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Abstract The maintenance of sex is still an evolutionary puzzle given its immediate
costs. Stably coexisting complexes of asexually and sexually reproducing forms allow to
study mechanisms that balance the costs and benefits of both asexual and sexual repro-
duction. Here, we tested whether coexisting asexual and sexual fish of the genus Poecilia
differed in neonate mortality when exposed to environmental stress in the form of fluc-
tuating temperatures and food deprivation. We find that asexual Amazon mollies, Poecilia
formosa, are significantly more sensitive to food stress than their sexual relative Poecilia
latipinna, but both are equally unaffected by variable temperatures. Differences in the
susceptibility to environmental stress may contribute to diminishing the asexuals’ benefits
of a higher intrinsic population growth rate and thus mediate stable coexistence of the two
reproductive forms.

Keywords Asexuality - Evolution and maintenance of sex - Gynogenesis -
Environmental stress - Mutation accumulation

Introduction

The prevalence and maintenance of sexual reproduction in the light of its costs is still an
unresolved problem in evolutionary biology (Maynard Smith 1978; Kondrashov 1993;
West et al. 1999). Sexual reproduction is costly in two ways (Maynard Smith 1978; Bell
1982): (1) Sexual species need to produce dispensable males. At a sex ratio of 1:1, this
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essentially results in a twofold lower population growth rate compared to similar asexually
reproducing organisms (‘twofold cost of sex’). (2) As an effect of meiosis and recombi-
nation, sexual organisms only pass half of their genes to the next generation. Furthermore,
successful genotypes are destroyed in every reproductive cycle. Consequently, asexual
lineages that avoid the costs of sex have an advantage over related sexual forms and—at
least under the assumption of all other things being equal—should out-compete them over
time (Maynard Smith 1978; Bell 1982; Lively and Lloyd 1990; Ladle 1992; Barton and
Charlesworth 1998).

Sperm-dependent asexuals (gynogens) are powerful model systems to study the costs
and benefits of sex. Gynogens require sperm of closely related sexual species to trigger
embryogenesis, but inheritance is strictly clonal, i.e., without paternal contribution
(Dawley 1989; Vrijenhoek 1994; Schlupp 2005). Due to their sperm dependence, gynogens
have to coexist with closely related sexual species (Niemeitz et al. 2002; Choleva et al.
2008). Stable coexistence of sexually and asexually reproducing forms, however, is par-
adoxical if the costs of sex are considered: gynogens should outcompete their sexual
relatives due to the twofold advantage in population growth rate, just to go extinct
themselves after the disappearance of their sexual sperm donors (Schlupp 2005; Kokko
et al. 2008). Nonetheless, gynogenetic complexes persist in natural systems; the costs of
sex must thus be balanced by some benefits.

A diverse set of mechanisms has previously been discussed to select for sex (see
Kondrashov 1993 for an overview). Due to the lack of recombination, asexuals have been
proposed to have a lower evolvability. For example, sexual organisms are more efficient in
purging deleterious mutations, and beneficial mutations which may arise independently in
different individuals can be combined via recombination. Asexual organisms, on the other
hand, cannot avoid accumulating deleterious mutations, which eventually will impose
fitness costs and may lead to the extinction of a lineage (Kondrashov 1982, 1988;
Charlesworth 1990; Barton and Charlesworth 1998). Accumulation of deleterious muta-
tions for instance may lead to a higher susceptibility to environmental stress (Vrijenhoek
and Pfeiler 1997; Lively et al. 1998). Lower evolvability may also impose short-term
fitness costs. For example, asexuals are thought to be disproportionally more susceptible to
rapidly coevolving parasites, an idea that has been popularized as the ‘Red Queen
hypothesis’ (Hamilton 1980; Lively 1989; Hamilton et al. 1990; Lively et al. 1990; but see
Salathé et al. 2008; Tobler and Schlupp 2008). In gynogenetic complexes, where asexuals
rely on heterospecific sperm for reproduction, avoidance of gynogens by sperm donors
could also lead to the reduction of the twofold benefit of asexuality (Hubbs 1964; Ryan
et al. 1996; Riesch et al. 2008).

