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Abstract The discovery of aperiodic crystals is perhaps

one of the most important event which has changed our

vision on crystalline architectures since the discovery of

diffraction 100 years ago. It was the merit of a Dutch

crystallographer, P.M. de Wolff, to interpret their diffrac-

tion pattern as a three dimensional projection of a higher

dimensional reciprocal lattice, idea which led directly to

the generalization of the concept of crystal. Aperiodic

crystals are currently described as periodic objects in

higher-dimensional space, i.e. the superspace and their

structures can be described in terms of 3-d cuts. Incom-

mensurate structures, composite structures and quasicrys-

tals all belong to aperiodic structures. Many interesting

properties of superspace have been discovered which are

also directly applicable to crystals in the conventional

sense, i.e. crystals with 3-d periodicity. In particular the

concept of structure type can be extended for a better

understanding of structure relations. The notion of solid

solution has also benefited from superspace considerations.

Moreover, superspace is a very powerful tool for a better

understanding of structure–property relations in material

science, e.g. luminescence properties could be directly

associated to the description of structures in superspace.

Recently, this concept has been used for the prediction of

new structural modifications including polytypes and even

polytypic modifications of a well-known pharmaceutical

product.

Keywords Aperiodic crystals � Incommensurately

modulated crystals � Composite crystals � Quasicrystals

1 Introduction and historical summary

The celebration of the 100th anniversary of the discovery

of diffraction by crystalline solids (1912–2012) gives us an

excellent opportunity to look at the impressive contribution

of diffraction methods towards our knowledge on the

structure of matter. The enormous progress is due to

theoretical and experimental advances and today, even the

finest structural details of large objects like ribosomes are

accessible by diffraction methods.

The three dimensional periodicity of crystalline struc-

tures is a fundamental concept which is at the basis of the

theoretical model which has been so successful for dif-

fraction. However, already in the late 1920s, the three

dimensional concept of lattice periodicity was already put

into doubt on the basis of diffraction diagrams of laminated

metals. Dehlinger (1927) explained the line broadening of

Debye–Scherrer diagrams by periodic perturbation and

invented the name of Gittergeister to characterize the

additional lines appearing on the diagrams. Preston (1938)

later introduced the term satellites to characterize the

additional lines observed on aluminium copper alloys.

Shortly after, Kochendörfer (1939) calculated the intensi-

ties of Debye–Scherrer lines resulting from a sinusoidal

wave of atomic displacements. Daniel and Lipson (1943)

further developed the theory of periodic perturbation on the

This contribution is the written, peer-reviewed version of a paper

presented at the conference The Centennial of X-Ray Diffraction

(1912–2012), held at Accademia Nazionale dei Lincei in Rome on

May 8 and 9, 2012.

G. Chapuis (&)

Laboratoire de cristallographie, BSP/Cubotron,

EPFL, 1015 Lausanne, Switzerland

e-mail: gervais.chapuis@epfl.ch

A. Arakcheeva

Phase Solutions Ltd, ch. des Mésanges 7,

1012 Lausanne, Switzerland

123

Rend. Fis. Acc. Lincei (2013) 24 (Suppl 1):S77–S84

DOI 10.1007/s12210-012-0221-1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150474?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


basis of Co–Ni–Fe alloy diffractograms. They were how-

ever not able to conclude on the nature of the perturbation,

was it a scattering modulation or a lattice modulation?

Hargreaves (1951) extended their work by considering

rectangular modulations in Cu–Ni–Fe and postulated that

the magnetic properties of the alloys are systematically

affected by the development of the modulated structure.

The existence of satellite reflections was not only

observed in metal alloys but also in felspars (Chao and

Taylor 1940).

The most significant advance in the theory of periodic

distortions in crystalline structures is due to Korekawa

(1967). In his habilitation thesis, he presented a complete

series of possible distortions by combining transversal or

longitudinal displacement waves along with density waves

and estimated the intensities of the satellite reflections

consequently to the amplitude of the periodic perturbations.

His theoretical work was illustrated with two real cases,

namely the structures of the mineral labradorite and an

organic copper-containing complex. This work was pub-

lished in German and not easily accessible and conse-

quently its diffusion was limited. Another limitation was

due to the lack of symmetry considerations regarding the

theory of satellites.

