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Abstract This paper examines the Schwarz operator A and its relatives Ȧ, Ā and
Ȧ that are assigned to a minimal surface X which maps consequtive arcs of the
boundary of its parameter domain onto the straight lines which are determined by
pairs Pj, Pj+1 of two adjacent vertices of some simple closed polygon � ⊂ R

3. In
this case X possesses singularities in those boundary points which are mapped onto
the vertices of the polygon �. Nevertheless it is shown that A and its closure Ā
have essentially the same properties as the Schwarz operator assigned to a minimal
surface which spans a smooth boundary contour. This result is used by the author to
prove in [Jakob, Finiteness of the set of solutions of Plateau’s problem for polygonal
boundary curves. I.H.P. Analyse Non-lineaire (in press)] the finiteness of the number
of immersed stable minimal surfaces which span an extreme simple closed polygon
�, and in [Jakob, Local boundedness of the set of solutions of Plateau’s problem for
polygonal boundary curves (in press)] even the local boundedness of this number
under sufficiently small perturbations of �.
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1 Introduction and main results

This paper is concerned with the Schwarz operator

A ≡ AX := −� + 2 KE (1)
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for a minimal surface X which maps consequtive arcs of the boundary of its parameter
domain onto the straight lines that are determined by pairs Pj, Pj+1 of two adjacent
vertices of an arbitrarily fixed simple closed polygon � ⊂ R

3 with N + 3 vertices. Such
a surface is given by a continuous H1,2-mapping X : B̄ −→ R

3 of the closure of the
unit disc B := {w = (u, v) ∈ R

2 | |w| < 1} into R
3 which is harmonic on B, satisfies

|Xu| = |Xv|, 〈Xu, Xv〉 = 0 on B (2)

and meets the boundary conditions X(eiθ ) ∈ �j for θ ∈ [τj, τj+1], j = 1, . . . , N + 3,
where �j denotes the line {Pj + t (Pj+1 − Pj)|t ∈ R} and where the τj are consequtive
angles in (0, 2π]. We denote by M̃(�) the set of such surfaces. Furthermore K in (1) is
the Gauss curvature of X and E := |Xu|2. For minimal surfaces X bounded by some
smooth contour � the behaviour of AX is well known. The aim of this paper is to show
that AX respectively its closure AX have essentially the same properties for minimal
surfaces X with those “overshooting”, piecewise linear boundary values, as explained
above. The author is using this result in [7,8] for his proof of the boundedness of the
number of immersed stable minimal surfaces spanning a simple closed polygon which
is contained in a sufficiently small neighborhood of any fixed extreme simple closed
polygon. The difficulty in studying AX for a minimal surface X with overshooting,
piecewise linear boundary constraints is caused by the fact that X is “singular” at
the boundary points eiτj which are mapped onto the corners Pj of �. Consequently
the perturbing term KE of AX is only of class Lp(B) for some p > 1 on account of
estimate (5) below. For some fixed X ∈ M̃(�) we shall consider A ≡ AX on

Domain(A) := {
ϕ ∈ C2(B) ∩ H̊1,2(B)|A(ϕ) ∈ L2(B)

}
.

By Ȧ and �̇ we denote the minimal Schwarz and minimal Laplace operator on the
domain H2,2(B) ∩ C2

0(B), respectively, where we set

C2
0(B) := {

ϕ ∈ C2(B) ∩ C0(B̄)|ϕ|∂B ≡ 0
}
.

Furthermore let A, Ȧ and �̇ denote the L2(B)-closures of A, Ȧ and �̇, respectively.
Finally we consider the assigned quadratic form

J(ϕ) ≡ JX(ϕ) :=
∫

B

|∇ϕ|2 + 2KEϕ2dw

which is defined for any ϕ ∈ H̊1,2(B) due to KE ∈ Lp(B) for some p > 1. To study the
spectra of A and Ā we investigate J on the function space

SH̊1,2(B) := {
ϕ ∈ H̊1,2(B)|‖ϕ‖L2(B) = 1

}
.

