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Abstract—Jasmonate signaling pathway plays an important role in induced

plant defense against herbivores and pathogens, including the emission of

volatiles that serve as attractants for natural enemies of herbivores. We

studied the volatiles emitted from rice plants that were wounded and treated

with jasmonic acid (JA) and their effects on the host-searching behavior of the

rice brown planthopper, Nilaparvata lugens (Stål), and its mymarid egg

parasitoid Anagrus nilaparvatae Pang et Wang. Female adults of N. lugens

significantly preferred to settle on JA-treated rice plants immediately after

release. The parasitoid A. nilaparvatae showed a similar preference and was

more attracted to the volatiles emitted from JA-treated rice plants than to

volatiles from control plants. This was also evident from greenhouse and field

experiments in which parasitism of N. lugens eggs by A. nilaparvatae on

plants that were surrounded by JA-treated plants was more than twofold

higher than on control plants. Analyses of volatiles collected from rice plants

showed that JA treatment dramatically increased the release of volatiles,

which included aliphatic aldehydes and alcohols, monoterpenes, sesquiter-

penes, methyl salicylate, n-heptadecane, and several as yet unidentified

compounds. These results confirm an involvement of the JA pathway in

induced defense in rice plants and demonstrate that the egg parasitoid A.

nilaparvatae exploits plant-provided cues to locate hosts. We explain the use
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of induced plant volatiles by the egg parasitoid by a reliable association

between planthopper feeding damage and egg presence.

Key WordsVRice, jasmonic acid, Nilaparvata lugens, Anagrus nilaparvatae,

plant volatiles, induced defense, host-searching behavior.

INTRODUCTION

It is widely accepted that plants respond to attack by specific herbivore species

and tailor their induced direct and indirect defenses accordingly (Karban and

Baldwin, 1997). Chemical defenses that target the herbivore directly result in

herbivore death or retarded development (Barbosa et al., 1991; Karban and

Baldwin, 1997; Agrawal, 1999; Lou and Baldwin, 2003; Sznajder and Harvey,

2003), whereas indirect defenses increase herbivore mortality through the

recruitment of parasitoids and predators with volatile signals (Thaler, 1999;

Kessler and Baldwin, 2001). Indirect plant defenses have been intensively

studied since the late 1980s, and to date, this phenomenon has been reported in

more than 23 plant species (see reviews in Vet and Dicke, 1992; Dicke, 1999;

Sabelis et al., 1999; Turlings and Wäckers, 2004). Studies on the mechanisms

leading to the production of herbivore-induced plant volatiles have revealed the

role of herbivore-specific elicitors (Mattiacci et al., 1995; Alborn et al., 1997;

Halitschke et al., 2001). These elicitors can activate various signaling pathways

in the plant, causing an up-regulation of a large array of defense-related genes

through cross-talk and resulting in accumulation or release of defense chemicals

(Kessler and Baldwin, 2002).

Among these signaling pathways, the jasmonic acid (JA) pathway is the

best studied and has been reported to play an important role in induced plant

direct and indirect defenses (Hopke et al., 1994; Boland et al., 1995; Dicke et

al., 1999; Schmelz et al., 2003). In the wild tobacco plant Nicotiana attenuata,

for example, exogenous application of MeJA increases the release of volatile

organic compounds (Halitschke et al., 2000), which enhances the mortality rates

of the herbivores by attracting the natural enemies of herbivores (Kessler and

Baldwin, 2001). Moreover, antisense suppression of a lipoxygenase gene

LOX3, a specific wound- and herbivory-induced isoform involved in JA

biosynthesis in N. attenuata, results in decreases in release of volatiles and

nicotine and trypsin protease inhibitor levels (Halitschke and Baldwin, 2003).

Exogenous application of JA to tobacco and tomato plants promotes parasitism

and predation of the herbivores by natural enemies in nature (Thaler, 1999;

Kessler and Baldwin, 2001). Chemical and behavioral analyses demonstrate that

spider mite damage and JA treatment have similar, although not identical,

effects on volatile induction in Lima bean plants (Dicke et al., 1999). In maize,

caterpillar-induced volatile emissions are positively correlated with increased
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JA levels (Schmelz et al., 2003). Ozawa et al. (2004) reported that maize plants

treated with JA attract specialist parasitoids under laboratory conditions. In rice,

the world’s most important food crop, the role of JA signaling has been mainly

studied for direct defenses. Exogenous application of JA on rice plants elicits

the productions of proteinase inhibitors, phytoalexins, PRs, and salt-induced

proteins (Tamogamia et al., 1997; Rakwal and Komatsu, 2000; Rakwal et al.,

2001; Kim et al., 2003), and it may increase the emission of volatiles (Obara

et al., 2002).