The real breakthrough came later in 1972 when de

Wolff (1972) and Janner (1972) presented independently

their work in the IUCr conference in Kyoto on the four-

dimensional space group of c-Na2CO3, respectively, the

symmetry groups of lattice vibrations. Both presenters

realized that they were using symmetry groups with the

same properties and thus the tools for the complete sym-

metry description of periodically distorted crystal struc-

tures were established. The introduction of an additional

space dimension to describe the structure of c-Na2CO3 was

justified by the existence of a periodic distortion, i.e. a

modulation component which is independent of the clas-

sical 3-d lattice periodicity. The term incommensurate

structure was later introduced to describe modulations with

irrational wave vector components.

An additional kind of structural complexity was

described when Makovicky and Hyde (1981) published

their work on misfit layer structures. They considered

incommensurate structures in the form of alternating layers

possessing two independent periodicities and introduced

the term incommensurate composites. It could be shown

later that the symmetry of composites could perfectly well

be described with the same higher dimensional groups

introduced by de Wolff and Janner. Perhaps the most

spectacular discovery in the structural departure of purely

3-d periodicity appeared when Shechtman et al. (1984)

published their work on a metallic phase with long-range

order but no translational symmetry. The diffractograms of

this phase exhibited perfect icosahedral symmetry which is

obviously incompatible with 3-d periodicity. The term

quasicrystal (QC) was then introduced to describe crys-

talline structures with similar diffraction patterns (Levine

and Steinhardt 1984). Here again, it was soon realized that

additional dimensions were necessary to describe the

structural and symmetrical properties of QC.

In this article we shall first present a common concept,

the so called superspace to describe the structures and

symmetries of aperiodic crystals, which include incom-

mensurate and composite structures as well as QC. Some

examples of aperiodic structures will be presented and

finally, we shall present an application of the superspace

formalism in the field of materials science.

2 Aperiodic structures and the superspace concept

Let us first consider a diffraction layer of an incommen-

surate crystal as represented in Fig. 1. We observe that the

reflections at the intersection of the grid lines are all

accompanied with satellite reflections along parallel

directions to the modulation vector q: It would be an

impossible task to find a smaller reciprocal cell which

would allow the indexing of all the spots with only two

integers, knowing that the magnitude of the modulation

vector q might change with temperature or pressure. It is

thus natural to select an additional integer m and index

each spot on the layer with three integers as in Eq. (1). This

is also justified by the fact that the diffracted intensities

decrease with the magnitude of the integer m.

mq

O

Fig. 1 Diffraction layer of an incommensurate crystal. Main reflec-

tions are located at the intersection of the grey lines whereas the

satellite reflections are located along the darker lines at distances mq
with integer m
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H ¼ h1a�1 þ h2a�2 þ mq ð1Þ
The number of integers which is necessary to com-

pletely characterize a diffraction diagram is in the most

general case given by Eq. (2). The number of integers n to

fully characterize a diffraction diagram is called the rank

and is different from the space dimension in which the

corresponding structure is described.

H ¼ h1a�1 þ h2a�2 þ h3a�3 þ � � � þ hna�n ð2Þ

We can now easily introduce the following definition:

Definition H describes a periodic crystal if its space is

equal to its rank. H describes an aperiodic crystal if its rank

is larger than its space.

Aperiodic crystals have been observed in all types of

crystalline materials including minerals, metals, alloys

(quasicrystals), organic and inorganic materials, macro-

molecules. They also appear in pressure- or temperature-

induced phase transitions (Janssen et al. 2007).

The introduction of additional integers for the charac-

terization of aperiodic crystals is associated with additional

space dimensions in reciprocal space. Figure 2 illustrates

the embedding of the reciprocal space in a space of higher

dimension. We shall call this type of embedding super-

space and use the subscript S to characterize the corre-

sponding reciprocal lattice vectors. For reasons which are

beyond the scope of this presentation, the additional

dimensions used to describe aperiodic crystals have some

special properties. We therefore prefer to use the expres-

sion (3 ? 1)d to emphasize the additional dimension for

the description of a three dimensional structure of rank 4.