Similarly we denote by S(H2,2(B) ∩ H̊1,2(B)) and SDom(A) the intersections of the
“L2(B)-sphere” with the respective function spaces. Then we shall prove

Theorem 1 (i) The spectra of A and Ā coincide. They are discrete and accumulate
only at ∞; thus their eigenspaces are finite dimensional. Furthermore for their
common smallest eigenvalue λmin := λmin(A) = λmin(Ā) we have

λmin = inf
SDom(A)

J = inf
SH̊1,2(B)

J = inf
S(H2,2(B)∩H̊1,2(B))

J. (3)
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(ii) For an eigenfunction ϕ∗ in the eigenspace ESλmin (Ā) there holds |ϕ∗| > 0 on B,
whence:

dim ESλmin (Ā) = dim ESλmin (A) = 1. (4)

Especially an eigenfunction ϕ∗ ∈ ESλmin (A) satisfies |ϕ∗| > 0 on B.

To prove this theorem we need some of Heinz’ results (see [3,4]) about minimal
surfaces with overshooting, piecewise linear boundary values. To this end we need
some definitions:
Let � be some simple closed polygon in R

3 with N + 3 vertices (N ∈ N)

(P1, P2, . . . , PN+3),

where we require the pairs of vectors (Pj+1 − Pj, Pj − Pj−1) to be linear independent
for j = 1, . . . , N +3, with P0 := PN+3 and PN+4 := P1. We consider the open bounded
convex set T of N-tuples

(τ1, τ2, . . . , τN) =: τ ∈ (0,π)N ,

which meet 0 < τ1 < · · · < τN < π . Moreover we fix the three angles τN+k := π
2 (1+k),

k = 1, 2, 3. Now to any τ ∈ T we assign the set of surfaces

Ũ(τ ) := {
X ∈ C0(B̄, R3) ∩ C2(B, R3)|X(eiθ ) ∈ �j for θ ∈ [τj, τj+1], 1 ≤ j ≤ N + 3

}
,

where �j := {Pj + t (Pj+1 − Pj)|t ∈ R}, PN+4 := P1 and τN+4 := τ1. On account of Satz
1 in [3] one can define the map

ψ̃(τ ) := unique minimizer of D within Ũ(τ ),
where D denotes Dirichlet’s integral. We will also use the notation X( · , τ) for ψ̃(τ ).
From Satz 1 in [3] and Satz 1 in [4] we quote the following result:

Proposition 1 (i) The surfaces ψ̃(τ ) are harmonic on B ∀τ ∈ T.

(ii) The function f̃ := D ◦ ψ̃ is of class Cω(T).

(iii) A surface ψ̃(τ ) is conformally parametrized on B, thus a minimal surface in Ũ(τ ),
if and only if τ is contained in K(f̃ ), the set of critical points of f̃ .

Point (i) of the above theorem and the Courant–Lebesgue Lemma imply (cf. [6,
Chap. 4]) that

M̃(�) ≡ {set of minimal surfaces on B} ∩
⋃

τ∈T

Ũ(τ ) ∩ H1,2(B, R3)

= {
X ∈ image(ψ̃)|X is also conformally parametrized on B

}
.

In the sequel we will only consider points τ ∈ K(f̃ ), thus minimal surfaces X( · , τ) ∈
M̃(�), and will denote Aτ := −�+2 (KE)τ and Jτ for the assigned Schwarz operators
and quadratic forms. From [5], (3.3), resp. (34) in [7] we quote that there is some
constant const.(τ ), depending on τ and � only, such that

|(KE)τ (w)| ≤ const.(τ )
N+3∑

k=1

|w − eiτk |−2+α ∀w ∈ B, (5)
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for any τ ∈ K(f̃ ) and some fixed α > 0 that depends only on �. Moreover we are
going to use the properties of the Green function (see [6, Proposition 6.1])

G̃(w, y) := 1
2π

log

( |1 − w̄y|
|w − y|

)
, (6)

which we consider on (B̄ × B̄) \� with � := {(w, y) ∈ B̄ × B̄|w = y}. In Proposition
6.2 in [6] the author proved that G̃( · , y) coincides with the weak H1,s(B)-limit (for
s ∈ (1, 2)) and Lp(B)-limit [for p ∈ (1, ∞)] G( · , y) of some sequence Gρj( · , y) of
so-called mollified Green functions, for any y ∈ B (see [6, (5.9), (5.10)]). Moreover
we are going to use the assigned potential

