
Int J Softw Tools Technol Transfer (2011) 13:167–179
DOI 10.1007/s10009-010-0181-7

WSE 2009

Automated maintenance of service compositions
with SLA violation detection and dynamic binding

Adina Mosincat · Walter Binder

Published online: 6 November 2010
© Springer-Verlag 2010

Abstract Web service compositions need to adapt to
changes in their constituent web services, in order to maintain
functionality and performance. Therefore, service compo-
sitions must be able to detect web service failure and
performance degradation resulting in the violation of service-
level agreements. Automated diagnosis and repair are equally
important. However, existing standards and languages for
service compositions, such as BPEL, lack constructs for web
service monitoring and runtime adaptability, which are pre-
requisites for diagnosis and repair. We present a solution for
transparent runtime monitoring, as well as automated per-
formance degradation detection, diagnosis, and repair for
service compositions expressed as BPEL processes. Our
solution uses lightweight monitoring techniques, supports
customizable diagnosis and repair strategies, and is compat-
ible with any standards-compliant BPEL engine.

Keywords Dynamic adaptability · SLA violation
detection · Statistical tests · BPEL processes ·
Performance monitoring

1 Introduction

Service compositions, often expressed as BPEL [8] pro-
cesses,1 allow reusing existing functionalities to build new
applications. The quality-of-service (QoS) parameters of the
process depend on the QoS provided by the composing web
services. In this article, we focus on the performance-related

A. Mosincat (B) · W. Binder
Faculty of Informatics, University of Lugano, Lugano, Switzerland
e-mail: adina.diana.mosincat@usi.ch

W. Binder
e-mail: walter.binder@usi.ch

QoS, such as maximum response time for the execution of
a composition [29]. The web is a dynamic environment in
which services change and service performance can alter.
This dynamic environment makes the tasks of adaptive
maintenance [18,37] very difficult for service compositions,
because, in the absence of runtime adaptability, the devel-
oper has to continuously be aware of the changes and take
corrective actions, such as replacing some of the constitu-
ent services. Indeed, the degradation of service performance
might render the service composition temporarily unavail-
able, requiring modification of the composition in order to
“keep the software product usable in a changed or chang-
ing environment” [37]. To overcome this problem, the tasks
of composition maintenance need to be automated.2 Thus,
in order to fulfill its service-level agreement (SLA [30,35]),
a process must be able to notice and dynamically adapt to
changes [32]. BPEL does not provide any means to survey
the processes’ SLA fulfillment or the performance of its con-
stituent web services. Monitoring of bound services is not
supported by the BPEL specification, being left to the BPEL
engine implementor which may or may not provide monitor-
ing functionality in a proprietary way. Moreover, BPEL offers
limited runtime adaptability, such that in order to replace a
service used in a process, the developer needs to manually
update the process and redeploy it.

We address these issues in our framework for auto-
mated dynamic update of BPEL processes, which we name
ADULA. ADULA ensures maintenance of process per-
formance through automated detection of service failures
and SLA violations, diagnosis, and repair. Our framework

1 In this article we refer to a web service composition as a process.
2 By automated maintenance we refer strictly to the tasks of noticing
changes and replacing constituent services without requiring modifica-
tion of the service composition code.

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159150385?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

168 A. Mosincat, W. Binder

allows for monitoring of process and service performance
using lightweight sampling techniques. The failure and per-
formance degradation detection and repair strategies are
customizable, leveraging statistic methods and our monitor-
ing mechanism. ADULA supports transparent dynamic bind-
ing of services, failure recovery, and is compatible with any
BPEL engine.

A BPEL process is deployed to and executed in a BPEL
engine, which creates a process instance when one of the
receive activities (a start activity) in the process is triggered,
and ends the instance after completion of the corresponding
reply activity. Our solution binds services used in a process
instance at runtime, selecting the services to use from a group
of alternative, substitutable services.