In this study, we investigated the effect of JA application to rice plants on

the host-searching behavior of the rice brown planthopper Nilaparvata lugens

and its mymarid egg parasitoid Anagrus nilaparvatae. N. lugens is one of the

most important rice pests. It feeds on the plant’s phloem and causes a decrease

in leaf area, plant height, dry weight, leaf and stem nitrogen concentration,

chlorophyll contents, and photosynthetic rate, but an increase in free amino

acids, sucrose, and leaf iron content (Rubia-Sanchez et al., 1999; Watanabe and

Kitagawa, 2000). The parasitoid A. nilaparvatae is a major natural enemy of the

rice planthoppers. Previous studies have shown that rice volatiles play an

important role in host plant location by N. lugens (Liu et al., 2002), and the

volatiles emitted from rice plants in response to N. lugens attack attract the

parasitoid (Lou and Cheng, 1996; Lou et al., 2002). However, little to nothing is

known about the effect of JA application on rice volatiles and in turn on host-

searching behavior of N. lugens and the parasitoid.

To determine if JA induces emission of volatiles that affect the host-

searching behavior of the herbivore and the parasitoid, we first measured their

responses to JA-treated plants and control plants in the laboratory. In additional

greenhouse and field experiments, we then tested if JA treatment of rice plants

enhanced the parasitism of N. lugens eggs by the parasitoid. Finally, we

collected and identified volatiles that were released from JA-elicited and the

control plants.

METHODS AND MATERIALS

Plant Growth. The rice variety used was TN1, which is susceptible to

N. lugens (Lou and Cheng, 2003). Pregerminated seeds were sown in a

greenhouse, and after 20Y25 d, the seedlings were transplanted into small clay

pots (8-cm diam � 10-cm height) each with one plant or big clay pots (16-cm

diam � 10-cm height) each with three or six plants. For three plants per pot,

they were arranged in an equilateral triangle 8 cm apart; for six plants per pot,

they were arranged in two rows each with three plants and 8 cm between rows

and 2 cm between plants. Plants were watered daily, and each pot was supplied
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with 10 ml of nutrient solution [Ca(NO3)2I4H2O, 0.5g/l; K(NO3)2I4H2O,

0.125g/l; MgSO4I7H2O, 0.125g/l; K2HPO4, 0.125g/l; FeCl2, 0.005g/l] every 3

d. All plants were placed in a controlled climate room that was maintained at 23

T 2-C, 70% r.h., and 18 hr photophase (25,000 lx). The plants were used for

experiments 25Y30 d after potting. Plantings were continued at regular intervals

so that enough plants of suitable age were available for experiments.

Insects. The N. lugens culture was originally obtained from the China

National Rice Research Institute (CNRRI), Fuyang, Zhejiang, and maintained

on TN1 rice plants in a greenhouse. Late instar nymphs of N. lugens were

captured from the greenhouse and reared on potted TN1 rice plants, which were

confined in plastic cages (11-cm diam � 40 cm high). The caged rice plants

were maintained in a controlled climate room at 28 T 2-C, 12-hr photophase,

and 70Y80% r.h. Newly emerged adults of N. lugens were collected daily and

fed on potted fresh TN1 rice plants. Using this procedure, N. lugens adults of

uniform age were obtained.

A laboratory colony of the egg parasitoid A. nilaparvatae was started from

individuals trapped in rice fields in Hangzhou using TN1 rice plants with N.

lugens eggs as bait. The colony was propagated on N. lugens eggs in rice shoots

enclosed in glass tubes (2.5-cm diam � 20-cm height), which were kept in a

controlled climate room at 28 T 2-C, 12-hr photophase, and 70Y80% r.h. Each

day, the newly emerged wasps were collected into clean glass tubes (2.5-cm

diam � 20-cm height), with access to both water and honey solution, and held

for at least 2 hr to ensure mating. From the second generation onwards, female

parasitoids were used in experiments less than 24 hr after emergence.