G(ϕ)(w) :=
∫

B

G̃(w, y) ϕ(y)dy for w ∈ B̄,

which is well defined for any ϕ ∈ Lr(B), with r > 1, on account of G̃(w, · ) ∈ Lp(B),
∀p ∈ [1, ∞), ∀w ∈ B, and G̃(w, · ) ≡ 0 on B, ∀w ∈ ∂B, by Proposition 6.1 in [6]. Its
most important features are Green’s identity for any ϕ ∈ H2,2(B)∩ C2

0(B) and w ∈ B:

−ϕ(w) =
∫

B

G(w, y) �̇ϕ(y)dy ≡ G(�̇ϕ)(w), (7)

and the estimate
‖G(ϕ)‖H2,2(B) ≤ const. ‖ϕ‖L2(B), (8)

for any ϕ ∈ L2(B). Now on account of the equality G̃( · , y) ≡ G( · , y) one can combine
properties of G̃ with the Lp(B)-estimate (5.11) in [6] for G( · , y) in order to prove the
important assertion (3.11) in [5] (see [6, Proposition 7.1] for the proof), which states
that for any ϕ ∈ H2,2(B) ∩ C2

0(B) and any τ ∈ K(f̃ ) there holds the estimate

|(KE)τ ϕ(w)| ≤ c(τ ,α)
N+3∑

k=1

|w − eiτk |−1+ α
2 ‖�ϕ‖L2(B) ∀w ∈ B. (9)

By a well-known method (see e.g. [1, p. 108, Satz 2.23]) one proves that H2,2(B) ∩
C2

0(B) is densely contained in H2,2(B) ∩ H̊1,2(B) w. r. to the H2,2(B)-norm. Hence,
since the embedding H2,2(B) ↪→ C0(B̄) is continuous this implies

Proposition 2 The estimate (9) holds for any ϕ ∈ H2,2(B) ∩ H̊1,2(B) and for any
τ ∈ K(f̃ ).

Now a straight forward reasoning leads to (see [6, Proposition 7.3])

Proposition 3 For any ϕ ∈ H2,2(B) ∩ H̊1,2(B) and any τ ∈ K(f̃ ) there holds:

‖2(KE)τ ϕ‖L2(B) ≤ 1
2
‖�ϕ‖L2(B) + c ‖ϕ‖L2(B), (10)

for some constant c = c(τ ) that only depends on τ .

We will abbreviate Aτ := AX( · ,τ) and Ȧτ := ȦX( · ,τ) in the sequel. From
Proposition 3 we can derive firstly that Dom(Ȧτ ) = H2,2(B) ∩ C2

0(B) is contained
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in Dom(Aτ ), thus Ȧτ ⊂ Aτ , and especially that Aτ is densely defined in L2(B),
∀τ ∈ K(f̃ ). Moreover we have

Proposition 4 Aτ is symmetric w. r. to 〈 · , · 〉L2(B), i.e., Aτ ⊂ (Aτ )∗ ∀τ ∈ K(f̃ ).

Proof We fix some τ ∈ K(f̃ ). For any ϕ ∈ Dom(Aτ ) and ψ ∈ C∞
c (B) we have

∇ϕ ψ ∈ C1
c(B). Hence, by the divergence theorem we obtain

〈Aτ (ϕ),ψ〉L2(B) =
∫

B

∇ϕ · ∇ψ + 2 (KE)τ ϕψ dw =: Lτ (ϕ,ψ). (11)

Now let ψ ∈ H̊1,2(B) be arbitrarily chosen and {ψj} ⊂ C∞
c (B) with ψj −→ ψ in

H̊1,2(B). By Hölder’s inequality and Sobolev’s embedding theorem we achieve due to
1 − 2

2 = 0 > 0 − 2
q , ∀q ∈ [1, ∞):

‖(KE)τ ϕ (ψj − ψ)‖L1(B) ≤ ‖(KE)τ‖Lp∗
(B)‖ϕ‖Lr(B)‖ψj − ψ‖Lq(B)

