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Abstract In this paper we study stability properties of ridgelet and curvelet
frames for mixed-smoothness Sobolev spaces with norm ‖f ‖s = ‖f ‖L2(R

d ) + ‖s ·
∇f ‖L2(R

d ). Here s ∈ S
d−1 is a transport direction and ∇ denotes the gradient of f .

Such spaces arise as domains of linear, first order transport equations. The main result
of this paper is that ridgelet frames are stable in ‖ · ‖s regardless of s, while curvelet
frames are not. To show the second statement we explicitly construct functions f,g

whose curvelet coefficients have all the same modulus but ‖f ‖s < ∞ and ‖g‖s = ∞.
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1 Introduction

Motivated by the fact that classical isotropic representation systems like wavelets
do not perform well for high dimensional functions with singularities along hyper-
surfaces, a whole arsenal of new representation systems for L2(R

d) has enriched
the field of harmonic analysis in the last decades, specifically for the case d = 2,3.
To give an incomplete picture of these developments we only mention ridgelets
[2], curvelets [4], contourlets [9], bandlets [17], shearlets [14], wedgelets [11], . . ..
The main goal of all these representation systems is to properly handle data with
anisotropic features.
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A breakthrough in this direction has been obtained in [6] with the introduction
of curvelets. There it is shown that one can construct a nonadaptive representation
system that can approximate bivariate, piecewise C2-functions away from C2 curves
with an (almost) optimal rate in terms of nonlinear approximation.

Shortly afterwards shearlets have been introduced in [14]. They share the desirable
properties of curvelets with the additional advantage of a ‘faithful digital transform’,
see e.g. [16] for details.

Curvelets have evolved from two ideas. The first one comes from the work of
Hart Smith [20], who constructed curvelet-like systems to construct parametrices for
hyperbolic PDEs. The second idea is based on a refinement of so-called ridgelets
which are essentially ridge functions with oscillations across the ridge [2].

With all these novel constructions at hand it is natural to ask for which function
spaces they are stable in the sense of a norm equivalence between the function space
norm and a discrete norm on the sequence of transform coefficients. This question is
especially important for solving operator equations, where Sobolev-type spaces are of
particular significance, since they arise as domains of definition of various differential
operators.

Not much is known in this direction for curvelets, shearlets or ridgelets besides the
simple fact that they are stable in the classical Sobolev spaces (we are not aware of a
published proof for this fact but it is a simple consequence of the frequency support
properties of these systems). However, since already wavelets provide stable bases
for these spaces this fact is not really useful.

In the present paper we investigate so-called Sobolev spaces of mixed smoothness,
to be defined below, which arise as domains of definition for linear first order trans-
port operators with constant transport direction. Operators of this kind are important
in several applications such as radiative transport [19, 21].

It is well-known (and easy to see) that wavelets do not provide stable bases for
such spaces. Here we show that ridgelets are stable while curvelets are not.

This result raises substantial hope that it is possible to construct stable solvers for
first order transport equations with ridgelet discretizations in the spirit of [8]—a task
that we presently investigate.

1.1 Motivation

The theory of wavelets shows us that in order to fully understand the properties of a
representation system like curvelets or ridgelets, it is crucial to understand their ap-
proximation spaces. Only little is known in this direction for curvelets and ridgelets,
we are only aware of the studies [1, 2]. However, if one wants to use e.g. a curvelet
system for the solution of a partial differential equation, one usually needs to inves-
tigate stability properties in terms of certain Sobolev norms. To give an example, we
consider the simple transport equation

s · ∇f + κf = g,

where s ∈ S
d−1, the unit sphere in R

d , ∇ is the gradient of f ∈ L2(R
d) and κ is

(say) a Lipschitz function, bounded from above and below. Given g we would like to
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find f satisfying certain boundary conditions. Of course this is a very simple equa-
tion but in order to solve it e.g. with a Ritz-Galerkin-type scheme, it is necessary
to study the stability properties of our system of functions with respect to the norm
‖f ‖2

s := ‖f ‖2
2 + ‖s · ∇f ‖2

2. We refer to norms of this type as mixed-smoothness
Sobolev norm. A more interesting equation arises if f ∈ L2(R

d × S
d−1) is also a

function of s and s varies in S
d−1. Equations of this type govern the radiation inten-