Plant Treatment. The potted plants were washed with running water and

trimmed to leave one, three, or six plants for each pot. Plants were individually

damaged with a needle at the lower and upper position of rice stems each with

200 pricks, and then each damage site was treated by applying 20 ml of 10 or 1

mM jasmonic acid in 50 mM sodium phosphate buffer (titrated with 1 M citric

acid until pH 8) (JA). Control plants (BUF) were wounded the same way and

treated with 20 ml of the buffer on each of the two damaged sites. Plants were

treated at 1700 hr, and then the plants were placed in the controlled climate

room that was maintained at 28 T 2-C, 12-hr photophase, and 80% r.h. Fifteen

hours after treatment, i.e., at 0800 hr the next day, plants were used for

experiments.

Effect of JA Elicitation on Host Plant Choice by N. lugens. Pots with six

plants each were used for this experiment. Three plants in one row were

wounded and treated with either 10 or 1 mM JA, and plants in the other row

were wounded and treated with the buffer, thus obtaining two types of treatment

pairs: 10 mM JA-treated plants vs. the buffer-treated plants or 1 mM JA-treated

plants vs. the buffer plants. The potted plants were then individually placed into

a sleeve cage (25 cm long, 25 cm wide, 50 cm high) that was maintained in a
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controlled climate room at 28 T 2-C, 12-hr photophase, 80% r.h. Fifteen hours

after treatment, 30 macropterous N. lugens females (2 d old) were introduced

into each cage. Subsequently, the number of N. lugens on JA-elicited and

buffer-elicited plants were recorded 1, 2, 3, 4, 6, 12, 24, 36, 48, 60, and 72 hr

after their release, respectively. Each of the two experiments was replicated five

times.

Effect of JA Elicitation on Host-Searching Behavior of the Parasitoids

Olfactometer Test. Responses of A. nilaparvatae females to rice volatiles

were measured in a Y-tube olfactometer. The olfactometer consisted of a Y-

shaped glass tube of 1-cm diam. The base and the two arms of the Y tube were

all 10 cm in length. Each arm was connected to an odor source container (a

glass box, 10 � 10 � 30 cm). An air stream was generated and was divided in

two, and each secondary air stream was led through a flowmeter, a tube with

active charcoal, a humidifier bottle, and one of the odor containers.

Subsequently, the two airstreams were led through the two arms of the Y-tube

olfactometer at 150 ml/min. The Y-tube olfactometer was placed in a box

painted white with an artificial light source consisting of a single 25-W lamp

placed above the arms of the Y tube. All bioassays were conducted between

0900 and 1700 hr. During experiments, the temperature in the room was

maintained at 25Y28-C.

A. nilaparvatae females had the choice between odors from 1 mM JA-

treated plants vs. the buffer-treated plants or 10 mM JA-treated plants vs.

buffer-treated plants. To test for a possible effect of the treatment solutions per

se, we added an experiment without plants, but with the solutions applied to

filter paper (40 ml of 10 mM JA vs. 40 ml of the buffer). Fifteen hours after

treatment, 10 plants that were individually planted in pots of each treatment

were cut off at soil level, the cut stem was wrapped with wet cotton, and the

entire plants were placed into one of the odor source containers. Mated female

parasitoids were introduced individually into the base tube of the Y-shaped

olfactometer and given 10 min to walk toward the end of one of the arms.

Choice for an odor source was defined as a female crossing a line 7 cm after the

division of the base tube and remaining there for at least 1 min. If a parasitoid

did not make a choice within 10 min, this was recorded as no response. After

testing two females, the olfactometer tube was washed with 98% alcohol and

then was heated at 80-C for several minutes. To remove any asymmetrical bias,

connections of the two arms of the olfactometer to the odor source containers

were exchanged after testing two females, and the odor source containers were

exchanged after testing eight females. The odor sources were replaced by a new

set of 10 plants after testing 16 wasps, and for each odor source combination,

at least 32 females were tested.
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Greenhouse Experiment. Two plants, each with about 80Y100 1-d-old N.

lugens eggs, were transplanted into the center of a triangle of three plants that

had been wounded 15 hr earlier and treated with either 10 mM JA, 1 mM JA, or

with buffer. To obtain plants with N. lugens eggs, they were individually

infested for 1 d with 10 gravid N. lugens females that were placed in two

parafilm bags at the upper and lower position of the plant stems. After removal

of the females, plants with 80Y100 eggs were chosen. For each treatment, five

pots were randomly placed into a cage (length 2.0 m, width 1.5 m, height 1.5 m)

covered with nylon net into which 60 mated A. nilaparvatae females were

introduced. The experiment was carried out in a greenhouse maintained at 24T4-C.