≤ ‖(KE)τ‖Lp∗(B)‖ϕ‖Lr(B)const.(q) ‖ψj − ψ‖H1,2(B) −→ 0,

for j → ∞, with 1
p∗ + 1

r + 1
q = 1 and p∗ ∈ (

1, 2
2−α

)
. Hence, recalling that Aτ (ϕ) ∈ L2(B)

we gain (11) in the limit also for ψ ∈ H̊1,2(B), thus especially for any ψ ∈ Dom(Aτ ).
Together with the symmetry of Lτ ( · , · ) this yields for an arbitrary ϕ ∈ Dom(Aτ ):

〈Aτ (ϕ),ψ〉L2(B) = Lτ (ϕ,ψ) = Lτ (ψ ,ϕ) = 〈ϕ, Aτ (ψ)〉L2(B) (12)

∀ψ ∈ Dom(Aτ ), which shows indeed Dom(Aτ ) ⊂ Dom((Aτ )∗) and (Aτ )∗(ϕ) =
Aτ (ϕ), just as asserted. ��

From this and the symmetry of Ȧτ and �̇ on H2,2(B)∩ C2
0(B) one can easily derive

that Aτ , Ȧτ and �̇ are closable in L2(B), ∀τ ∈ K(f̃ ). Now we can prove

Proposition 5 There holds Dom( ¯̇�) = Dom(Ȧτ ) = H2,2(B) ∩ H̊1,2(B) ∀τ ∈ K(f̃ ).

Proof We fix some τ ∈ K(f̃ ) arbitrarily and choose some ϕ ∈ Dom( ¯̇�). Thus there is
a sequence {ϕm} ⊂ H2,2(B) ∩ C2

0(B) = Dom(�̇) such that

ϕm −→ ϕ and �̇ϕm −→ ¯̇�(ϕ) in L2(B). (13)

By (10) we see that

‖2(KE)τ (ϕn − ϕm)‖L2(B) ≤ 1
2
‖�̇ϕn − �̇ϕm‖L2(B) + c ‖ϕn − ϕm‖L2(B), (14)

thus that {2(KE)τ ϕm} is a Cauchy sequence in L2(B). Now from (13) we can deduce
the pointwise convergence

(KE)τ ϕmk(w) −→ (KE)τ ϕ(w) for a.e. w ∈ B, (15)

for some suitable sequence {mk}, which shows that (KE)τ ϕm −→ (KE)τ ϕ in L2(B)
and therefore again with (13):

Ȧτ (ϕm) = −�̇ϕm + 2(KE)τ ϕm −→ − ¯̇�(ϕ)+ 2(KE)τ ϕ = Ȧτ (ϕ)

in L2(B), which proves that ϕ ∈ Dom(Ȧτ ).
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Now let some ϕ ∈ Dom(Ȧτ ) be given arbitrarily, which means that there exists a
sequence {ϕm} ⊂ H2,2(B) ∩ C2

0(B) satisfying

ϕm −→ ϕ and Ȧτ (ϕm) −→ Ȧτ (ϕ) in L2(B). (16)

For some arbitrary ψ ∈ H2,2(B) ∩ C2
0(B) we have by (10):

‖Ȧτ (ψ)‖L2(B) ≥ ‖�̇ψ‖L2(B) − ‖2(KE)τψ‖L2(B) ≥ 1
2
‖�̇ψ‖L2(B) − c‖ψ‖L2(B),

and therefore ‖�̇ψ‖L2(B) ≤ 2 ‖Ȧτ (ψ)‖L2(B) + 2c‖ψ‖L2(B). Combining this with (16)
we conclude that {�̇ϕm} is a Cauchy sequence in L2(B), and therefore also
{2 (KE)τ ϕm} = {�̇ϕm + Ȧτ (ϕm)} due to the second convergence in (16). Now due to
the first convergence in (16) we conclude again (15) and thus (KE)τ ϕm −→ (KE)τ ϕ
in L2(B) and therefore again with the second convergence in (16):

�̇ϕm = −Ȧτ (ϕm)+ 2(KE)τ ϕm −→ −Ȧτ (ϕ)+ 2(KE)τ ϕ = ¯̇�ϕ
in L2(B), i.e., that ϕ ∈ Dom( ¯̇�).
Finally we have to prove that Dom( ¯̇�) = H2,2(B) ∩ H̊1,2(B). Firstly let ϕ ∈ Dom( ¯̇�)
be chosen arbitrarily, thus there exists a sequence {ϕm} ⊂ H2,2(B)∩C2

