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Abstract  This paper examines the Schwarz operator A and its relatives A, A and

A that are assigned to a minimal surface X which maps consequtive arcs of the
boundary of its parameter domain onto the straight lines which are determined by
pairs P;, Pj;q of two adjacent vertices of some simple closed polygon I' C R3. In
this case X possesses singularities in those boundary points which are mapped onto
the vertices of the polygon I'. Nevertheless it is shown that A and its closure A
have essentially the same properties as the Schwarz operator assigned to a minimal
surface which spans a smooth boundary contour. This result is used by the author to
prove in [Jakob, Finiteness of the set of solutions of Plateau’s problem for polygonal
boundary curves. .H.P. Analyse Non-lineaire (in press)] the finiteness of the number
of immersed stable minimal surfaces which span an extreme simple closed polygon
", and in [Jakob, Local boundedness of the set of solutions of Plateau’s problem for
polygonal boundary curves (in press)] even the local boundedness of this number
under sufficiently small perturbations of I.
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1 Introduction and main results

This paper is concerned with the Schwarz operator

A=AY = _A+2KE (1)
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468 R. Jakob

for a minimal surface X which maps consequtive arcs of the boundary of its parameter
domain onto the straight lines that are determined by pairs P;, Py of two adjacent
vertices of an arbitrarily fixed simple closed polygon I' ¢ R? with N + 3 vertices. Such
a surface is given by a continuous H'>-mapping X : B —> R3 of the closure of the
unit disc B := {w = (u,v) € R? | |[w| < 1} into R? which is harmonic on B, satisfies

| Xul =X, (Xu,X,)=0 onB 2)

and meets the boundary conditions X(?) e I for 0 € 7,141, ) = 1,...,N + 3,
where I'; denotes the line {P; +t (Pjy1 — Pj)|t € R} and where the 7; are consequtive
angles in (0,27]. We denote by M(T') the set of such surfaces. Furthermore K in (1)is
the Gauss curvature of X and E := | X, |>. For minimal surfaces X bounded by some
smooth contour I" the behaviour of AX is well known. The aim of this paper is to show
that AX respectively its closure AX have essentially the same properties for minimal
surfaces X with those “overshooting”, piecewise linear boundary values, as explained
above. The author is using this result in [7,8] for his proof of the boundedness of the
number of immersed stable minimal surfaces spanning a simple closed polygon which
is contained in a sufficiently small neighborhood of any fixed extreme simple closed
polygon. The difficulty in studying AX for a minimal surface X with overshooting,
piecewise linear boundary constraints is caused by the fact that X is “singular” at
the boundary points /% which are mapped onto the corners P; of T'. Consequently
the perturbing term KE of AX is only of class L”(B) for some p > 1 on account of
estimate (5) below. For some fixed X € M(I") we shall consider A = A on

Domain(A) := {¢ € C3(B) N H'?(B)|A(p) € L*(B)}.

By A and A we denote the minimal Schwarz and minimal Laplace operator on the
domain H%2(B) N C% (B), respectively, where we set

C3(B) :=={p € C*B) N C°(B)lglsp = 0}.

Furthermore let A, Z and A denote the L%(B)-closures of A, A and A, respectively.
Finally we consider the assigned quadratic form

J(p) =% (p) == / |Vo|? + 2KE ¢*dw
B

which is defined for any ¢ € /1'?(B) due to KE € LP(B) for some p > 1. To study the
spectra of A and A we investigate J on the function space

SH'"(B) := {p € HB)lll¢l 125 = 1}-

Similarly we denote by S (H*2(B)N H 1’2(8)) and SDom(A) the intersections of the
“L2(B)-sphere” with the respective function spaces. Then we shall prove

Theorem 1 (i) The spectra of A and A coincide. They are discrete and accumulate
only at oo; thus their eigenspaces are finite dimensional. Furthermore for their
common smallest eigenvalue hmin := Amin(A) = Amin(A) we have

Amin = _inf J= inf J= inf J. 3)
SDom(A) S]i[l.Z(B) S(stz(B)ﬁIillsz(B))
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Schwarz operators of minimal surfaces spanning polygons 469

(ii) For an eigenfunction ¢* in the eigenspace ES; . (A) there holds |¢*| >0 on B,
whence: }
dimES; ; (A) = dimES,_, (4) = 1. 4)

Especially an eigenfunction ¢* € ES, , (A) satisfies |¢*| >0 on B.