sity in radiative transfer theory [19] and also arise in several other places. A stable
and efficient solution method for such equations is currently not available. In order to
arrive at a stable formulation, it is essential to have a representation system of func-
tions that is simultaneously stable for ‖ · ‖s with respect to all angles s ∈ S

d−1. In
view of the directionality present in the norm it is clear that a stable representation
cannot be isotropic. For instance, wavelet systems are not stable with respect to the
norm ‖ · ‖s for all s, as can be easily seen. Due to their inherent directionality, natural
candidates for stable systems are given by curvelet or ridgelet systems.

1.2 Contributions

Our first result, Theorem 10, is that ridgelets satisfy the desired stability property.
The second main result, Theorem 18, of this paper is that curvelets are not stable
with respect to ‖ · ‖s , regardless of s. We show the latter by giving explicit counterex-
amples for d = 2. In view of solving operator equations these results have two main
implications:

• ridgelet-based methods are very promising candidates for developing Ritz-
Galerkin-type solvers for transport problems, and

• curvelet-based methods cannot be used to solve transport problems, at least with
conventional Ritz-Galerkin schemes.

Our results also remain valid for more general norms of the following type: Given a
finite sequence (s, α) = (si , αi)

n
i=1, α ∈ R+, si ∈ S

d−1 we define

‖f ‖(s,α) := ‖f ‖2 +
n∑

i=1

‖(si · ∇)αi f ‖2,

where (si ·∇)αi should be interpreted in the sense of pseudodifferential calculus [15],
see Definition 11. Theorem 12 says that ridgelets are also stable w.r.t. these more
general norms.

1.3 Notation

We fix a dimension d ≥ 2 with d ∈ N. For two vectors u,v ∈ R
d we denote their inner

product by u · v. For f ∈ L1(R
d) ∩ L2(R

d) we denote by f̂ its Fourier transform
f̂ (ξ) := ( 1

2π
)d/2

∫
Rd f (x) exp(ix · ξ)dx and extend this operation to L2(R

d). We
shall frequently use the notation A � B to indicate that the quantity A is bounded by
a constant times B . If A � B and B � A we shall also write A ∼ B . For a function
f we denote by ∇f its gradient. We will also use the notation δjj ′ for the Kronecker
function which is one if j = j ′ and zero otherwise. The symbol BSd−1(s, r) shall



312 J Fourier Anal Appl (2012) 18:309–325

denote the geodesic ball of radius r in S
d−1 around s ∈ S

d−1. The symbol | · | will be
used to denote the absolute value on C, the Euclidean norm on R

d and the cardinality
of a set.

2 Ridgelet Tight Frames

We start by constructing a tight frame of ridgelets for L2(R
d). Recall that a system

(ψλ)λ∈	 of L2 functions is called a tight frame of L2(R
d) if

‖f ‖2
2 =

∑

λ∈	

|〈f,ψλ〉|2 for all f ∈ L2
(
R

d
)
. (1)

If (1) only holds with ∼ instead of =, we speak of a frame. The main property of
a frame is that any f ∈ L2(R

d) can be stably decomposed into, and reconstructed
from the sequence (〈f,ψλ〉)λ∈	—with some possible redundancy in the decomposi-
tion [7].

2.1 Preliminaries on Ridgelets

Since there does not yet exist a uniform definition of ridgelets in the literature—the
same is true for curvelets, by the way—we start by listing the various constructions
that go by this name. As it is the case for essentially all transforms in harmonic
analysis, the crucial property is the time-frequency localization of the functions and
this is the viewpoint that we will adapt in the present paper. It can be shown that
all the constructions described below are equivalent in terms of their approximation
properties, see Remark 8.