0(B) = Dom(�̇)
satisfying (13). By (7), inequality (8) and (13) we achieve:

‖ϕm‖H2,2(B) = ‖G(�̇ϕm)‖H2,2(B) ≤ const.‖�̇ϕm‖L2(B) ≤ const. (17)

∀m ∈ N. Hence, together with the compactness of the embedding H2,2(B) ↪→ L2(B)
and (13) we achieve the existence of a subsequence {ϕmk} such that ϕmk ⇀ ϕ weakly in
H2,2(B). This shows indeed ϕ ∈ H2,2(B)∩ H̊1,2(B) due to H̊1,2(B) ⊃ Dom(�̇). Finally
the inclusion H2,2(B) ∩ H̊1,2(B) ⊂ Dom( ¯̇�) follows immediately from the fact that
H2,2(B)∩ C2

0(B) is densely contained in H2,2(B)∩ H̊1,2(B) w. r. to the H2,2(B)-norm.
��

Now we are going to prove the essential self-adjointness of Aτ . By means of the
continuity of G : L2(B) −→ H2,2(B) and (7) one can prove as in [10], p. 59, that �̇
is essentially self-adjoint w. r. to 〈 · , · 〉L2(B), i.e., ¯̇� = ( ¯̇�)∗. Together with estimate

(10), for τ ∈ K(f̃ ), and the obvious symmetry of (KE)τ we infer from Theorem 4.4 in
[9, p. 288]:

Proposition 6 Ȧτ = −�̇ + 2 (KE)τ is essentially self-adjoint w. r. to 〈 · , · 〉L2(B), i.e.,

Ȧτ = (Ȧτ )∗, ∀τ ∈ K(f̃ ).

Now combining Proposition 4 with the fact that Dom(Aτ ) is densely contained in
L2(B) w. r. to ‖ · ‖L2(B) we can derive by twice applying Theorem 5.29 in [9, p. 168]:

Proposition 7 (Aτ )∗ is densely defined in L2(B) and closed, (Aτ )∗∗ = Āτ and (Aτ )∗ =
(Aτ )∗ = ((Aτ )∗)∗∗ ∀τ ∈ K(f̃ ).

Summarizing we obtain

Proposition 8 (Ȧτ )∗ = Ȧτ = Āτ = (Aτ )∗ are self-adjoint operators with domain
H2,2(B) ∩ H̊1,2(B), ∀τ ∈ K(f̃ ).
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Proof We fix some τ ∈ K(f̃ ). Firstly there holds by Proposition 4: Ȧτ ⊂ Aτ ⊂ (Aτ )∗.
Combining this with Propositions 6 and 7 we achieve:

(Ȧτ )∗ = Ȧτ ⊂ Āτ ⊂ (Aτ )∗ = ((Aτ )∗)∗∗ = ((Aτ )∗∗)∗ = (Āτ )∗ ⊂ (Ȧτ )∗.

Hence, also noting that (Aτ )∗ = (Aτ )∗ by Proposition 7, we can conclude that Ȧτ =
Āτ = (Aτ )∗ are self-adjoint operators with domain H2,2(B) ∩ H̊1,2(B) by Proposition
6. Furthermore applying Theorem 5.29 in [9, p. 168], to the densely defined and
closable operator Ȧτ we obtain that

(
Ȧτ

)∗ is densely defined in L2(B), closed, i.e.,
(
Ȧτ

)∗ = (
Ȧτ

)∗, and
(
Ȧτ

)∗∗ = Ȧτ . Now applying it to the densely defined and closed

operator
(
Ȧτ

)∗ again we gain that
((

Ȧτ
)∗)∗∗ = (

Ȧτ
)∗. Hence, we achieve together

with Proposition 6 that

Ȧτ = (
Ȧτ

)∗ = ((
Ȧτ

)∗∗)∗ = ((
Ȧτ

)∗)∗∗ = (
Ȧτ

)∗ = (
Ȧτ

)∗.