Given the basis vectors of an aperiodic crystal in reciprocal

space, the next task is to find the corresponding vectors in

direct space. For this purpose, we can use the scalar product

relating direct and reciprocal basis vectors as in Eq. (3)

a�S1 ¼ ða�1; 0Þ
a�S2 ¼ ða�2; 0Þ
a�S3 ¼ ða�3; 0Þ
a�S4 ¼ ðq; 1Þ

9
>>=

>>;

! aSi � a�Sj ¼ dij !

aS1 ¼ ða1;�q � a1Þ
aS2 ¼ ða2;�q � a2Þ
aS3 ¼ ða3;�q � a3Þ

aS4 ¼ ð0; 1Þ

8
>><

>>:

ð3Þ

dij is the Kronecker symbol which is one if i and j are

equal and zero otherwise. The direct space components of

the lattice have two parts, the external, respectively, the

internal components. In the former we recognize the

conventional lattice vectors whereas in the latter, the scalar

product of the modulation vector with the lattice vectors.

In order to get more insight into the superspace repre-

sentation of aperiodic crystals, let us apply a periodic

longitudinal displacement along a to a periodic array as

represented in Fig. 3a. The modulation wave is parallel to

a1 with wavelength k which is independent of the lattice

periodicity. The corresponding representation of this

modulation is illustrated in Fig. 3b for the section

(aS1; aS4). This two dimensional periodic array is given by

the grey motif. The position of a single atom is given by the

sinusoidal wave with a given amplitude. The components

of the basis vectors in superspace according to relation (3)

are indicated in the Fig. 3. The physical structure is given

by the intersection of the periodic distortion with the

horizontal line labelled ‘‘real crystal’’ which reproduces the

deformation of Fig. 3a. As the periodicity along a2 is not

modulated, the corresponding representation of an atom in

the section (aS2; aS4) is obviously a straight line.

Since the introduction of superspace, many different

types of modulation functions in addition to the harmonic

modulation represented in Fig. 3 have been introduced in

order to improve the description of aperiodic crystals.

Figure 4 for example gives two functions which are fre-

quently used. Figure 4a characterizes a displacement of an

atom onto two possible positions whereas Fig. 4b illus-

trates layer displacements between the three possible lay-

ers’ positions A, B or C. This list is not exhaustive and

additional examples can be found e.g. in Janssen et al.

(2007) and van Smaalen (2007).

The treatment of symmetry of aperiodic crystals is beyond

the scope of this article. We can just mention that the reso-

lution of aperiodic structures follows the same scheme as for

conventional structures. The list of all possible superspace

groups of e.g. (3 ? 1)d has been established along with their

corresponding systematic absences (see for example Stokes

et al. 2011). It is the task of the structure specialist to delimit

the right superspace group and the corresponding modula-

tion functions that best fit the observed intensities of the

aperiodic structure under consideration.

Before ending this section, we would like to give some

precisions about the various types of aperiodic crystals which

we introduced in Sect. 1. What are the essential differences

qO

Satellite
reflection

Main
reflection

R*

e4 aS4

a1

aS1
*

*

**

Fig. 2 Embedding of the reciprocal space in higher dimensional

space, i.e. superspace. The satellite reflections along a�1 are extended

into two components, e�4 and q; to form the reciprocal lattice vector

a�S4
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between incommensurate, composite and quasi-crystals.

Figure 5 is inspired from the publication of Yamamoto (1996)

and uses the decomposition in external and internal compo-

nents of reciprocal space to illustrate their main characteristics.

Figure 5a is nothing else than the extension already presented

in Fig. 2 for a modulated crystal. In this case, only the main

reflections are contained along the external space dimension

whereas the satellite reflections have both external and internal

components. Composite crystals show essentially two main

directions indicated by c1
* and c2

* as in Fig. 5b. Satellite

reflections are located on the grid points formed by these two

directions but close to them. Finally, the representation for

quasicrystals given in Fig. 5c indicates that the reflections are

located at the intersection of a grid, independently of the

external and internal components.