In [2] a ridgelet transform has been introduced using a univariate (oscillatory)
function ψ by mapping a function f ∈ L2(R

d) to its transform coefficients
〈
f (x), a1/2ψ(as · x − t)

〉
, s ∈ S

d−1, t ∈ R, a ∈ R+. (2)

The function x �→ a1/2ψ(as · x − t) is a ridge function (hence the name ridgelet)
which only varies in the direction s. In particular this function is not in L2(R

d)

and therefore, (2), as it stands, makes no sense. For continuously varying parame-
ters (a, s, t) one can still provide a stable reconstruction formula (similar to the con-
tinuous Fourier transform), but when we want to discretize the parameters a, s, t—
e.g. to a = 2j , j ∈ N, t ∈ Z and s in some discrete and uniformly distributed subset
of S

d−1 with cardinality ∼ 2j —we need to evaluate (2) pointwise which makes no
sense for general f ∈ L2(R

d). Nevertheless, Candes showed in [2] that for compactly
supported functions f ∈ L2([0,1]d) a stable reconstruction can be given from the
transform coefficients sampled on a discrete set. In other words for f ∈ L2([0,1]d)

discrete ridgelet frames can be constructed.
By relaxing the definition of a ridgelet a little, it is possible to construct frames

for L2(R
d). The idea is that ψ(as · x − t) can also be written as a1/2ρ(DaRsx − t),

where Da = diag(a,1, . . . ,1), Rs an orthogonal transform mapping s ∈ S
d−1 to the

vector (1,0, . . . ,0), t ∈ R
d and

ρ(x) = ψ(x1). (3)
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Fig. 1 Left: Frequency space decomposition as indicated by the ridgelet frame. The essential support of
ψ̂3,3 is colored. Right: Translational grid of the frame elements ρ3,3,k , k ∈ Z

2. The aspect ratio of the tiles
is 1 ∼ 2−3

If we allow the function ρ to vary also a little in the other coordinate directions
besides (1,0, . . . ,0) so as to make ρ ∈ L2(R

d), it can be shown that the parameters
a, s, t can be sampled discretely to yield a frame for L2(R

d). In this spirit, one might
define a ridgelet system as a system of functions which are of the form

a1/2ρ(DaRsx − t) (4)

with some ρ ∈ L2(R
d), which is oscillatory in the first coordinate, and for the param-

eters (a, s, t) ranging in some discrete set – typically a = 2j , j ∈ N, t ∈ Z
d and s in

a uniformly distributed subset of S
d−1 of cardinality ∼2j .

A yet more general viewpoint is to characterize ridgelets by their localization prop-
erties in space and frequency—without enforcing the rigid condition of being a frame
of functions exactly of the form (4). This is the viewpoint that we shall take in this
paper. For us, a ridgelet system is a system of functions that is adapted to the parti-
tioning of frequency space outlined in Fig. 1, left.

This partitioning consists of polar wedges with opening angle ∼2−j and contained
in the dyadic corona 2j ≤ |ξ | < 2j+1. An easy computation that takes into account
the oscillatory behavior of ρ in the first coordinate, reveals that indeed the functions
as defined in (4) have approximate frequency support in these wedges.

This viewpoint, which goes by the name of decomposition spaces [13], has been
taken before for wavelet, Gabor, curvelet or shearlet systems.

The main advantage of this approach is that it allows for particularly simple tight
frame constructions. On the other hand, the desirable approximation properties of the
original definitions still remain valid in the more general context based on decompo-
sition spaces.

It should be noted that yet another definition of ridgelets is given in [10], see also
[12] for more information about the various different constructions of curvelets and
ridgelets.
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2.2 A New Construction

In this section we present a novel construction of a ridgelet tight frame. Since a
ridgelet system is a system of functions which is adapted to the frequency tiling out-
lined in Fig. 1 into angular wedges of opening angle ∼2−j and height ∼2j , j ∈ N,
the first step in our construction is to find a partition-of-unity which is adapted to this
tiling.

Due to the fact that we are interested in discrete systems we first need to find
discrete sampling points on the sphere. The following lemma shows that one can
always find reasonable uniformly distributed points on the sphere with a prescribed
distance. A proof can be found e.g. in [1, Lemma 7].

Lemma 1 Let S
d−1 be the unit sphere equipped with the geodesic metric inherited

from the Euclidean ambient space R
d . Then for any r > 0 there exist L ∼ r−1, points

(sl)
L
l=1 on S

d−1 and a constant A (independent of r) such that

L⋃

l=1

BSd−1(sl, r) = S
d−1, (5)

and

L
max
l=1

∣∣{l′ �= l : BSd−1(sl,2r) ∩ BSd−1(sl′ ,2r) �= ∅}∣∣ ≤ A. (6)

In what follows we will construct a partition-of-unity for the ridgelet frequency
tiling. To this end we will use radial coordinates and build our partition functions
from a window function W for the radial variable and window functions V (j) for the
angular variable corresponding to scale j . We now give the detailed definition.