��
Now we are going to prove Theorem 1. As in (11) we will use the bilinear form

Lτ (ϕ,ψ) :=
∫

B

∇ϕ · ∇ψ + 2 (KE)τ ϕψ dw,

for ϕ,ψ ∈ H̊1,2(B) assigned to some τ ∈ K(f̃ ), thus especially Jτ (ϕ) ≡ Lτ (ϕ,ϕ). In
the sequel we fix some τ ∈ K(f̃ ), thus some minimal surface X( · , τ) ∈ M̃(�), and
p∗ ∈ (

1, 2
2−α

)
arbitrarily and abbreviate A := Aτ , L := Lτ and J := Jτ . The final tool

of the proof of Theorem 1 is

Proposition 9 There exists some constant C(p∗) such that:

J(ϕ) ≥ 1
2

∫

B

|∇ϕ|2 dw − C(p∗)‖KE‖Lp∗
(B) ∀ϕ ∈ SH̊1,2(B). (18)

Proof We consider the continuous embeddings H̊1,2(B) ↪→ Lq(B) ↪→ L2(B), for any
q ≥ 2, where the first one is compact due to Sobolev’s embedding theorem. Hence,
we may apply Ehrling’s interpolation lemma, yielding

‖ϕ‖Lq(B) ≤ ε‖ϕ‖H̊1,2(B) + C(q, ε) ∀ϕ ∈ SH̊1,2(B),

for any ε > 0 and any q ≥ 2, where we used the requirement ‖ϕ‖L2(B) = 1. Hence,
together with Hölder’s, Cauchy–Schwarz’ and Poincaré’s inequalities we achieve for
any ε > 0:

‖KEϕ2‖L1(B) ≤ ‖KE‖Lp∗
(B)‖ϕ‖2

L2p′
(B)

≤ ‖KE‖Lp∗
(B)(ε‖ϕ‖H̊1,2(B) + C(p′, ε))2

≤ ‖KE‖Lp∗
(B)2 (ε

2(CP + 1)
∫

B

|∇ϕ|2 dw + C(p′, ε)2),

with 1
p∗ + 1

p′ = 1, and therefore by the definition of J:

J(ϕ) ≥ (1 − 4 ‖KE‖Lp∗
(B) (CP + 1) ε2)

∫

B

|∇ϕ|2 dw − 4 ‖KE‖Lp∗
(B) C(p′, ε)2,

for any ϕ ∈ SH̊1,2(B), which yields our assertion by a suitable choice of ε. ��
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In order to prove Theorem 1 we shall apply Courant’s technique for obtaining
eigenvalues and eigenfunctions of A by minimizing the quadratic form J on SH̊1,2(B)
with respect to subsidiary conditions. We shall only sketch the necessary steps.

Proof of Theorem 1 Firstly the above proposition guarantees the existence of
infSH̊1,2(B) J. Hence, we may consider some sequence {ϕj} ⊂ SH̊1,2(B) such that
J(ϕj) ↘ infSH̊1,2(B) J, and again using (18) we conclude together with Poincaré’s in-
equality that ‖ϕj‖H1,2(B) ≤ const. Thus we can extract some subsequence {ϕjk} such
that

ϕjk ⇀ ϕ∗ weakly in H1,2(B),

for some ϕ∗ ∈ H̊1,2(B). Since this implies ϕjk −→ ϕ∗ in Lq(B), for any q ≥ 1, we infer
ϕ∗ ∈ SH̊1,2(B). Furthermore this implies:

‖KE (ϕ2
jk

− (ϕ∗)2)‖L1(B) ≤ ‖KE‖Lp∗
(B)‖ϕ2

jk
− (ϕ∗)2‖Lp′

(B) −→ 0,

with 1
p∗ + 1

p′ = 1. Hence, J inherits the weak lower semicontinuity of the Dirichlet
integral:

J(ϕ∗) =
∫

B

|∇ϕ∗|2 + 2 (KE)τ (ϕ∗)2 dw (19)

≤ lim inf
k→∞

∫

B

|∇ϕjk |2 dw + 2 lim
k→∞

∫

B

KEϕ2
jk

dw = lim inf
k→∞

J(ϕjk) = inf
SH̊1,2(B)

J,

thus J(ϕ∗) = infSH̊1,2(B) J. Now we construct recursively a filtration of subspaces