Two days later, the parasitoids were removed, and each pot was confined in a

plastic cage (6.5 � 32 cm), all of which were placed into a controlled climate

room at 28 T 2-C, 12-hr photophase, and 80% r.h. Five days after placing them

in the climate room, the plants were dissected, and the total of parasitized N.

lugens eggs (the eggs become red) was recorded. The experiment was replicated

five times.

Field Experiment. The treatments for plants were the same as the

greenhouse experiment. Both JA (10 or 1 mM)-elicited plants and the buffer-

elicited plants were placed at 10 locations in a rice field (20 � 30 m) in October

2000 (Figure 1). The field was surrounded by rice fields with plants in the

Bheading^ stage. Each location included three pots of plants, each pot with one

of the three treatments. The three-pot groups were arranged in two rows, each

FIG. 1. Arrangement of the plants that were wounded and treated with 40 ml of either 10

mM JA in 50 mM sodium phosphate buffer (pH = 8), 1 mM JA in the buffer, or the

buffer in a rice field. Numbers indicate locations, and each location includes three pots of

plants, 10 mM JA-elicited plants, 1 mM JA-elicited plants, and the buffer-elicited plants.
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included five groups placed 5 m apart. The distance between the two rows was

10 m (Figure 1). Two days after the plants were introduced into the rice field,

the plants were transferred to the controlled climate room at 28 T 2-C, 12-hr

photophase, and 80% r.h., and each pot of plants was confined in an 11-cm diam �
40-cm-high plastic cage (herbivores, predators, and parasitoids on plants were

all removed). Five days later, the plants were cut off at the soil level and dissected

under a microscope to record the total, the parasitized, and the predated (sucked

empty) N. lugens eggs. Parasitized eggs were carefully placed into petri dishes (6

cm in diam) that were lined with wet Whatman No. 1 filter paper. When the

parasitoids were emerged, the species were identified.

Collection, Isolation, and Identification of the Volatile Compounds. The

volatile collection system has been described in detail by Turlings et al. (1998).

It consists of six vertically placed cylindrical glass tubes (9.5-cm i.d., 54 cm

high). A split Teflon plate with a hole in the center at the base of a cylinder

closed loosely around the stem of a plant, allowing the separation of the aerial

part of a plant, in the cylinder, from the pot, which remained outside (Turlings

et al., 1998). Purified and humidified air was pushed into each cylinder at a rate

of 1 l/min and flowed over the plant. Around the base of each cylinder, just

above the Teflon disk, eight openings served as ports that could hold the

collection traps. Only one port was used during an experiment. For collections,

air was pulled (0.8 l/min) through a Super-Q adsorbent trap (Heath and

Manukian, 1994), whereas the rest of the air vented out through the hole in the

bottom, thus preventing impure air from entering. The automated part of the

collection system (Analytical Research System, Gainesville, FL, USA) controlled

the flow through the trap. The climate chamber (CMP4030, CONVIRON,

Winnipeg, Canada), in which the collection cylinders were housed, was kept

at 17.5-C; because of the irradiation heat, the temperature inside the

cylinders was 23 T 3-C. During the light cycle, light intensity was about

20,000 lm/m2.

Volatiles emitted from nonmanipulated plants and plants that were

wounded and treated with either 10 mM JA or the buffer were collected. We

also collected the volatiles from a blank, only a pot of soil without plants, to

check if the system is clean. Collections started immediately after lights went

on, 15 hr after treatment. Each collection lasted 4 hr. After each collection, traps

were extracted with 150 ml methylene chloride (Lichrosolv., Merck, Whitehouse

Station, NJ, USA), and 200 ng of n-octane and nonyl acetate (Sigma,

Switzerland) in 10 ml of methylene chloride was added to the samples as

internal standards. Each treatment was replicated six times.

