput. 22(1), 49–71 (2009)

8. Chaudhuri, S.: More choices allow more faults: set consensus problems in totally asynchronous sys-
tems. Inf. Comput. 105(1), 132–158 (1993)

9. Chaudhuri, S., Herlihy, M., Lynch, N.A., Tuttle, M.R.: A tight lower bound for k-set agreement.
J. ACM 47(5), 912–943 (2000)

10. Dutta, P., Guerraoui, R.: The inherent price of indulgence. Distrib. Comput. 18(1), 85–98 (2005)
11. Dwork, C., Lynch, N., Stockmeyer, L.: Consensus in the presence of partial synchrony. J. ACM 35(2),

288–323 (1988)
12. Gafni, E.: Round-by-round fault detectors: Unifying synchrony and asynchrony (extended abstract).

In: Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing
(PODC), pp. 143–152 (1998)

13. Gafni, E.: The Extended BG simulation and the characterization of t -resiliency. In: Proceedings of
the 41st Annual ACM Symposium on Theory of Computing (STOC) (2009)

14. Gafni, E., Guerraoui, R., Pochon, B.: The complexity of early deciding set agreement. From a static
impossibility to an adaptive lower bound: the complexity of early deciding set agreement. SIAM J.
Comput. 40(1), 63–78 (2011)

15. Guerraoui, R., Herlihy, M., Pochon, B.: A topological treatment of early-deciding set-agreement.
Theor. Comput. Sci. 410(6–7), 570–580 (2009)

16. Herlihy, M., Shavit, N.: The topological structure of asynchronous computability. J. ACM 46(6), 858–
923 (1999)

17. Keidar, I., Shraer, A.: Timeliness, failure-detectors, and consensus performance. In: Proceedings of
the 25th Annual ACM Symposium on Principles of Distributed Computing (PODC), pp. 169–178
(2006)

18. Lamport, L., Shostak, R., Pease, M.: The byzantine generals problem. ACM Trans. Program. Lang.
Syst. 4(3), 382–401 (1982)



Algorithmica (2012) 62:595–629 629

19. Raipin Parvédy, P., Raynal, M., Travers, C.: Strongly terminating early-stopping set agreement in
synchronous systems with general omission failures. Theory Comput. Syst. 47(1), 259–287 (2010)

20. Saks, M.E., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of public knowl-
edge. SIAM J. Comput. 29(5), 1449–1483 (2000)

21. Widder, J., Schmid, U.: Booting clock synchronization in partially synchronous systems with hybrid
process and link failures. Distrib. Comput. 20(2), 115–140 (2007)

22. Yang, J., Neiger, G., Gafni, E.: Structured derivations of consensus algorithms for failure detectors. In:
Proceedings of the 17th Annual ACM Symposium on Principles of Distributed Computing (PODC),
pp. 297–308 (1998)


	Of Choices, Failures and Asynchrony: The Many Faces of Set Agreement
	Abstract
	Introduction
	Impossibility Results and Lower Bounds.
	Partial Synchrony.
	Lower Bound by Reduction.
	Early Deciding Synchronous Set Agreement.
	Upper Bound for Eventually Synchronous Agreement.
	Implications.

	Model
	Adopt-commit Objects.

	Simulating Synchronous Views: a Lower Bound for k-Set Agreement
	Preliminaries.
	Overview.
	Basic Setup
	Simulating Synchronous Rounds
	Simulation Overview.
	Round Overview.
	Failed, Muted and Suspected Processes.
	Simulating a Round.
	The End of the Phase.

	Analysis of the Simulation
	Lower Bound on Set Agreement in 

	The Complexity of Early Deciding Synchronous Set Agreement
	Main Result and Corollaries
	Overview of the Analysis
	Proof of Theorem 2
	Notation.


	A k-Set Agreement Algorithm for 
	Description
	Detecting Asynchrony.
	Updating the Estimate.

	Analysis
	Proof of the Elimination Lemma
	Notation.
	Proof Outline.

	Improving the Algorithm

	Conclusion
	Acknowledgements
	References