3 Examples of incommensurate structures

For space limitations, we shall limit ourselves to a small

selection of aperiodic structures namely incommensurate

structures. Our first example is the structure of c-Na2CO3

which is incommensurate over a large temperature domain,

including room temperature. This is the first structure which

was solved in the superspace formalism by de Wolff and his

team (van Aalst et al. 1976). The structure is represented in

Fig. 6a. For our purpose, we shall neglect the O atoms

forming triangles around the C atoms. Thus, the structure

consists of graphite like layers composed of C and Na3

stacked in the third dimension and in between, we find the

Na1 and Na2 atoms. From the chemical point of view, it is

interesting to note that Na3 has a completely different

chemical environment than the two other Na atoms and can

thus be reinterpreted as a different kind of atom for the

structure characterization. At higher temperature, Na2CO3

is hexagonal with the hexagonal axis along c. At lower

temperature, a monoclinic distortion occurs along b.

Figure 6b shows a (aS1; aS3) section where all atoms lie on

the mirror plane mM. The monoclinic deformation can occur

along three equivalent directions in the high temperature

phase and only one is realized. The other two directions mV

are frustrated and attempt to establish a similar equilibrium

environment as in the mM. This can only be accomplished

by the introduction of a modulation which is illustrated in

Fig. 6c. We can see that the environment found in mM is

only very partially realized in the mV direction.

The second example concerns the incommensurate

structure KSm(MoO4)2 based on synchrotron powder

a1

a
S4

=(0, 1)

0

x
4

t

x
1

periodic motif

a
S1

a
S4

a1

a2

λ

a b

Fig. 3 a Periodic longitudinal distortion with wavelength k applied to an array of grid points. b Representation in superspace of the

corresponding distortion in the section aS1; aS4

0
1

2
3

4

0
1

2
3

4

a
S1

a
S1

a
S4 a

S4

A

B

C

a b

Fig. 4 Modulation functions can have many different shapes. a Step function which might characterize atomic displacements over two sites.

b Example of a layer structure where one layer might choose either the A or B or C position
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diffraction measurements (Arakcheeva et al. 2008).

Although the ratio K/Sm is purely stoichiometric, the

resulting structure represented on the left of Fig. 7 is

remarkable. We observe slanted zones (relative to the lattice

vectors) of Sm and MoO4 alternating with zones of K and

MoO4 normal to the direction of the modulation vector. In

3-d, the structure consists of alternating K, respectively, Sm

slabs, the origin of which is not yet explained. This structure

results from the (3 ? 1)d refinement illustrated on the right

of Fig. 7 where three (aSi; aS4) sections of the K and Sm

Fig. 5 Schematic representation of the reciprocal space indicating

the essential differences between incommensurate, composite and

quasi-crystals according to Yamamoto (1996). Note the positions of

the reflections relative to the external and internal components of

reciprocal space for each type of aperiodic structure

Na1

Na2

C

Na3

mV

mM

z

y
x

Na3

C

C, Na3

Na2

Na1

C, Na3

C, Na3

Na1

Na2

x

z

y

a

b c

Fig. 6 a Schematic representation of the incommensurate c-Na2CO3

in terms of graphite like layers. O atoms are omitted. b Section of the

incommensurate structure lying on the mirror plane mM. c Section of

the same structure along a different direction. In all three represen-

tations, we observe the unique role of Na3
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positions and their occupation are illustrated. The shape of

the curves are obtained by successive approximations and

the specialists dispose of a selection of them (see e.g. Fig. 4)

to apply in their refinements. It is worth mentioning that the

model obtained by powder refinement fits perfectly well with

the corresponding HREM images.

Up to this point, we have only presented the geometrical

characteristics of aperiodic structures. The interesting

aspects of structural investigations only start once their

resolutions are completed. In the following section, we shall

describe an interesting application of the superspace for-

malism relating structural and physical properties.

4 Application

The series of compounds NaxEu(2 - x)/3
3? MoO4 (0� x� 1

2
)

belong to the same structural type as presented in Sect. 3

Eu containing compounds exhibit interesting luminescent

properties and one of the main task of material scientists is

to optimize these properties according to some adjustable

parameters like composition or other. For many years,

scientists have vainly attempted to correlate the lumines-

cence efficiency, in particular by the Na/Eu3? content.