Analyses were carried out with an HP 6890 series gas chromatograph

equipped with an automated on-column injection system (HP G1513 A) and a

flame ionization detector. Of each sample, a 3-ml aliquot was injected onto an

apolar SE-30 capillary column (30 m, 0.25-mm i.d., 0.25-mm film thickness,
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Alltech, Deerfield, IL, USA) preceded by a deactivated retention gap (5 m, 0.25-

mm i.d.) and a deactivated precolumn (30 cm, 0.530 mm). Helium (24 cm/sec)

was used as carrier gas. After injection, the column temperature was maintained

at 40-C for 3 min, increased to 230-C at 8-C/min, and held at 230-C for 9.5

min. The detector signal was processed with HP GC Chemstation software.

To identify compounds, we collected volatiles emitted from 10 mM JA-

elicited plants for 10 hr. A 3-ml aliquot from this sample was injected onto the

same column and analyzed using the same temperature program. Volatiles were

detected by a Hewlett-Packard 5973 mass selective detector (transfer line

230-C, source 230-C, quadrupole 150-C, ionization potential 70 eV, scan range

50Y400 amu). Compounds were identified by comparison of GC retention times

with those of authentic standards and by comparison of mass spectra with

spectra of a NIST database.

FIG. 2. Mean (TSE, N = 5) number of Nilaparvata lugens female adults on pairs of plants

that were wounded and treated with 40 ml of 1 mM JA in 50 mM sodium phosphate

buffer (pH = 8) (1 mM JA) vs. plants that were wounded and treated with 40 ml of buffer

(Buf) (A), or that were wounded and treated with 40 ml of 10 mM JA in buffer (10 mM

JA) vs. Buf (B), 1Y72 hr after five replicated plant pairs were exposed to 30 insects. The

exposure of the plants started 15 hr after the treatment. Asterisks indicate significant

differences between members of a pair (JA vs. buffer, P < 0.05, t-test).
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Data Analysis. Differences in behavioral responses of the parasitoid to JA-

induced rice volatiles and the buffer-induced volatiles were determined by chi-

square tests, whereas differences in behavioral responses of female N. lugens

adults were determined by t-tests. To test for differences in parasitism among

the treatments, we used the Fieldman rank sum test. Comparison of the data on

plant volatiles was analyzed by MANOVA after the data were log transformed.

If the MANOVA analysis was significant (P < 0.05), univariate ANOVAs for

the individual effects and Fisher LSD post hoc tests to detect significant

differences between groups were conducted. Data were analyzed with Statistica

(Statistica, SAS Institute Inc., Cary, NC, USA).

RESULTS

Effect of JA-Elicited Plants on Host Preference of N. lugens. N. lugens

female adults were recovered consistently more often from the JA-treated plants

than from the buffer-treated plants, but this apparent preference was only

FIG. 3. Number of Anagrus nilaparvatae female adults attracted by volatiles released

from either pairs of plants that were wounded and treated with 40 ml of 1 mM JA in 50

mM sodium phosphate buffer (pH = 8) (1 mM) vs. plants that were wounded and treated

with 40 ml of the buffer (Buf ), plants that were wounded and treated with 40 ml of 10

mM JA in the buffer vs. Buf, or a pair of chemicals, 40 ml of 10 mM JA vs. 40 ml of the

buffer without plants [10 mM vs. Buf (NP)]. The plants were used 15 hr after the start of

treatment. Asterisks indicate significant differences between members of a pair (JA vs.

buffer, P < 0.05, chi-square test).
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significant for the 10 mM JA dose at 1 hr after the start of the experiment

(Figure 2). The data may not suffice to conclude that JA induction renders the

plants attractive to N. lugens females, but it can be concluded that the induced

volatiles are not repellent.

Effect of JA-Elicited Plants on Host-Searching Behaviors of the

Parasitoids. In olfactometer tests, A. nilaparvatae preferred the volatiles

emitted from JA-elicited plants to those emitted from the buffer-treated plants.

JA itself did not attract the parasitoids (Figure 3).

In the greenhouse experiment, parasitism of N. lugens eggs by A.

nilaparvatae on plants that were surrounded by JA-treated plants was higher

than on the buffer-treated plants (Figure 4A, Q = 8.40, P = 0.008), especially for

the 10 mM JA-treated plants on which the parasitism of N. lugens eggs by A.

nilaparvatae was 2.35-fold higher than those on the control plants.