We studied a gynogenetic fish, the Amazon molly, Poecilia formosa (Girard 1859), and
its sexual sperm donor, the Sailfin molly, Poecilia latipinna (LeSueur 1821), to ask
whether differential susceptibility of asexuals to environmental stress may contribute to the
stability of the gynogenetic complex. At least in the laboratory, asexual and sexual mol-
lies have the same reproductive output (Schlupp and Tobler, unpublished data), thus
P. formosa should theoretically be able to out-compete their sexual relatives. Since mixed
populations appear to be stable in the field (Schlupp 2005), the basic assumption of the
theory cannot be fulfilled. Obviously, not all other things are equal between asexual and
sexual mollies, and P. formosa must suffer from some fitness reductions to stably coexist
with their sperm donors. In this study, we tested whether asexual P. formosa are more
susceptible to environmental stress than sexual P. latipinna. We compared neonate sur-
vival in a laboratory experiment during which we exposed asexual and sexual mollies to
different temperature and food regimes.
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Materials and methods
Breeding fish

Poecilia formosa and P. latipinna females were collected at Lincoln Park in Brownsville,
Texas, USA (N25.900°, W97.480°) in May 2005 and transported to a greenhouse of the
Aquatic Research Facility at the University of Oklahoma. Fish were housed individually in
plastic tanks (4 1) covered with mesh wire to prevent escaping. A flow-through system
using untreated well water was employed to maintain proper water quality. Naturally
growing algae and mosquito larvae served as food basis, which was supplemented with
commercially available flake food three times a week.

Since mollies can store sperm (Constantz 1989), no males were added to the females.
Offspring born in the setup were thus sired by males from the natural populations. All
females’ tanks were checked for offspring daily. Ten P. formosa females and thirteen
P. latipinna females gave birth in the course of the experiment. Neonates were immedi-
ately removed and they entered the experiment (see below) or were transferred to stock
tanks.

Experimental setup

During the experiment, neonates were individually housed in 2-1 tanks. Each tank was
aerated and connected to a flow-through system using untreated well water, so that the total
water volume was replaced about every second day. Furthermore, each tank was equipped
with a Visi-Therm 25 W aquarium heater. In the fish room, temperature was held constant
at 18°C.

Four siblings were randomly chosen from each brood and randomly assigned to one of
four treatment groups. We used a 2 x 2 fully factorial design manipulating food avail-
ability (high vs. low) and temperature regime (constant vs. variable).

Temperature. In the stable temperature treatment, the thermostat of the heater was set at
a constant temperature of 23°C. In the variable temperature treatment, the thermostat was
set to 28°C, and heaters were connected to a timer switching the heater off and on every
4 h. This resulted in a temperature fluctuating between 18 and 28°C over 8 h. Temperature
was monitored over 28 days in six randomly chosen tanks of each temperature treatments
using HOBO v2 pro data loggers (Onset Computer Corporation, Bourne, MA).

Food. Fine grained commercially available fish food was used to feed the fish. In the
high food treatment, 1 mg of food was provided on a daily basis. In the low food treatment,
1 mg food was only provided every other day.

As a response variable, we recorded mortality in our experimental setup every morning.
The experimental trials were terminated after 28 days and fish that survived up to that time
were returned to stock tanks. Experimental data were analyzed using a survival analysis
(Cox regression). ‘Age at death’ was used as dependent variable. Individuals still alive at
the end of the experiment were censored. ‘Species’, ‘food treatment’, ‘temperature treat-
ment’, as well as all two-way interactions were used as independent variables. SPSS 16
(SPSS Inc., Chicago, IL) was used for all statistical analyses.

Size at birth might affect the tolerance to environmental stress of neonates. Since
neonates are highly susceptible to handling stress (Tobler, personal observation), fish that
were used in the experiment were not measured. To exclude the possibility that size
differences between P. latipinna and P. formosa at birth affected our results, we measured
the standard length of four randomly chosen siblings of the individuals used in the
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experiment utilizing digital photographs of each individual. Measurements were then taken
using the Spot Advanced 4.5 computer software (Diagnostic Instruments Inc., Sterling
Heights, MI).