To prove this theorem we need some of Heinz’ results (see [3,4]) about minimal
surfaces with overshooting, piecewise linear boundary values. To this end we need
some definitions:

Let I" be some simple closed polygon in R? with N + 3 vertices (N € N)

(PlaPZ’-"7PN+3)a

where we require the pairs of vectors (P41 — Pj, Pj — Pj_1) to be linear independent
forj=1,...,N+3,with Py := Py43 and Pn+4 := P;. We consider the open bounded
convex set T of N-tuples

(1,72, ..,tn) = T € (0,m)N,

whichmeet0 < 71 < --- < ©y < 7. Moreover we fix the three angles Ty, 1= %(1+k),
k=1,2,3.Now to any t € T we assign the set of surfaces

Ur) == {X e C°%B,R) N C*(B,R*)|X (") € I} ford e[z, 7411, 1 <j<N+3},

where I'j := {P; + 1 (Pj1 — P)|t € R}, Pny4 := P1 and ty44 := 71. On account of Satz
1 in [3] one can define the map

¥ () := unique minimizer of D within #(z),

where D denotes Dirichlet’s integral. We will also use the notation X (-, t) for &(r).
From Satz 1 in [3] and Satz 1 in [4] we quote the following result:

Proposition 1 (i) The surfaces y(t) are harmonicon B Vt € T.
(i) The functionf =D o is of class C*(T).

(iii) A surface (t) is conformally parametrized on B, thus a minimal surface in U(t),
if and only if T is contained in K(f), the set of critical points of f.

Point (i) of the above theorem and the Courant-Lebesgue Lemma imply (cf. [6,
Chap. 4]) that

M(T) = {set of minimal surfaces on B} N U U N Hl’Z(B,R3)
teT

={Xe image(v/)| X is also conformally parametrized on B}.

In the sequel we will only consider points 7 € K (f), thus minimal surfaces X (-,7) €
M(I’), and will denote A := —A+2 (KE)" and J* for the assigned Schwarz operators
and quadratic forms. From [5], (3.3), resp. (34) in [7] we quote that there is some
constant const.(t), depending on t and I" only, such that

N+3

|(KE)" (w)| < const.(r) »_ [w—¢™|** Vwe B, (5)
k=1
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470 R. Jakob

for any t € K(f) and some fixed « > 0 that depends only on I'. Moreover we are
going to use the properties of the Green function (see [6, Proposition 6.1])

> _ 1 11— wy|
Gw,y) = 5 10g( ol ), (6)

which we consider on (B x B) \ A with A = {(w,y) € B x Blw = y}. In Proposition
6.2 in [6] the author proved that G(-,y) coincides with the weak H'*(B)-limit (for
s € (1,2)) and LP(B)-limit [for p € (1,00)] G(-,y) of some sequence G (-,y) of
so-called mollified Green functions, for any y € B (see [6, (5.9), (5.10)]). Moreover
we are going to use the assigned potential

Gp)w) == / Gw,y)p(y)dy forw e B,
B

which is well defined for any ¢ € L"(B), with r > 1, on account of Gw, -) € LP(B),
Vp € [1,00),Vw € B, and G(w, -) = 0 on B, Vw € 3B, by Proposition 6.1 in [6]. Its
most important features are Green’s identity for any ¢ € H%*2(B)N C(z) (B)andw € B:

—p(w) = / Gw,y) Ap(y)dy = G(Ap)(w), (7)
B

and the estimate
1G (@) | p22(p) < const. ¢ll12p) (8)

forany ¢ € L2(B). Now on account of the equality G( -,¥) = G(-,y) one can combine
properties of G with the L? (B)-estimate (5.11) in [6] for G(-,y) in order to prove the
important assertion (3.11) in [5] (see [6, Proposition 7.1] for the proof), which states
that for any ¢ € H>?(B) N C3(B) and any t € K(f) there holds the estimate

N+3
(KE) p(w)| < c(t,0) D |w— ™" 5| Ap| 25 VYW e B. ©)
k=1

By a well-known method (see e.g. [1, p. 108, Satz 2.23]) one proves that H>?(B) N
C%(B) is densely contained in H%*2(B) N H L2(B) w. r. to the H>?(B)-norm. Hence,
since the embedding H22(B) — C°(B) is continuous this implies

Proposition 2 The estimate (9) holds for any ¢ € H>*2(B) N H'2(B) and for any
T € K(f).