We denote by e1 the unit vector (1,0, . . . ,0) ∈ S
d−1.

Definition 2 We fix smooth, nonnegative functions V (j) : S
d−1 → R, j ∈ N, W :

R+ → R and W(0) : R+ → R with the following properties:

(i) supp V (j) ⊂ BSd−1(e1,2 · 2−j ),
(ii) V (j)(s) ≥ 1 for all s ∈ BSd−1(e1,2−j ),

(iii) V (j)(s) ≤ 2 for all s ∈ BSd−1(e1,2 · 2−j ),
(iv) supp W ⊂ (1/2,2),
(v) W(r) ≥ 1 for all r ∈ (3/4,3/2),

(vi) supp W(0) ⊂ [0,2),
(vii) W(0)(r) ≥ 1 for all r ≤ 1.

We define Rs as an orthogonal transform which maps the point s ∈ S
d−1 to e1. We

also pick a sequence of sampling points (sj,l)
Lj

l=1 satisfying the conditions of Lemma
1 with r = 2−j , j ≥ 1.
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Lemma 3 There exist positive constants C1,C2 so that

C1 < �(ξ) :=
∑

j,l

W
(
2−j |ξ |)2

V (j)

(
Rsj,l

ξ

|ξ |
)2

+ W(0)(|ξ |)2 < C2 for all ξ ∈ R
d .

(7)

Proof We first show the existence of the constant C1: since by (5), for any ξ ∈ R
d

there exists j, l such that ξ has the representation (|ξ |, ξ
|ξ | ) with |ξ | ∈ 2j [3/4,3/2]

and ξ
|ξ | ∈ BSd−1(sj,l ,2−j ). From properties (ii), (v) it follows that

�(ξ) ≥ W
(
2−j |ξ |)2

V (j)

(
ξ

|ξ |
)2

≥ 1

which gives the lower bound. The upper bound C2 follows by noting that by (iii) and
(6) any ξ ∈ R

d lies at most in the support of finitely many summands with bounded
magnitude. �

The previous definitions enable us to finally define the frequency windows which
are adapted to the ridgelet tiling.

Definition 4 We define the following functions in terms of their Fourier transforms:

ψ̂j,l(ξ) := W(2−j |ξ |)V (j)(Rsj,l
ξ
|ξ | )√

�(ξ)
, j ≥ 1, l = 1, . . . ,Lj ,

and

ψ̂0(ξ) := W(|ξ |)√
�(ξ)

.

Observe that by (7) the division by � is well-defined and the functions ψj,l, ψ0 are
in L2(R

d).

Definition 5 We define the wedges

P0 := {ξ : |ξ | ≤ 2}, Pj,l :=
{
ξ : 2j−1 < |ξ | ≤ 2j+1,

ξ

|ξ | ∈ BSd−1

(
sj,l ,2−j 2

)}
.

It follows that

supp ψ̂0 ⊂ P0 and supp ψ̂j,l ⊂ Pj,l .

We can now derive a semidiscrete representation formula for L2(R
d).

Proposition 6 We have

‖f ‖2
2 = ‖f ∗ ψ0‖2

2 +
∑

j,l

‖f ∗ ψj,l‖2
2. (8)
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Proof The proof follows standard arguments, therefore we will ignore technical de-
tails like convergence issues. From the definition of ψ0,ψj,l and � it follows that

ψ̂2
0 (ξ) +

∑

j,l

ψ̂j,l(ξ)2 = 1.

Therefore we have

‖f ‖2
2 =

∫

Rd

|f̂ (ξ)|2dξ

=
∫

Rd

∑

j,l

ψ̂j,l(ξ)2|f̂ (ξ)|2dξ +
∫

Rd

ψ0(ξ)2|f̂ (ξ)|2dξ

= ‖f ∗ ψ0‖2
2 +

∑

j,l

‖f ∗ ψj,l‖2
2.