Results

In the constant temperature treatment, temperature was 23.2 £+ 1.8°C (N = 6 tanks) and in
the variable temperature treatment 22.7 £ 6.1°C (N = 6 tanks) confirming that there was
no significant difference in the mean (independent sample #-test: #;op = 0.193, P = 0.851)
but a significant difference in the degree of the fluctuations (F-test for equal variances:
Fss = 11.485, P = 0.009).

The experiment revealed that there was a significant interaction effect between species
and food treatment on the survival of newborn mollies (Tables 1, 2). Asexual P. formosa
had an eminently low life expectancy in the low food treatment (Fig. 1). The temperature
treatment did not have a significant effect on the survival of neonates. It is unlikely that the
higher susceptibility to food deprivation in P. formosa is caused by a size difference of
mollies at birth. The size at birth did not differ significantly between sexual and asexual
mollies (P. latipinna, SL 9.8 + 1.1 mm, N = 13 clutches; P. formosa, SL 9.2 + 0.9 mm,
N = 10 clutches; independent sample t-test: #,; = 1.400, P = 0.176).

Table 1 Mean + SE survival time in days as well as 95% confidence intervals (lower bound, upper bound)
in neonates of the sexual P. latipinna (N = 13 in each treatment) and the asexual P. formosa (N = 10 in
each treatment) exposed to different environmental conditions. Descriptive statistics were calculated using a
Kaplan—Meier analysis with censoring

Stable T Variable T Stable T Variable T
High food High food Low food Low food
P. formosa 23.6 £ 1.6 19.7 £ 2.4 13.7 £ 1.5 145 +£2.0
(20.4, 26.8) (15.1, 24.3) (10.7, 16.7) (10.6, 18.4)
P. latipinna 175 £ 1.9 20.1 £ 1.6 182 + 2.5 16.6 + 2.0
(13.8, 21.3) (16.9, 23.2) (13.3, 23.2) (12.6, 20.6)

Table 2 Survival analysis (Cox regression) of neonates in the experiment. Significant effects are in bold
face. —2 Log likelihood = 592.435; * = 16.526; df = 6, P = 0.011

Factor B SE Wald df P Exp B)  95% CI for Exp (B)
Lower Upper
Species 0.527 0434 1473 1 0225  1.693 0.723 3.963
Temperature 0212 0450 0.223 1 0.637 1236 0.512 2.985
Food 1.385 0443 9781 1 0.002 3993 1.677 9.509
Species x temperature ~ —0.017  0.469  0.001 1 0972 0.983 0.983 2.466
Species x food —1.286 0481 7.162 1 0.007 0276 0.108 0.709
Temperature x food —0.066 0466 0.020 1 0.888  0.936 0.375 2.335
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Fig. 1 Survival plots showing the cumulative survival of sexual P. latipinna and asexual P. formosa under
the high (----) and low (—) food treatment

Discussion

We detected a significant interaction effect between the factors ‘species’ and ‘food
treatment’ in our experiment indicating that asexual P. formosa performed worse under
food stress. Increased juvenile mortality due to resource limitation may be one mechanism
contributing to diminishing the twofold advantage asexual mollies have in terms of their
intrinsic population growth rate and might thus mediate the stable coexistence of asexual
and sexual reproductive forms.
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Differential susceptibility to environmental stress has also been shown to play a role in
the coexistence between asexual and sexual fish of the genus Poeciliopsis (Vrijenhoek and
Pfeiler 1997). Sexuals and two distinct clones have been found to differ in their suscep-
tibility to cold and heat stress as well as hypoxia. The hypothesis of differential
susceptibility to environmental stress was also tested—but not confirmed—in the asexuals
and sexuals of the freshwater snail Potamopyrgus antipodarum (Lively et al. 1998).