H̊1,2(B) =: U1 ⊃ U2 ⊃ U3 · · · of H̊1,2(B) by

Ui := {
η ∈ H̊1,2(B)|〈η,ϕ∗

j 〉L2(B) = 0, j = 1, . . . , i − 1
}
, (20)

for i ≥ 2, and SUi := Ui ∩ SH̊1,2(B), where we set ϕ∗
1 := ϕ∗ and the ϕ∗

i ∈ SUi have to
minimize J:

J(ϕ∗
i )

!= inf
SUi

J =: λi. (21)

We obtain those minimizers ϕ∗
i , i ≥ 2, exactly by the same procedure which yielded

ϕ∗ above since the Ui’s are closed w. r. to weak H1,2(B)-convergence and non-trivial,
otherwise there would hold Span(ϕ∗

1 , . . . ,ϕ∗
i−1)

⊥ = {0} [⊥ w. r. to 〈 · , · 〉L2(B) in H̊1,2(B)]

which contradicts dim H̊1,2(B) = ∞ due to the projection theorem. By construction
of our filtration the sequence {λi} is increasing. Furthermore {∞} is its only point of
accumulation since if there was a bounded subsequence {λik} then we would conclude
by (21), (18) and Poincaré’s inequality that ‖ϕ∗

ik‖H1,2(B) ≤const. ∀k ∈ N. Hence,
since the embedding H1,2(B) ↪→ L2(B) is compact, {ϕ∗

ik} would possess a Cauchy-
subsequence w. r. to ‖ · ‖L2(B), which contradicts the fact that

〈ϕ∗
i − ϕ∗

j ,ϕ∗
i − ϕ∗

j 〉L2(B) = ‖ϕ∗
i ‖2

L2(B) − 2 〈ϕ∗
i ,ϕ∗

j 〉L2(B) + ‖ϕ∗
j ‖2

L2(B) = 2 − 2δij

∀i, j ∈ N, by (20) and ϕ∗
i ∈ SUi. Now we are going to prove that the ϕ∗

i and λi are
indeed eigenfunctions and eigenvalues of A and Ā. For some fixed i we consider an
arbitrary ψ ∈ Ui and the function

fi(ε) := J(ϕ∗
i + εψ)− λi‖ϕ∗

i + εψ‖2
L2(B) on [−ε0, ε0],
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for ε0 > 0 that small such that ‖ϕ∗
i + εψ‖L2(B) > 0 ∀ε ∈ [−ε0, ε0]. Then we obtain for

any ψ ∈ Ui and any i ∈ N, abbreviating 〈 · , · 〉 := 〈 · , · 〉L2(B):

0 = d
dε

fi(ε)|ε=0 = 2 (L(ϕ∗
i ,ψ)− λi 〈ϕ∗

i ,ψ〉).

Next a standard reasoning yields L(ϕ∗
i ,ψ) = λi 〈ϕ∗

i ,ψ〉 even for any ψ ∈ H̊1,2(B), i.e.,

A(ϕ∗
i ) = λi ϕ

∗
i weakly on B (22)

∀i ∈ N. Now we know that our coefficients 2(KE)τ − λi are of class C∞(B) for any
τ ∈ K(f̃ ) (see [7, (35)]). Thus the L2-regularity theory, Theorem 8.13 in [2], yields that
ϕ∗

i ∈ C∞(B) ∀i ∈ N. Hence, if we test (22) with an arbitrary ψ ∈ C∞
c (B) and apply the

divergence theorem to ∇ϕ∗
i ψ ∈ C∞

c (B), then we obtain:

〈A(ϕ∗
i ),ψ〉 = L(ϕ∗

i ,ψ) = λi 〈ϕ∗
i ,ψ〉.

Thus the fundamental lemma of the calculus of variations yields the Eq. 22 even in
the classical sense on B. In particular we see that ϕ∗

i ∈ Dom(A), thus indeed the ϕ∗
i ’s

and the λi’s are eigenfunctions and eigenvalues of A and therefore also of Ā ∀i ∈ N.
Next a standard reasoning yields ‖ψ‖2

L2(B)
= ∑∞

j=1〈ϕ∗
j ,ψ〉2 for any ψ ∈ H̊1,2(B).