Now a straight forward reasoning leads to (see [6, Proposition 7.3])

Proposition 3 For any ¢ € H>*(B) N H'2(B) and any t € K(f) there holds:

1
I2(KE)" ¢l 28y < E”A(/’”LZ(B) + cllell2ms (10)
for some constant ¢ = c(t) that only depends on t.

We will abbreviate A™ = AX(" and AT = AXC" in the sequel. From
Proposition 3 we can derive firstly that Dom(A") = H%*2(B) N C%(B) is contained

@ Springer



Schwarz operators of minimal surfaces spanning polygons 471

in Dom(A7), thus A® C A7, and especially that AT is densely defined in L%(B),
vVt € K(f). Moreover we have

Proposition 4 AT is symmetricw. r. to (-, 2By e, AT C (AH* VT € K(f).

Proof We fix some 7 € K(f). For any ¢ € Dom(A") and ¢ € C2°(B) we have
Vo € Cg (B). Hence, by the divergence theorem we obtain

ATV = [ Vo V0 +2(KE pbrdw = L7 (g ) (11)
B
Now let ¢ € Iill’z(B) be arbitrarily chosen and {;} C C°(B) with ¥ — ¢ in
H'2(B). By Holder’s inequality and Sobolev’s embedding theorem we achieve due to
1-%:0>0-§,qu (1, 00):
IKKE) @ (Wj — W)l L1y < IKE) Il o+ gy @l ey 1) — ¥l Lacs)
< IKKE)" || Lr+B) ll@ll LrByconst.(q) |V — ¥l 12 gy —> O,
forj — oo, with 1%—1—}4—% =landp* € (1, ﬁ) Hence, recalling that A™ (¢) € L*(B)

we gain (11) in the limit also for v € H2(B), thus especially for any v € Dom(A7).
Together with the symmetry of £7(-, ) this yields for an arbitrary ¢ € Dom(A"):

(AT(@), V) 123y = LT (9, ¥) = LT (Y, 9) = (9, AT(¥)) 12(p) (12)
V¢ € Dom(A"), which shows indeed Dom(A") C Dom((A%)*) and (A")*(¢) =
AT (p), just as asserted. O

From this and the symmetry of A” and A on H>?(B) N C3(B) one can easily derive
that A7, A” and A are closable in L2(B), ¥z € K(f). Now we can prove

Proposition 5 There holds Dom(A) = Dom(.»?) = H*2(B)N ISII’Z(B) VT € K(f).

Proof We fix some t € K ()~‘) arbitrarily and choose some ¢ € Dom(ﬁ). Thus there is
a sequence {¢,,} C H**(B) N C3(B) = Dom(A) such that

om —> ¢ and Agm —> Alp) in LA(B). (13)
By (10) we see that

1 . .
I2(KE)" (¢n — em) 2By = §||A§0n — A@mll 2y + cllon — @mll 2B (14)

thus that {2(KE)" ¢} is a Cauchy sequence in L2(B). Now from (13) we can deduce
the pointwise convergence

(KE)" om, (W) — (KE) @(w) fora.e.w € B, (15)

for some suitable sequence {m}, which shows that (KE)® ¢,, — (KE)® ¢ in L*(B)
and therefore again with (13):

AT (@) = =A@ + 2KE) @ —> —A(p) + 2(KE) ¢ = AT (¢)

in L%(B), which proves that ¢ € Dom(z).
@ Springer



472 R. Jakob

Now let some ¢ € Dom(;) be given arbitrarily, which means that there exists a
sequence {¢;,,} C H*2(B)n C%(B) satisfying

om —> ¢ and A%(gm) — AT(¢) in L2(B). (16)
For some arbitrary € H>?(B) N C%(B) we have by (10):

. . 1 .
||Ar(¢)||L2(B) z ||AW||L2(B) - ||2(KE)T¢||L2(B) = EHAW”LZ(B) - C||¢||L2(B),

and therefore ||A¢||Lz(3) <2 ||Af(¢)||L2(B) + 2¢|l¥ |l 2(p)- Combining this with (16)
we conclude that {A(pm} is a Cauchy sequence in L%(B), and therefore also
{2(KE) ¢} = {Agam + Af(q)m)} due to the second convergence in (16). Now due to
the first convergence in (16) we conclude again (15) and thus (KE)® ¢, —> (KE)" ¢
in L2(B) and therefore again with the second convergence in (16):