When updating a process by changing the service bind-
ings, one issue to take into consideration is the motivation
behind the choice of services. Besides technical aspects, the
choice of services a developer makes is based on business
rules and personal knowledge, which are criteria usually not
known to an automated binding system. Therefore, we con-
sider that the best approach is either to use a service matcher
that takes business rules into consideration, or to preserve the
choice of services made by the developer and to change the
process bindings only when a service performs badly and
the process does not meet its SLA. Moreover, for service
management purposes [31], the information about the ser-
vices used in the process must be available and the process
evolution3 must be traceable and visible. ADULA preserves
the developer’s choice of services favoring the binding of
the services used initially at the process development time,
and keeps a full history of the process evolution. Based on
the statistics provided by ADULA, the developer can later
change the choice of services.

Let us consider a loan-approval process, which is offered
as a bank service through which the bank customers can
request a sum of money as a loan. Usually, the customer has
to pay a fee for the processing of a loan request, and he is given
certain guarantees, such as the maximum time to answer the
loan request. If the loan request is not processed in the guar-
anteed time, the bank not only looses credibility and thus
customers, but might also be liable for breach of contract.
Thus, it is necessary to notice a performance degradation
as soon as possible and remedy it. ADULA automatically
detects process performance degradation and takes corrective
actions to recover from such a situation. The loan-approval
process uses two services: one to assess the risk of the loan,
and one to approve the loan based on the risk assessment.
The bank can have a contract with a risk assessor service

3 We consider that the process evolves when composing services are
replaced, and thus the process uses different service bindings. We refer
to the usage of different service bindings in the process as process evo-
lution.

which it trusts and which charges a special price. Therefore,
the developer chooses the risk assessor service according to
the bank’s business rules. If the risk assessor service suffers
a downtime, ADULA replaces it ensuring the bank’s service
to its customers is not affected. As soon as the risk assessor
service is repaired, ADULA switches to the default choice
of services, thus assuring the bank profits from its contract
with the risk assessor service.

This article addresses the following three issues. First, we
introduce a framework for automated dynamic update of pro-
cess service bindings through performance degradation (SLA
violation) detection, diagnosis, and repair. The framework
leverages a lightweight runtime process monitoring mecha-
nism and allows for customizable detection and repair strat-
egies. Second, we present an approach to automated process
evolution that allows for traceability and visibility, providing
process and service statistics. Third, we evaluate the frame-
work in different settings, showing the benefits of automated
process binding update as well as the cost in terms of over-
head.

This article extends the authors’ prior work presented in
[26] with the following original contributions: (1) it explores
the effectiveness of null-hypothesis statistical significance
tests [34] for detecting SLA violations, (2) it refines the selec-
tion strategy for replacing services that have caused SLA
violations, and, (3) it extends the maintenance capabilities
of the framework by providing the developer with compar-
ative information on the performance of different process
bindings.

This article is structured as follows. Section 2 introduces
the concepts used in this article and presents the architecture
of our infrastructure. In Sect. 3, we describe the functional-
ities through which automated maintenance of processes is
achieved. We evaluate our approach in Sect. 4 and discuss
related work in Sect. 5. Section 6 concludes this article.

2 System description

This section describes the overall architecture of our frame-
work and details the components that play an important part
in the automated process maintenance.

2.1 Terminology

The following terminology will be used throughout the
article:

– Process Name : Unique identifier of a process in the sys-
tem.

– Partner Link : Unique identifier of a service binding in a
process (represents the partner link name in a process).

– Endpoint Reference (ER): Unique identifier of a service
in the system (service endpoint reference [40]).

123

Automated maintenance of service compositions with SLA 169

Fig. 1 ADULA architecture

– Bindings: A set of 〈Partner Link, ER〉 pairs, specifying
the services bound in a process instance. Bindings must
not include multiple pairs with the same partner link.

2.2 Process transformation and failure recovery

The ADULA framework is based on our former system intro-
duced in [25], which transparently supports dynamic binding
of services and failure recovery for BPEL processes. In this
section, we briefly summarize the features of our former sys-
tem that are used by ADULA, as well as the improvements
of these features in ADULA. This section presents important
background for understanding ADULA.