Two not mutually exclusive mechanisms may cause the differential susceptibility to
food stress in asexual P. formosa. Firstly, increased susceptibility to stress may be caused
by the accumulation of deleterious mutations (Wolfe 1993; Kondrashov and Houle 1994;
Cooper et al. 2005; Buckling et al. 2006; Killick et al. 2006), which asexuals accumulate
over time due to the lack of recombination (Kondrashov 1982, 1988; Charlesworth 1990).
Poecilia formosa presumably originated through a single natural hybridization event
(between P. latipinna and P. mexicana) about 120,000 generations ago (Schartl et al. 1995;
Lampert et al. 2005; Lampert and Schartl 2008). This is old under mutation accumulation
models, and effects of deleterious mutations would be expected (Gabriel et al. 1993;
Gabriel and Biirger 2000). In fact, a recent study applying a simple model of mutation
accumulation found that extinction of P. formosa would be expected to occur within a
timeframe that is less than the actual age of the species (Loewe and Lamatsch 2008).
Hence, the differential susceptibility to food stress documented here could be a manifes-
tation of mutation accumulation in asexual lineages. Further investigations using triploid P.
formosa could potentially establish a connection between deleterious mutations and stress
susceptibility. Triploid P. formosa evolved relatively recently in the Rio Purificacién and
Rio Guayalejo river drainages in Mexico, whereby an additional set of P. mexicana
chromosomes was incorporated to the old hybrid genome (Balsano et al. 1989; Lampert
et al. 2005; Schories et al. 2007). The addition of an extra set of chromosomes would be
expected to at least partly alleviate the effects of accumulated deleterious mutations in the
asexual hybrid genome. Hence, if deleterious mutations indeed are causing the increased
susceptibility to food stress in diploid P. formosa, we would expect a higher stress resis-
tance in triploids.

Secondly, asexuals have been hypothesized to freeze and replicate ecologically relevant
genetic variation that segregates in their sexual ancestors (Vrijenhoek 1979; Wetherington
et al. 1989; Semlitsch et al. 1997). Susceptibility to environmental stressors may thus be
directly inherited by the distant sexual ancestors (e.g., in asexual fish of the genus Poe-
ciliopsis, Vrijenhoek and Pfeiler 1997). In this case, stress susceptibility within each clone
of P. formosa should represent only a fraction of the total variation in stress susceptibility
observed in the sexual ancestors (P. latipinna and P. mexicana). However, the high age
combined with the single origin of P. formosa precludes a rigorous test of this hypothesis
as variation in traits of the parental populations may have changed in the 120,000 gen-
erations since the original hybridization occurred.

The differential susceptibility to food stress documented here in combination with
seasonal variation in food availability may ultimately contribute to mediating stable
coexistence of sexuals and asexuals. Although exposed to identical environmental con-
ditions (Schlupp and Ryan 1996), asexual P. formosa significantly increase in relative
frequency over the summer, presumably due to the higher population growth rate, but
decrease during the cold and less productive winter months (Heubel 2004). Further
investigations will have to show how seasonal changes in food availability affect the fitness
of P. formosa in natural habitats, and how susceptibility to environmental stress varies
across different life stages in mollies.

@ Springer



Evol Ecol (2010) 24:39-47 45

Research to date has not been able to single out one mechanism explaining the balance
of cost and benefits of asexual and sexual reproductive strategies in the P. formosa system.
To date, differences in susceptibility to parasites (Tobler and Schlupp 2005; Tobler et al.
2005) and to environmental stress (Heubel 2004 and this study) as well as behavioral
regulation through male mate choice of sexual sperm donors (see Schlupp 2005 for a
review) have been considered. Future efforts need to focus on potential interaction effects
between different mechanisms diminishing the twofold advantage of asexuals. Although ‘a
beautiful phenomenon as sex deserves a nice, simple explanation’ (Kondrashov 1999), it
seems that multiple selective forces and their interactions need to be considered to explain
the stability of coexisting asexuals and sexuals in specific cases (West et al. 1999).
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