Agm = —A% (@) + 2(KE) @ —> —AT () + 2(KE) ¢ = Ag

in L2(B), ie., that ¢ € Dom(A). B B
Finally we have to prove that Dom(A) = H22(B) N H'2(B). Firstly let ¢ € Dom(A)
be chosen arbitrarily, thus there exists a sequence {¢,,} C H>*(B)N C3(B) = Dom(A)
satisfying (13). By (7), inequality (8) and (13) we achieve:

lomll g2y = ||g(A(Pm)||H2,2(B) = ConSt'”Af/’m”LZ(B) < const. (17)

Vm € N. Hence, together with the compactness of the embedding H>2(B) < L%(B)
and (13) we achieve the existence of a subsequence {¢,;, } such that ¢,,,, — ¢ weaklyin
H?2(B). This shows indeed ¢ € H>*(B) N 1_’311*2 (B) due to 12 (B) D Dom(A). Finally
the inclusion H%2(B) N a2 (B) ¢ Dom(A) follows immediately from the fact that
H>2(B)n C%(B) is densely contained in H?>2(B)n H ]’Z(B) w. I. to the H%?(B)-norm.

O

Now we are going to prove the essential self-adjointness of A*. By means of the
continuity of G : L>(B) — H?*?*(B) and (7) one can prove as in [10], p. 59, that A
is essentially self-adjoint w. 1. to (-, -);2(p), i€, A = (A)*. Together with estimate

(10),fort € K (f), and the obvious symmetry of (KE)® we infer from Theorem 4.4 in
[9, p. 288]:

Proposition 6 AT = —A +2(KE)" is essentially self-adjoint w. r. to (-, 2By L,
AT = (AD)*, V1 € K(f).
Now combining Proposition 4 with the fact that Dom(A7) is densely contained in

L*>(B)w.r.t0 || - lz2(p) We can derive by twice applying Theorem 5.29 in [9, p. 168]:

Proposition 7 (A%)* is densely defined in L2(B) and closed, (A™)** = A" and (A")* =
(AD)* = ((AD)")*™ VT € K(f).

Summarizing we obtain

Proposition 8 (A7)* = AT = AT = (AY)* are self-adjoint operators with domain
H%*2(B) N H'2(B), V1 € K(f).

@ Springer



Schwarz operators of minimal surfaces spanning polygons 473

Proof We fix some 7 € K(f). Firstly there holds by Proposition 4: A™ C A” C (A7)*.
Combining this with Propositions 6 and 7 we achieve:

(AT = AT C A" C (AT = (ADH™ = (A)™)* = (A7) € (A"

P_Ience, also noting that (A%)* = (A¥)* by Proposition 7, we can conclude that AT =

= (A")* are self-adjoint operators with domain H>2(B) N H'(B) by Proposition
6 Furthermore applying Theorem 5.29 in [9, p. 168], to the densely defined and
closable operator AT we obtain that ( T) is densely defined in L?(B), closed, i.e.,
(A7) = ( )", and (A7) = A™. Now applying it to the densely defined and closed

operator (A7)" again we gain that ((A7)*)™ = (A7)". Hence, we achieve together
with Proposition 6 that

A= (A7) = (A7) = (A)) " = (A = (A7)

Now we are going to prove Theorem 1. As in (11) we will use the bilinear form
£ = [ Yo+ 2KE v dw.
B

for ¢, € 1311’2(3) assigned to some 7 € K(f), thus especially J*(¢) = L7 (¢, ). In
the sequel we fix some t € K(f) thus some minimal surface X(-,t) € M(I'), and
p* € (1, 72;) arbitrarily and abbreviate A := A7, £ := £ and J := J*. The final tool
of the proof of Theorem 1 is

Proposition 9 There exists some constant C(p*) such that:

1 .
J@) =2 5 [ 196P dw - COMNKEN 5, Vo € SHB) (18)