Dynamic binding in ADULA is achieved by automatically
(and transparently for the developer) transforming processes
before deployment in the BPEL engine. Upon transforma-
tion, the new process is registered in the ADULA system,
which assigns a unique process name. Every partner link used
in the original process is changed into a dynamic partner link

and it is assigned the endpoint reference selected by ADULA
at runtime. In contrast to our former system, ADULA pre-
serves the original process bindings; we call them the default
bindings. The default bindings are used for each new process
instance, unless some services are excluded from selection.

The transformed process interacts with ADULA in several
ways. Upon process instance start, the transformed process
requests bindings from ADULA.4 The transformed process
also notifies ADULA on completion of a process instance.
Upon failure of a stateless service, ADULA is notified and
an alternative binding is returned in order to retry the invo-
cation with a different service. Upon failure of a stateful
service, ADULA is notified and the whole process instance
is restarted, acquiring new bindings in the beginning. Process

4 While in our prior work [25] bindings were requested before each
service invocation, ADULA obtains the bindings for all partner links
occurring in the process at once. Hence, ADULA reduces the number of
messages exchanged with the transformed process, reducing overhead.

123

170 A. Mosincat, W. Binder

Bind
Manager

Transformed
Process
Instance

Service
Selector

get Bindings select Services

Service Manager

Default Bindings
Alternative Services

Quarantine

query

Fig. 2 Dynamic binding in ADULA

restart is achieved by a wrapping technique. For details, we
refer to [25].

2.3 ADULA

Figure 1 presents the overall architecture of the ADULA
framework. We will describe only the components that are
important for automated process maintenance.

The Bind Manager (BM) constitutes ADULA’s interface
to the process. The Service Manager is responsible for select-
ing the services to bind for every process instance and man-
aging the service quarantine. All services that fail or perform
badly are put in quarantine. All services that are in quarantine
are excluded from selection until the quarantining period has
elapsed. The quarantining period is a configurable parameter.

The Diagnoser detects SLA violations and takes correc-
tive actions. The main responsibility of the Diagnoser is to
manage Violation Detectors and Repair Policies. A Violation
Detector performs tests to detect if a certain constraint has
been violated. The constraint can be a guarantee specified
in the process SLA. A Repair Policy specifies the actions to
be taken in case of violation. Violation Detectors and Repair
Policies are further explained in Sect. 3.2.

The Monitor provides statistics on service performance
and intervenes in case of a service timeout (the service
exceeds a given response time limit). It has the following
responsibilities:

– Creation of Dynamic Proxies. A Dynamic Proxy can mea-
sure the response time of any service, if the service is
invoked through the Dynamic Proxy.

– Collection of measurements from the Dynamic Proxies.
– Aggregation of measurements and provision of service

response time statistics to other parts of the system.
– Management of timeout constraints.
– Request of service quarantine in case of service timeout.

The Process Evolution Web Interface constitutes the user
interface. It provides statistics on the process evolution as
well as on service performance.

In case of normal execution, the process instance has two
interactions with ADULA: first, when a process instance is

created, it requests the service bindings from the Bind Man-
ager. Second, on completion, the process instance notifies
the Bind Manager, triggering the start of the tests imple-
mented by the corresponding Violation Detector and storing
information on process instance execution.

3 Automated maintenance

There are five important functionalities through which
ADULA achieves automated process maintenance: service
selection, violation detection, diagnosis, repair, and moni-
toring.