Now we suppose that λ �∈ {λi} is a further eigenvalue of Ā and φ ∈ ESλ(Ā) a
corresponding eigenfunction. Since φ ∈ H2,2(B) ∩ H̊1,2(B) = Dom(Ā) by Theorem
8 we have ∇φ ψ ∈ H̊1,1(B) for any ψ ∈ C∞

c (B). Hence, applying the divergence
theorem to ∇φ ψ we obtain

L(φ,ψ) = 〈Ā(φ),ψ〉 = λ 〈φ,ψ〉, (23)

and we achieve this equality also for any ψ ∈ H̊1,2(B) exactly as in the proof of
Proposition 4 by approximation. Now testing this weak equation with ψ := ϕ∗

i for an
arbitrary i ∈ N we conclude together with (22):

λ 〈φ,ϕ∗
i 〉 = L(φ,ϕ∗

i ) = L(ϕ∗
i ,φ) = λi 〈ϕ∗

i ,φ〉,
hence, 0 = (λ−λi) 〈ϕ∗

i ,φ〉, ∀i ∈ N, which would imply that all the coordinates 〈ϕ∗
i ,φ〉 of

φ would vanish and therefore 0 = ∑∞
j=1〈ϕ∗

j ,φ〉2 = ‖φ‖2
L2(B)

. But φ is an eigenfunction.

Hence, we have proved so far {λi} = Spec(Ā) ⊃ Spec(A) ⊃ {λi} and therefore also
{λi} = Spec(A). Finally we infer from Dom(A) ⊂ Dom(Ā) = H2,2(B) ∩ H̊1,2(B),
ϕ∗ ∈ SDom(A) and (19):

inf
SH̊1,2(B)

J ≤ inf
S(H2,2(B)∩H̊1,2(B))

J ≤ inf
SDom(A)

J ≤ J(ϕ∗) = inf
SH̊1,2(B)

J,

which together with infSH̊1,2(B) J = λ1 = λmin(A) = λmin(Ā) completes also the proof
of (3). The second part of the theorem now follows along usual lines by employing
Harnack’s inequality. Let ϕ∗ ∈ ESλmin (Ā) ⊂ H2,2(B) ∩ H̊1,2(B) with ‖ϕ∗‖L2(B) = 1 be
given arbitrarily. We assume the existence of some point w0 ∈ B with ϕ∗(w0) = 0.
Firstly we note that |ϕ∗| ∈ H̊1,2(B) and that

∫
B |∇|ϕ∗ | |2 dw = ∫

B |∇ϕ∗|2 dw. Moreover
applying (23) to φ := ϕ∗ and ψ := ϕ∗ we obtain by (3):

J(|ϕ∗|) = J(ϕ∗) = 〈Ā(ϕ∗),ϕ∗〉L2(B) = λmin〈ϕ∗,ϕ∗〉L2(B) = λmin = inf
SH̊1,2(B)

J.
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Hence, exactly as we achieved (22) we conclude now due to |ϕ∗| ∈ H̊1,2(B):

A(|ϕ∗|) = λmin |ϕ∗| weakly on B.

Now we may apply Harnack’s inequality, Theorem 8.20 in [2], to |ϕ∗| ≥ 0 on any disc
B4R(w0) ⊂⊂ B, yielding supBR(w0)

|ϕ∗| ≤ const. infBR(w0) |ϕ∗|. Hence, from ϕ∗(w0) =
0 we can conclude now thatϕ∗ ≡ 0 on BR(w0) and thus thatϕ∗ ≡ 0 on B by a successive
use of Harnack’s inequality, which contradicts our assumption ‖ϕ∗‖L2(B) = 1. Thus
we have proved indeed for an arbitrary eigenfunction ϕ∗ ∈ ESλmin (Ā) that ϕ∗ > 0
or < 0 on B. Now we assume that dim ESλmin (Ā) > 1. On account of the projection
theorem we could choose two L2(B)-orthogonal eigenfunctions ϕ∗, ϕ̄∗ in ESλmin (Ā),
i.e., with 〈ϕ∗, ϕ̄∗〉L2(B) = 0, in contradiction to 〈ϕ∗, ϕ̄∗〉L2(B) > 0 or < 0. As we have
{0} �= ESλmin (A) ⊂ ESλmin (Ā) we arrive at (4). ��
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