Proof We consider the continuous embeddings H L2(B) — L9(B) — L2(B), for any
q > 2, where the first one is compact due to Sobolev’s embedding theorem. Hence,
we may apply Ehrling’s interpolation lemma, yielding

loliza) < €llljpag + Cla.€) Vo € SH(B),

for any € > 0 and any g > 2, where we used the requirement |¢|l;25) = 1. Hence,
together with Holder’s, Cauchy—Schwarz’ and Poincaré’s inequalities we achieve for
any € > 0O:

IKE @108y < NKEN e 31012 g < IKEN o 5 €l 2, + C0'v )2
< IKEL 2 @(Co+ 1) [ 199 dw o+ Ce),
B

with ]% + F% = 1, and therefore by the definition of J:

T(9) = (1 = 4 |KE|| p* 5, (Cp + 1) €%) / Vo> dw — 4 |KE| ,+ 5, C(p'.€)*,
B

for any ¢ € SH'2(B), which yields our assertion by a suitable choice of €. O
@ Springer



474 R. Jakob

In order to prove Theorem 1 we shall apply Courant’s technique for obtaining
eigenvalues and eigenfunctions of A by minimizing the quadratic form J on SH->(B)
with respect to subsidiary conditions. We shall only sketch the necessary steps.

Proof of Theorem I Firstly the above proposition guarantees the existence of
infsﬁll(B) J. Hence, we may consider some sequence {¢;} C SH'2(B) such that

J(pj) \infgpno g J, and again using (18) we conclude together with Poincaré’s in-
equality that [ ¢;]| H12(B) = const. Thus we can extract some subsequence {gj, } such
that

@, = ¢* weaklyin HY“(B),

for some ¢* € Iillﬁz(B). Since this implies ¢;, —> ¢* in L9(B), for any g > 1, we infer
p* e SH!2 (B). Furthermore this implies:

IKE (97, — @) 115y < IKEN ey 05, = @21 5y — 05

with 1% + 1% = 1. Hence, J inherits the weak lower semicontinuity of the Dirichlet
integral:

Jo*) = / Vo P +2 (KE)* (¢*)* dw (19)
B

< liminf/ |V(pjk|2 dw+2 lim /KEga.2 dw = liminfJ(g;) = inf J,
k—o0 k=00 Jk k—o0 SH'2(B)
B B

thus J(¢*) = inf SH2(B) J. Now we construct recursively a filtration of subspaces
H'2(B)=:U, > Uy D Us--- of H"3(B) by

Ui={ne HZ>Bn,¢) 2 =0, j=1,....i—1}, (20)

fori>2,and SU; := U; N SI:IM(B), where we set ¢} := ¢* and the ¢ € SU; have to
minimize J:
!
J(oF) = infJ =: A;. 21
() = inf i (21)

We obtain those minimizers ¢}, i > 2, exactly by the same procedure which yielded
@* above since the U;’s are closed w. 1. to weak H 1’Z(B)-convergence and non-trivial,
otherwise there would hold Span(gy, . .., (/)l.*il)l ={0}[Lw.r.to(-, ) 25 in a2 (B)]
which contradicts dim H2(B) = oo due to the projection theorem. By construction
of our filtration the sequence {A;} is increasing. Furthermore {oo} is its only point of
accumulation since if there was a bounded subsequence {4;, } then we would conclude
by (21), (18) and Poincaré’s inequality that ||g0;‘; 12y =const. Vk € N. Hence,
since the embedding HY2(B) — L%*(B) is compact, {(pl?; } would possess a Cauchy-
subsequence w. 1. to || - [ z2(g), which contradicts the fact that

0 = ¢} 0 = o)) =10 2 m) — 2405 0] 1) + 197 125y =2 — 285

Vi,j € N, by (20) and ¢/ € SU;. Now we are going to prove that the ¢ and ; are
indeed eigenfunctions and eigenvalues of A and A. For some fixed i we consider an
arbitrary ¥ € U; and the function

fi€) :=J(@pf +€¥) = hillg} + €W |25 o0 [—e€0,€0l,
@ Springer
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for €p > 0 that small such that ||g;" + €y [l;25) > 0 Ve € [—€0, €0]. Then we obtain for
any ¥ € U; and any i € N, abbreviating (-, -) := (-, 2By

d
0= (@m0 = 2(L(g}, V) = 2i (9] V).