�

We go on to construct a tight frame decomposition of L2(R
d) by discretizing the

translational parameter in the convolutions in (8). To this end define the functions

ρj,l,k(x) := 2−j/2Txj,l,k
ψj,k, ϕk := Tkψ0,

k = (k1, . . . , kd) ∈ Z
d , xj,l,k := R∗

sj,l
(2−j k1, k2, . . . , kd)T ,

and Tyf (·) := f (· − y).

Theorem 7 The system

(ϕk)k∈Zd ∪ (ρj,l,k)j≥1,l∈[0,Lj ],k∈Zd

constitutes a tight frame for L2(R
d).

Proof In view of (8) we need to show that

‖f ∗ ψj,l‖2
2 =

∑

k∈Zd

∣∣〈f,ρj,l,k〉
∣∣2 (9)

and

‖f ∗ ψ0‖2
2 =

∑

k∈Zd

∣∣〈f,ϕk〉
∣∣2

. (10)

Since

‖f ∗ ψj,l‖2
2 =

∫

R2
|f̂ (ξ)||ψ̂j,l(ξ)|2dξ =

∫

Pj,l

|f̂ (ξ)||ψ̂j,l(ξ)|2dξ

equation (9) is shown by noting that the system (2−j/2 exp(ixj,l,k ·ξ))k∈Zd constitutes
an ONB of L2(Pj,l) (compare also Lemma 4.2 in [6]). Equation (10) is proven in the
same way. �
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Remark 8 Perhaps the best way to think of the functions ρj,l,k is to write them
as

ρj,l,k(·) := 2j/2m(j,l,k)(DjRsj,l · −k),

where Dj = diag(2j ,1, . . . ,1). This way, the resemblance to (4) is seen. In our
construction the functions m(j,l,k) are different for different indices but it is not
difficult to show that this difference is only minor. To make this precise one
would have to introduce the concept of ridgelet molecules as has been done in
[3] for curvelets and in [18] for wavelets (the latter construction goes by the
name ‘Vaguelettes’). Then, adapting the proofs of [3, Sect. 2.4] one can show
that any two systems of such molecules are almost orthogonal, implying the
equivalence of their approximation properties. In Fig. 1 the localization proper-
ties of the ridgelet elements in space and frequency are depicted for the case
d = 2.

Remark 9 In applications, where data is given as a discrete function defined on a dig-
ital grid, it is very inconvenient to work with the operation of rotation. For curvelets
the same problem arises and a solution has been proposed with the introduction of
shearlets [16]. The main idea is to replace the rotation operations by appropriate shear
operations, the latter being also defined on digital data. These same adaptions can also
be carried out for ridgelets.

3 Stability Properties

3.1 Main Result

This section contains our first main result, namely the stability of the ridgelet tight
frame with respect to the norm ‖ · ‖s as defined in the introduction. Our main stability
theorem is as follows:

Theorem 10 Let s ∈ S
d−1. Then we have the norm equivalence

‖f ‖2
2 + ‖s · ∇f ‖2

2 ∼
∑

k∈Zd

|〈f,ϕk〉|2 +
∑

j,l

(
1 + 22j |s · sj,l |2

) ∑

k∈Zd

|〈f,ρj,l,k〉|2. (11)

Proof We have

‖f ‖2
2 + ‖s · ∇f ‖2

2 ∼
∫

Rd

(
1 + (s · ξ)2)|f̂ (ξ)|2dξ

=
∫

R2

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Rd

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂j,l(ξ)|2dξ
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=
∫

P0

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Pj,l

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂j,l(ξ)|2dξ (12)

The proof is complete if we can show that

(i)

1 + (s · ξ)2 ∼ 1, ξ ∈ P0,

and
(ii)

1 + (s · ξ)2 ∼ 1 + 22j |s · sj,l |2, ξ ∈ Pj,l, j ≥ 1.

Equivalence (i) is a simple consequence of the Cauchy-Schwartz inequality. We now
prove (ii). Let us split the set of indices j, l into

I0 := {
(j, l) : |s · sj,l | ≤ 2−j 20

}

and

I1 := {
(j, l) : |s · sj,l | > 2−j 20

}
.