During the field experiment, only A. nilaparvatae wasp was observed

parasitizing N. lugens eggs. As in the greenhouse experiment, JA treatments

FIG. 4. Mean (TSE) parasitism rates (%) of N. lugens eggs by A. nilaparvatae in the

greenhouse (A, N = 5) or field (B, N = 10) condition on rice plants surrounded by plants

that were wounded and treated with either 40 ml of 1 mM JA in 50 mM sodium

phosphate buffer (pH = 8) (1 mM), 40 ml of 10 mM JA in the buffer (10 mM), or 40 ml of

the buffer (Buf ). Fifteen hours after treatment, the plants were exposed to the parasitoid

or the field for 2 d. The differences in parasitism among the treatments were determined

by Fieldman rank sum test.
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increased parasitism of N. lugens eggs by A. nilaparvatae (Figure 4B, Q =

12.80, P = 0.001). When 40 ml of 1 or 10 mM JA was applied to wounded

plants, the parasitism of N. lugens eggs by A. nilaparvatae on plants that

were surrounded by JA-treated plants were 1.39- and 1.85-fold higher than

those on the control plants, respectively. Cyrtorhinus lividipennis Reuter

(Hemiptera: Miridae) is the main predator of N. lugens eggs in the rice field.

We found a tendency for predation rates of N. lugens eggs to be higher on JA-

treated plants (1 mM JA 3.21 T 1.00%; 10 mM JA 7.25 T 5.07%; buffer 1.58 T
0.66%), but the differences were not statistically significant (F = 0.944, df =

2,27, P = 0.402).

Analysis of Volatiles. Collection and analysis of the volatiles revealed that

only small amounts were released by nonmanipulated rice plants, whereas the

buffer- and JA-treated plants emitted 9.43 and 35.68 times larger amounts,

respectively (Table 1; Figure 5). Most compounds were released in significantly

larger amounts by JA-treated plants compared to buffer-treated plants: 2-

heptanone, 2-heptanol, limonene, linalool, (E )-4,8-dimethyl-1,3,7-nonatriene,

TABLE 1. COMPARISON OF VOLATILE COMPOUNDS EMITTED FROM

DIFFERENTLY-TREATED PLANTS
a

Chemical Nonmanipulation

Buffer-treated plants

(pH = 8)

10 mM JA-treated

plants (40 ml)

1. 2-Heptanone 7.65 T 1.27 c 133.82 T 53.04 b 776.75 T 259.34 a

2. 2-Heptanol 13.63 T 4.41 c 127.27 T 56.52 b 471.79 T 119.64 a

3. Unknown 1 Y c 8.15 T 2.24 b 25.83 T 6.05 a

4. Unknown 2 Y c 12.90 T 3.16 b 40.01 T 10.69 a

5. Limonene 24.18 T 1.73 c 100.07 T 23.46 b 243.26 T 57.54 a

6. Unknown 3 5.27 T 2.56 b 56.18 T 21.94 a 134.02 T 44.88 a

7. Unknown 4 2.72 T 1.16 b 34.89 T 13.14 a 219.54 T 88.17 a

8. Linalool Y c 413.50 T 129.78 b 1731.30 T 489.07 a

9. C11H18
b 10.50 T 3.26 c 57.83 T 18.88 b 146.91 T 29.30 a

10. Methyl salicylate 22.34 T 9.01 b 134.45 T 49.23 ab 194.45 T 55.45 a

11. "-caryophyllene 1.61 T 0.93 b 5.84 T 2.41 b 52.60 T 13.37 a

12. (E)-a-bergamotene Y c 6.65 T 0.85 b 15.72 T 4.30 a

13. n-Heptadecane Y c 4.56 T 1.65 b 22.16 T 5.25 a

14. (E)-Nerolidol 9.70 T 1.03 c 45.84 T 14.55 b 272.06 T 46.98 a

15. C16H26
c 1.56 T 0.21 c 11.15 T 2.90 b 46.99 T 7.24 a

Total 126.02 T 18.99 c 1188.51 T 390.26 b 4495.85 T 1119.35 a

aFor explanation of treatments and methodology see BMethods and Materials.^ Data represent the
mean amount (% of IS peak area) of six replications. Letters in a same row indicate significant
differences among treatments (P < 0.05, Fisher LSD post hoc tests).

b(E )-4,8-Dimethyl-1,3,7-nonatriene.
c(3E,7E )-4,8,12-Trimethyl-1,3,7,11-tridecatetraene.
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FIG. 5. Typical chromatograms obtained from headspace collections from an empty glass

container (a pot of soil without plants) (CK), untreated rice plants (TN1 H), or rice plants