Having recently found that these types of compounds, i.e.

scheelites, often form aperiodic structures, we have

Sm(MoO 4
) 

zone

K(MoO 4
)  

zone

Modulation

periodicity

0 0.2 0.4 0.6 0.8 1t

0

0.5

occ

KKSmSm

1
0.95

0.05

x2=0.25, x3=0.875

0

0.4

0.8

1.2

1.6

2
x4

x1=0.5, x3=0.875

0

0.4

0.8

1.2

1.6

2

x1=0.5, x2=0.25

0

0.4

0.8

1.2

1.6

2
x4

x1 x3

0.35 0.5 0.65 0.1 0.25 0.4 0.8 0.960.88x2

x4

Fig. 7 Left ab projection of a portion of the aperiodic structure KSm

(MoO4)2 resulting from the structure refinement. Large circles
represent the K and Sm whereas the edges represent the MoO4

tetrahedra. Right 2-d sections resulting from the refinement of the

incommensurate structure in superspace. The curves characterize the

positions of the Sm and K atoms and their occupations

Na0.2 Eu

 Eu binary
cluster

0.6 MoO4

Na0.138Eu0.621MoO4 Na0.5Eu0.5MoO4Na0.134Eu0.622MoO4

Na0.236 Eu0.588MoO4Na0.25Eu0.583MoO4

b

a

q

Mo
O

Eu
Eu

Fig. 8 Schematic ab projections of various incommensurate structures. Only Eu (black circles) and Na (grey circles) are represented along with

vacancies (white stars). Eu dimers are indicated by ellipses. The last structure is fully disordered
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prepared a series of eight compounds in the given range in

order to find a direct correlation between the luminescence

characteristics and the structural properties (Arakcheeva

et al. 2012). Six out of eight members of the series exhibit

incommensurate structures which have been solved in the

superspace formalism. A schematic representation of six

structures is given in Fig. 8 in the form of 2-d sections.

Here again we observe alternating domains of Na and Eu

rich slabs roughly parallel to the diagonal of the basic cells.

In addition we also observe isolated clusters of Eu-pairs,

the number of which is independent of the Na/Eu3? ratio. It

turns out the luminescence efficiencies are directly related

to the number of Eu binary clusters as can be seen from

Fig. 9. This interesting result explains why previous

attempt to correlate the structures and properties failed

because the identification of binary clusters can only be

found by solving the structures in superspace (and not by

using of a 3-d approximation as is often the case). The

second interesting point relates to the optimization of the

luminescence (or any other physical) properties by material

engineering. Once the superspace symmetry characteristics

are identified, it is an easy task to explore the superspace

and simulate the best composition which maximize e.g. the

number of clusters.

5 Conclusion

The discovery of aperiodic structures has changed our

vision of the crystalline state and has revealed a more

complex organization of matter with long range order dif-

ferent from 3-d periodicity. Thus since more than four

decades a new paradigm of structural characteristics had to

be introduced in order to extend the classical view of 3-d

periodic crystals. Every year sees an increasing number of

aperiodic structures in every kind of material. The intro-

duction of the superspace formalism has greatly contributed

to the rapid evolution of the field and many new possible

applications are introduced. In this limited space, only a

single example of superspace applications has been pre-

sented. Many more have been proposed in the specialized

literature. See for example (Arakcheeva and Chapuis 2006;

Orlov et al. 2012; Morozov et al. 2010; Elcoro et al. 2012).

The role of aperiodic structures in structural sciences

can no longer be ignored. The availability of synchrotrons

and up-to-date detectors has changed the scope of the field.

Superspace is a powerful tool not only for the description

of aperiodic structures but also for conventional structures

and families of structures with common features. It closes

the gap between periodic and aperiodic structures. One

should also bear in mind that structures which were con-

sidered as disordered in the past appear very often to be

fully ordered but aperiodic. In other words, they possess

long range order. There is thus a great potential for

superspace in material research sciences for a better

understanding of structure–property relations.

Since the discovery of diffraction 100 years ago, our

perception of the state of crystalline matter has greatly

evolved. The discovery of aperiodic structures has proba-

bly done most to the evolution of this perception. The basic

tools for their studies being in place, we shall certainly see

in the future an increased number of developments which

will contribute to the resolution of structural problems not

accessible with classical methods.
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