Note that we always have

|s − s′| < σ
(
s, s′), (13)

σ denoting the geodesic metric in S
d−1.

• We start with (j, l) ∈ I0. By our assumptions on (j, l) we then have

1 + 22j |s · sj,l |2 ∼ 1. (14)

On the other hand for any ξ ∈ R
d with representation (|ξ |, sξ ), (13) together with

the fact that

sξ ∈ BSd−1

(
sj,l ,2−j 2

)

and the Cauchy-Schwartz inequality imply that

|s · sj,l − s · sξ | � 2−j ,

and therefore

|s · ξ | ∼ 2j |s · sξ | ≤ 2j
(|s · sj,l | + |s · (sξ − sj,l)|

)
� 1.

This implies that for ξ ∈ Pj,l , (j, l) ∈ I0 we have

1 + (s · ξ)2 ∼ 1 + 22j (s · sj,l)2 ∼ 1

and that is (i).
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• Now we let (j, l) ∈ I1 and ξ ∈ Pj,l with spherical coordinates (r, sξ ) = (|ξ |, ξ
|ξ | ),

where 2j−1 < r < 2j+1 and |sξ − sj,l | ≤ 2−j 2. Consider

|s · ξ | = r|s · sξ | ∼ 2j |s · sξ |.
We need to show that

|s · sξ | ∼ |s · sj,l |. (15)

We have (note that the division by s · sj,l is permitted since s · sj,l �= 0 by the
assumption that (j, l) ∈ I1)

|s · sξ | = |s · sj,l + s · (sξ − sj,l)| = |s · sj,l |
∣∣∣∣1 + s · (sξ − sj,l)

s · sj,l
∣∣∣∣

and therefore it remains to bound the quantity
∣∣∣∣1 + s · (sξ − sj,l)

s · sj,l
∣∣∣∣

from above and below. We start with the estimate from below:
∣∣∣∣1 + s · (sξ − sj,l)

s · sj,l
∣∣∣∣ ≥ 1 −

∣∣∣∣
s · (sξ − sj,l)

s · sj,l
∣∣∣∣

≥ 1 − 2−j 2

2−j 20
≥ 9/10.

On the other hand we have
∣∣∣∣1 + s · (sξ − sj,l)

s · sj,l
∣∣∣∣ ≤ 1 +

∣∣∣∣
s · (sξ − sj,l)

s · sj,l
∣∣∣∣

≤ 11/10.

This shows (15) and therefore we have

1 + (s · ξ)2 ∼ 1 + 22j (s · sj,l)2,

which is (ii).

In view of (12), (9) and (10) we have

‖f ‖2
2 + ‖s · ∇f ‖2

2

∼
∫

P0

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂0(ξ)|2dξ

+
∑

j,l

∫

Pj,l

(
1 + (s · ξ)2)|f̂ (ξ)|2|ψ̂j,l(ξ)|2dξ

∼ ‖f ∗ ψ0‖2
2 +

∑

j,l

(
1 + 22j (s · sj,l)2)‖f ∗ ψj,l‖2

2
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=
∑

k

|〈f,ϕk〉|2 +
∑

j,l,k

(
1 + 22j (s · sj,l)2)|〈f,ρj,l,k〉|2.

This proves the theorem. �

3.2 More General Spaces

It is perhaps worth noting that ridgelet systems provide stable decompositions for a
whole scale of spaces which we call mixed-smoothness Sobolev spaces. The defini-
tion is as follows:

Definition 11 For α > 0 we define the operator (s · ∇)α acting on tempered distribu-
tions via

f̂ �→ (s · ξ)αf̂ .

For a finite sequence (s, α) := (si , αi)
n
i=1 ∈ (Sd−1 × R+)n we define the norm

‖f ‖(s,α) := ‖f ‖2 +
n∑

i=1

‖(si · ∇)αi f ‖2.

We have the following generalization of Theorem 10:

Theorem 12 Given (s, α) ∈ (Sd−1 × R+)n we have the norm equivalence

‖f ‖2
(s,α) ∼

∑

k

|〈f,ϕk〉|2 +
∑

j,l,k

(
1 +

n∑

i=1

22αij (si · sj,l)2αi

)
|〈f,ρj,l,k〉|2.

The implicit constant depends on n.