15 hr after they were wounded and treated with either 40 ml of 50 mM sodium phosphate

buffer (pH = 8) (TN1 BF) or with 40 ml of 10 mM JA in the buffer (TN1 JA). (1) 2-

Heptanone; (2) 2-heptanol; (3) unknown 1; (4) unknown 2; (5) limonene; (6) unknown 3;

(7) unknown 4; (8) linalool; (9) (E)-4,8-dimethyl-1,3,7-nonatriene; (10) methyl

salicylate; (11) beta-caryophyllene; (12) (E)-alpha-bergamotene; (13) n-heptadecane;

(14) (E)-nerolidol; (15) (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene.
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(3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, beta-caryophyllene, (E )-al-

pha-bergamotene, n-heptadecane, (E)-nerolidol, and two unknown chemicals

(unknowns 1 and 2) (Table 1; Figure 5).

DISCUSSION

As reported for other plants, such as tobacco (Halitschke et al., 2000),

maize (Schmelz et al., 2003), and lima bean (Dicke et al., 1999), wounding and

application of JA to rice plants also resulted in an increase in volatiles emitted.

The overall emission was almost fourfold higher than the emission of the

buffer-treated plants. The increases involved aliphatic aldehydes and alcohols,

monoterpenes, sesquiterpenes, methyl salicylate, n-heptadecane, and some

unknown chemicals (Table 1; Figure 5). The composition of the odor blend

was in part consistent with previous results reported for JA-treated rice plants

(Obara et al., 2002). We too found a JA-mediated increase in the release of

limonene, linalool, methyl salicylate, beta-caryophyllene, (E)-alpha-bergamo-

tene, and several unknown chemicals. However, there are also some differences:

the compounds 2-heptanone, 2-heptanol, n-heptadecane, (E)-4,8-dimethyl-1,3,7-

nonatriene, (3E,7E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene, and (E)-nerolidol

that we collected from the headspace of JA-treated plants were not reported by

Obara et al. (2002). In turn, we did not detect the sesquiterpenes alpha-copaene,

alpha-cadinene, alpha-humulene, and several others, which were identified by

Obara et al. (2002). These differences may be due to treatment differences; they

collected volatiles emitted from pieces of rice leaves (2.5 cm long) that were

floating on a 0.5 mM JA solution for 7 or 48 hr. In maize, for example, it has

been observed that excised leaves produced a 2.5- to 8.0-fold greater volatile in

response to JA and the caterpillar produced elicitor volicitin than similarly

treated intact plants (Schmelz et al., 2001). Herbivore- or elicitor-induced

volatile releases also vary with time after treatment (Turlings et al., 1998),

herbivore damage level (Gouinguene et al., 2003), and the applied elicitor

amount (Halitschke et al., 2000). Compared to the nonmanipulated rice plants,

wounding and application of the buffer also increased release of some volatiles

(Figure 5), suggesting that wounding alone may be sufficient to induce a minor

release of at least some of the compounds and that application of JA fortifies

this effect.

The volatiles emitted from JA-treated rice plants were attractive to the

parasitoid (Figure 2) and enhanced parasitism of N. lugens eggs in the

greenhouse and field (Figures 3 and 4). This result is consistent with results

reported from other plants (Thaler, 1999; Kessler and Baldwin, 2001). We have

previously shown that linalool is attractive to A. nilaparvatae (Lou et al., 1999).
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The higher linalool concentrations in the headspace of JA-induced plants

compared to the buffer-induced plants might in part explain the difference in

attractiveness. Which other compounds may be involved in the attraction

remains to be elucidated.

We also studied the effect of treating rice plants with JA on the settling

behavior of adult N. lugens females. A negative effect was expected, as JA is an

important defense-related plant hormone. JA not only induces plants to release

volatiles, but also elicits increases in many nonvolatile defense chemicals, such

as phenolics, alkaloids, terpenoids, and proteinase inhibitors (Karban and

Baldwin, 1997; Lou and Baldwin, 2003, 2004). These nonvolatile compounds

are likely to affect the settling behavior of the planthoppers. Although numerous

studies have shown that JA application results in reduced preference and

performance of herbivores (Karban et al., 1997; Karban and Baldwin, 1997;