Next a standard reasoning yields £(¢, ) = A; (¢f, ) even for any y € H'2(B), i.e.,
A(p]) = 2ripf weakly on B (22)

Vi € N. Now we know that our coefficients 2(KE)® — A; are of class C*°(B) for any
t € K(f) (see [7, (35)]). Thus the L2-regularity theory, Theorem 8.13 in [2], yields that
@f € C*(B) Vi € N. Hence, if we test (22) with an arbitrary ¢ € C2°(B) and apply the
divergence theorem to Vo; € C°(B), then we obtain:

(A, v) = L7, ¥) = Li ko]’ ¥).

Thus the fundamental lemma of the calculus of variations yields the Eq.22 even in
the classical sense on B. In particular we see that ¢ € Dom(A), thus indeed the ¢;’s
and the 1;’s are eigenfunctions and eigenvalues of A and therefore also of A Vi € N.
Next a standard reasoning yields ||¢||L2(B) Z/ <pl ,¥)? for any ¢ € H'2(B).
Now we suppose that 1 ¢ {A;} is a further eigenvalue of A and ¢ € ES) (A) a
corresponding eigenfunction. Since ¢ € H*2(B) N H1’2(B) = Dom(A) by Theorem
8 we have Vo € HY(B) for any ¢ € C2°(B). Hence, applying the divergence
theorem to V¢ 1 we obtain

L(p, ) = (A).¥) = 1 (p, V), (23)

and we achieve this equality also for any ¢ € H'2(B) exactly as in the proof of
Proposition 4 by approximation. Now testing this weak equation with ¥ := ¢} for an
arbitrary i € N we conclude together with (22):

A, 0i) = L(#,9]) = L], D) = Ai (9], ),
hence,0 = (A—21;) {(¢/, ¢),Vi € N, which would imply that all the coordinates (¢}, ¢) of
¢ would vanish and therefore 0 = Z]?'il (go]?*, )2 = |¢|> 128)" But ¢ is an eigenfunction.
Hence, we have proved so far {};} = Spec(A) D Spec(A) D {A;} and therefco)re also
{ri} = Spec(A). Finally we infer from Dom(A) € Dom(A) = H%*2(B) N H(B),
¢* € SDom(A) and (19):

inf J < inf J< inf J<J(p") = inf J,
S]i[l,Z(B) S(HZ‘Z(B)DIZILZ(B)) SDom(A) S]i[l,Z(B)
which together with inf SIN2(p) J = = Amin(A) = Amin(A) completes also the proof

of (3). The second part of the theorem now follows along usual lines by employing
Harnack’s inequality. Let ¢* € ES;, . (A) ¢ H>*(B) N H'2(B) with lg*ll 2 = 1 be
given arbitrarily. We assume the existence of some point wy € B with ¢*(wp) = 0.
Firstly we note that |¢*| € H'2(B) and that Iz VIe* | 12dw = I3 |[Ve*|? dw. Moreover
applying (23) to ¢ := ¢* and v := ¢* we obtain by (3):

J(l¢*) = J(p*) = (A((ﬂ*)7<ﬂ*)L2(3) = kmin(‘p*v(p*)Lz(B) = Amin = inf J.
SH'2(B)
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Hence, exactly as we achieved (22) we conclude now due to |¢*| € H'2(B):
A(¢*]) = Amin l¢*| weakly on B.

Now we may apply Harnack’s inequality, Theorem 8.20 in [2], to |¢*| > 0 on any disc
B4r(wp) CC B, yielding SUDPB . (wp) l¢*| < const.inf g, wy) l¢*|. Hence, from ¢*(wp) =
0 we can conclude now that ¢* = 0 on Bg(w() and thus that 9™ = 0 on B by a successive
use of Harnack’s inequality, which contradicts our assumption ||¢*| 25y = 1. Thus
we have proved indeed for an arbitrary eigenfunction ¢* € ES;,, (A) that ¢* > 0
or < 0 on B. Now we assume that dim ES;_. (A) > 1. On account of the projection
theorem we could choose two LZ(B)—orthogonal eigenfunctions ¢*,¢* in ES; . (A),
i.e., with (@*,@*)Lz(B) = 0, in contradiction to (ga*,gZJ*)Lz(B) > 0 or < 0. As we have
{0} # ES;,... (A) C ES;,, (A) we arrive at (4). o
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