Proof The proof is virtually identical to the proof of Theorem 10 and therefore we
omit it. �

4 Instability of Curvelets

In this section we prove the second main result, namely that curvelets are not stable
with respect to ‖ · ‖s , regardless of s ∈ S

d−1. We construct our specific counterexam-
ple for d = 2 but a modification along the same lines to arbitrary d is possible, albeit
with more notational overload.

In order to show the instability result, we construct two functions f and g in
L(R2) whose coefficients all have the same magnitude in a curvelet tight frame but
‖f ‖s < ∞ and ‖g‖s = ∞. The idea for this construction is depicted in Fig. 3.

In what follows we shall identify S
1 with the interval [−π,π).

First we give a construction of a curvelet tight frame convenient for our purposes.
Similar to above we start with two window functions.



J Fourier Anal Appl (2012) 18:309–325 321

Definition 13 We define univariate, nonnegative C∞ functions Wc(r), Vc(t) so that

(i) supp Wc ⊂ ( 3
4 ,4),

(ii) supp Vc ⊂ (− 3
4 , 3

4 ),
(iii)

∑
j∈Z

W 2
c (4−j r) = 1, for all r ∈ R and

(iv)
∑

l∈Z
V 2

c (t − l) = 1 for all t ∈ R.

The construction of such window functions is standard in wavelet theory. For the
convenience of the reader we sketch the construction of Wc: Start with any smooth
nonnegative function W̃ which is supported in [ 3

4 ,4] and strictly positive on ( 3
4 ,4).

Then define

Wc(r) := W̃ (r)

(
∑

l∈Z
W̃ 2(4−lr))1/2

.

This function satisfies (i). It also satisfies (iii), since

∑

j∈Z

W 2
c

(
4−j r

) =
∑

j∈Z

W̃ 2(4−j r)
∑

l∈Z
W̃ 2(4−l4−j r)

=
∑

j∈Z
W̃ 2(4−j r)

∑
l∈Z

W̃ 2(4−lr)
= 1.

The construction of Vc is similar. Observe that in view of (i) and (iii) resp. (ii) and
(iv) we have

Wc(r) = 1 for r ∈ (1,3) and Vc(t) = 1 for t ∈
(

−1

4
,

1

4

)
.

Now, similar to the ridgelet definitions above we define

sj,l := 2πl2−j , Lj := 2j − 1

and make the following definition:

Definition 14 We write r,ω for the polar variables of the frequency plane and define
functions

ϕ̂c(r,ω)2 :=
−∞∑

j=0

Lj∑

l=0

Wc

(
4−j r

)2
Vc

(
2j

2π
(ω − sj,l)

)2

, (16)

and

ψ̂c
j,l(r,ω) := Wc

(
4−j r

)
Vc

(
2j

2π
(ω − sj,l)

)
, (17)

where j > 0.

Sampling the translational variable on the integer grid yields the following defini-
tion.
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Fig. 2 Left: Illustration of the frequency partitioning related to ridgelets. Right: Illustration of the fre-
quency partitioning related to curvelets

Definition 15 We define for k = (k1, k2) ∈ Z
2 the functions

ϕc
k(·) := ϕc(· − k),

γj,0,k(·) := 2−3j/2ψc
j,l

(· − (
4−j k1,2−j k2

))
,

and

γj,l,k(·) := γj,0,k(Rsj,l ·).

The same arguments as above for the ridgelet case yield

Theorem 16 The system (ϕc
k)k∈Z2 ∪ (γj,l,k)j>0,l=0,...,Lj ,k∈Z2 constitutes a tight

frame for L2(R
2).

Definition 17 We call this tight frame a curvelet frame.