Black et al., 2003), contrary effects have also been reported. For example,

volatiles emitted by potato plants in responses to JA application enhanced the

plant’s attractiveness to female Colorado potato beetles (Landolt et al., 1999). In

wild radish, responses induced by JA application increased feeding by some

herbivores (Agrawal, 2000; Agrawal and Sherriffs, 2001). In addition, N. lugens

female adults tended to prefer 10 mM JA-elicited plants to the buffer. The fact

that this difference was only apparent 1 hr after release suggests that JA-induced

rice volatiles were slightly attractive to female N. lugens, whereas JA-induced

nonvolatile chemicals had no particular effect on host preference. The latter is

somewhat surprising as JA elicitation increases the production of proteinase

inhibitors, phytoalexins, and PRs in rice plants (Rakwal and Komatsu, 2000;

Rakwal et al., 2001; Kim et al., 2003). N. lugens female adults are attracted to

limonene (Lou et al., unpublished data). Hence, a slightly stronger attraction of

JA-induced rice volatiles to N. lugens compared to the control can be related to

higher levels of this and/or other compounds.

Thaler (1999) was the first to report that inducing plants with jasmonic acid

increases parasitism of caterpillar pests in an agricultural field. Subsequent

studies confirmed that JA treatment enhances the attractiveness of plants for

parasitoids of lepidopteran larvae (Ozawa et al., 2004) and predatory mites that

use induced plant volatiles to locate spider mite prey (Gols et al., 2003). These

studies hold promise that field application of JA may enhance the efficacy of

parasitoids and predators as biological control agents. Our results indicate that

this may also be the case for egg parasitoids. The plants with N. lugens eggs that

were used in our experiments were not elicited with JA; they were just placed

near JA-treated plants. The supposed attraction of the wasps to the JA-treated

plants did not prevent them from visiting neighboring plants, where they

parasitized eggs. We have previously shown that the wasp does not discriminate

between the volatiles emitted from N. lugens-infested plants and those from JA-

induced plants (Wang et al., 2005). Therefore, it is likely that wasp uses only
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few or a general blend of induced volatiles to locate plants that are potentially

infested by its host, and that specific close-range attraction to the host is me-

diated by visual cues and/or kairomones released from N. lugens. Kairomones

are attractive to the parasitoid at close range for all developmental stages of

N. lugens (Lou and Cheng, 1994). A general attraction to induced plant volatiles

is also evident from the fact that the volatile profiles from N. lugens-infested

plants and JA-elicited plants are quite different, but both blends are attractive to

wasps (Wang et al., 2005). In fact, the study by Wang et al. (2005) shows that

N. lugens infestation does not trigger the JA pathway. However, some evidence

is available showing the involvement of salicylic acid (SA) and ethylene in

response to N. lugens feeding (Du et al., unpublished data). Hence, different

defense pathways result in different volatile emissions, but all are attractive to

wasps.

Egg parasitoids have been shown to respond to oviposition-induced plant

volatiles in other studies, where herbivore feeding did not induce the volatiles

attracting the egg parasitoids (Hilker et al., 2002; Hilker and Meiners, 2002;

Meiners and Hilker, 2000). A. nilaparvatae females are equally attracted to

volatiles emitted by rice plants infested by female N. lugens adults as to those

from nymph-infested plants (Lou, unpublished data). Therefore, here we expect

that the feeding damage is responsible for the induction. However, we do not

rule out an effect of oviposition as well, especially because an ovicidal response

of rice plants to oviposition by the rice white-backed planthopper Sogatella

furciferra has been observed (Suzuki et al., 1996; Yamasaki et al., 2003). As

the rice brown planthopper feeds and oviposits on the same plant (Cheng and

He, 1996), the indirect association of feeding with egg presence is reliable and

thus adaptive.
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Entomol. Zool. 31:111Y118.

SZNAJDER, B. and HARVEY, J. A. 2003. Second and third trophic level effects of differences in plant

species reflect dietary specialisation of herbivores and their endoparasitoids. Entomol. Exp.

Appl. 109:73Y82.

TAMOGAMIA, S., RAKWALB, R., and KODAMAA, O. 1997. Phytoalexin production elicited by

exogenously applied jasmonic acid in rice leaves (Oryza sativa L.) is under the control of

cytokinins and ascorbic acid. FEBS Lett. 412:61Y64.

THALER, J. S. 1999. Jasmonate-inducible plant defences cause increased parasitism of herbivores.

Nature 399:686Y688.
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