3.1 Service selection

Figure 2 shows the selection of service bindings on request
from the process instance. The Default Bindings are the
bindings created at transformation time which bind the
services used in the original process; we call them the
default services. The Alternative Services are all available
replacement services, and the Quarantine are the quarantined
services. The Alternative Services provide a group of replace-
ment services for every service, by using a substitutability
relation. The substitutability relation is reflexive and tran-
sitive, but not necessarily symmetric. Thus, every default
service can be substituted by the services provided by the
Alternative Services, but it is not mandatory that the services
are functionally exactly equivalent. For instance, a new, back-
ward-compatible version of a service can offer an extended
interface, but it can still be used as a replacement for the
old service. The old service, on the other hand, can only be
replaced by the new one, but it cannot be a replacement ser-
vice for the new service.

The pseudo-code in Fig. 3 shows the service selection
logic. SelectedServices is the set of 〈Partner Link,
ER〉 pairs representing the selected services to be bound by
the process instance.

The Service Selector favors the selection of the default
services used in the original process. To this end, the Service
Selector reads the process default bindings that were stored
at process transformation time. Default services that are in
quarantine are replaced and new bindings are created for the

123

Automated maintenance of service compositions with SLA 171

Fig. 3 Service selection: creating the set of service bindings for new
instances of process processName

process. The replacement service is selected from the avail-
able replacement services which are not in quarantine. If no
replacement service is available, the default service is used
and taken out of the quarantine.

When selecting a replacement service, the Service Selec-
tor takes into consideration monitoring statistics and favors
the service with the best performance. Let’s consider there
are n replacement services for a service. The Service Selector
ranks the services according to the formula:

rankingi = 1/avg(rti), 1 ≤ i ≤ n.

The function avg(rti) represents the average monitored
response time of the service i . If there are no statistics for the
service, i.e., the service has never been monitored, and the
SLA of the service is provided, the response time specified
in the service SLA is used. The Service Selector chooses the
service i with rankingi ≥ ranking j ,∀i, j, 1 ≤ i, j ≤ n.

3.2 Violation detection, diagnosis, and repair

The labeled arrows in Fig. 1 illustrate the interactions
between the components of the ADULA framework when
the violation detection action is triggered.

The process instance notifies the Bind Manager on com-
pletion (finish). The Bind Manager stores the execution
time of the process instance and triggers the violation detec-
tion action (validateProcess). The violation detection
performed for a process instance is an asynchronous action,
and the process instance does not wait for the violation detec-
tion to finish. The Diagnoser uses the Violation Detector cor-
responding to the process name. If a violation is detected, the
Repair Policy corresponding to the process name first reaches
a diagnosis based on available information, such as monitor-
ing statistics, and then dictates the action to be taken (re-
pairAction). Depending on the repair action, the Moni-
tor can be requested to perform violation detection actions
on individual services (validateService).

Determining if a violation which has occurred is done
through tests implemented by Violation Detectors. Typically,
Violation Detectors test the fulfillment of SLA guarantees
using statistic methods, such as statistical hypothesis testing
[34], or Bayesian inference [7].

Below we give two examples of possible Violation Detec-
tors.

For SLAs that require a process response time below a
given threshold, a simple Violation Detector reports an SLA
violation whenever the process response time exceeds the
given threshold. This Violation Detector does not depend on
any measurements of previous process instances.

As another example, for SLAs that require the average
(arithmetic mean) process response time not to exceed a
given threshold, we can apply a null-hypothesis statistical
significance test [34]. The null-hypothesis is that the SLA
is not violated, i.e., we assume that the average process
response time is smaller or equal to the threshold specified
in the SLA. The statistical test tells us whether the sam-
ples, i.e., the measured response times for a given process
using specific bindings, are unlikely to have occurred by
chance given the truth of the null-hypothesis. In that case, the
null-hypothesis is rejected and an SLA violation is reported.
The Violation Detector chooses the significance level α, the
probability of committing a type-I error, i.e., the probabil-
ity of rejecting the null-hypothesis when it is true. Since the
impact of wrongly quarantining well-behaving services is
limited in time (until the quarantining period expires), Vio-
lation Detectors may choose unusually high α values (e.g.,
α = 0.25). In this example, the well-known one-sample Stu-
dent t test can be applied. Violation Detectors using null-
hypothesis statistical significance tests need access to some
history of previous samples (i.e., process response times for
process service bindings); ADULA provides that informa-
tion. As a drawback of this technique, a rather high number
of samples is needed; e.g., for the one-sample Student t test
and unknown distribution and variance of the samples, more
than 30 samples are required. Consequently, at the startup
of the system, SLA violations may be detected with some
delay.