Observe that, unlike ridgelets, curvelets are supported in frequency wedges of
aspect ratio ∼ 4j × 2j . This property is called parabolic scaling in the literature. The
parabolic scaling allows curvelets to be well-localized in space and therefore better
suited for applications where it is important to approximate curved singularities [5].
However, as we shall see, the increase in angular uncertainty of curvelets compared
to ridgelets causes instability of the curvelet frame in mixed-smoothness Sobolev
spaces, see Fig. 2 for an illustration. Indeed we will show the following:

Theorem 18 There exist two functions f,g ∈ L2(R
2) such that

(i)

‖e1 · ∇f ‖2 < ∞,

(ii)

‖e1 · ∇g‖2 = ∞, and
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Fig. 3 Left: Illustration of the frequency support of the function f which satisfies ‖e1 ·∇f ‖2 < ∞. Right:
Illustration of the frequency support of the function g with ‖e1 · ∇g‖2 = ∞. The curvelet decomposition
of the frequency plane cannot distinguish between these two functions. Note that in this figure, as opposed
to Fig. 1, the aspect ratio of the angular wedges is 4j ∼ 2j

(iii)

|〈f,γj,l,k〉| = |〈g,γj,l,k〉| and |〈f,ϕc
k〉| = |〈g,ϕc

k〉| for all indices j, l, k.

Proof First we define the rectangles

Qj :=
[
−1

2
2j ,

1

2
2j

]
× [

4j ,24j
]
.

We have the following property for j > 2:

ψ̂c
j,lχQ′

j
= δjj ′δl2j−2 . (18)

Indeed this follows immediately from the definition of ψ̂c
j,l . Here, χQj ′ denotes the

characteristic function of Qj ′ . Intuitively, equation (18) simply means that Qj ′ only
intersects with the support of ψ̂c

j ′,2j ′−2 . Therefore, by the partition of unity property

of the functions ϕ̂c, ψ̂c
j,l it follows that the function ψ̂c

j ′,2j ′−2 restricted to Qj ′ must

equal 1. Also observe that s
j ′,2j ′−2 = π/2. Now we are ready to define the functions

f and g. Let 0 < ε < 4.

f̂ :=
∑

j>2

2−j−εjχ[0,1]×[4j ,24j ] (19)

and

ĝ :=
∑

j>2

2−j−εjχ[ 1
2 2j −1, 1

2 2j ]×[4j ,24j ]. (20)

It follows that

‖f ‖2
2 =

∑

j>2

4−j−εj 4j < ∞
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and

‖e1 · ∇f ‖2
2 ≤

∑

j>2

4−j−εj 4j < ∞.

On the other hand,

‖g‖2
2 =

∑

j>2

4−j−εj 4j < ∞

but

‖e1 · ∇g‖2
2 ≥

∑

j>2

4−j−εj 1

4
4j 4j = ∞.

Now, let us inspect the curvelet coefficients of f . Observe that

[0,1] × [
4j ,24j

] ⊂ Qj and

[
1

2
2j − 1,

1

2
2j

]
× [

4j ,24j
] ⊂ Qj . (21)

We have for j > 2 (for j ≤ 2 we have 〈f,γj,l,k〉 = 0 and also 〈f,ϕc
k〉 = 0)

〈f,γj,l,k〉 = 2−3j/2
∫

R2
f̂ (ξ)ψ̂c

j,l(ξ) exp
(
iRsj,l

(
4−j k1,2−j k2

)t · ξ)
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]
ψc

j,l(ξ) exp
(
i
(
4−j k1ξ2 + 2−j k2ξ1

))
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]
exp

(
i
(
4−j k1ξ2 + 2−j k2ξ1

))
dξ,

where the last two equalities make use of (18) and (21). Similarly, we compute

〈g,γj,l,k〉 = δl2j−22−3j/22−j−jε

∫

[ 1
2 2j −1, 1

2 2j ]×[4j ,24j ]
exp

(
i
(
4−j k1ξ2 + 2−j k2ξ1

))
dξ

= δl2j−22−3j/22−j−jε

∫

[0,1]×[4j ,24j ]

× exp

(
i

(
4−j k1ξ2 + 2−j k2

(
ξ1 + 1

2
2j − 1

)))
dξ

= exp
(
ik2

(
1/2 − 2−j

))〈f,γj,l,k〉.
In particular this implies (iii), which is what we sought. �

5 Conclusion

In this paper we studied stability properties of curvelet and ridgelet frames in mixed-
smoothness Sobolev spaces. It turns out that curvelets are not suitable to characterize
such spaces, while ridgelets are. It is straightforward to adapt our results to other
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systems based on parabolic scaling like for instance the shearlet transform. In future
work we aim at constructing stable solvers for linear transport problems using ridgelet
discretizations.
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