We verify that the response times (the samples) follow a
normal distribution using the Anderson–Darling normality
test [2]. For the Anderson–Darling normality test, the null-
hypothesis is that the samples follow a normal distribution.
We choose the same α value that we use for the t-test. The
Anderson–Darling test rejects the null-hypothesis if the com-
puted test statistic is greater than the critical value computed
for the normal distribution and the chosen α value. If the
Anderson–Darling test is positive, i.e., the distribution is nor-
mal, we use the Student t test to determine if a violation has
occurred. In case the Anderson–Darling test is negative, i.e.,
the distribution is not normal, we use the Wilcoxon signed-
rank test [39] for one sample.

123

172 A. Mosincat, W. Binder

Fig. 4 Repair Policy example pseudo-code. violatingBindings repre-
sents the bindings used by the process instance causing the violation

The Wilcoxon signed-rank test is a non-parametric test
that can be used as an alternative to the Student t test when
the distribution cannot be assumed to be normal. The Wilco-
xon test computes the difference between the response time
value for each sample and the average response time guaran-
teed by the process SLA. It then ranks the differences taking
into consideration the sign (positive or negative) giving to
each difference a value according to its rank. The test sta-
tistic is represented by the minimum value between the sum
of positive values and the sum of negative values. The test
statistic is verified against the critical value for the chosen α

and the null-hypothesis is rejected if the test statistic value is
less than the critical value.

When a violation is detected, the Diagnoser instantiates
the Repair Policy mapped to the process name. The respon-
sibility of the Repair Policy is to diagnose the cause of the
violation and dictate repair actions. Typically, a repair action
affects the service selection by quarantining one or more
services and thus enforcing the services’ replacement in sub-
sequent process instances. A Repair Policy can combine diag-
nosis and repair actions of different complexity. For e.g., a
simple Repair Policy can diagnose all services in the violat-
ing bindings as causing the violation and quarantine all of
them.

Figure 4 shows the pseudo-code of a more complex
Repair Policy which leverages the monitoring capabilities of
ADULA. The policy narrows the set of services that are most
likely to have caused the violation (suspectServices),
taking into account the process instances that have recently
used the services and that have good performance. Function
getValidatedServices makes use of the process sta-
tistics stored by ADULA to check if any of the services used
in the violating bindings have been recently used in other
bindings which have completed with good performance. The
bindings taken into consideration must belong to different
processes than the process causing the violation (identified
by processName). The function returns the set of found
services, validatedServices.

The Repair Policy puts all suspectServices which
have not been validated, and thus are more likely to have
caused the violation, in quarantine (quarantine). Then,
the policy marks for monitoring the services that were used
in the process instance, but have been validated, and dictates
the following repair actions for these services:

1. Services are monitored and put in quarantine if they cause
timeout (setTimeout).

2. If there is an SLA for each individual service, services
are checked for SLA violations using the serviceVD,
which is a detector chosen by the Repair Policy from
existing detectors (setViolationDetector). The
services causing a violation are put in quarantine.

Figure 5 shows the dynamics of the system for service
selection. We consider an example process using a loan ser-
vice and an approver service. In the first step, the Bind Man-
ager returns the default bindings for the process instance
to use. In the second step, the Violation Detector detects
a violation of the process response time (violation
(processName)), and the Repair Policy quarantines the
services used by the current bindings. When a subsequent
request for bindings arrives, in the third step, the Bind Man-
ager asks the Service Selector to provide alternative services
for the services in quarantine.

3.3 Monitoring

The Monitor plays two roles: (1) it provides service perfor-
mance statistics and (2) it interrupts a service on timeout.

To gather data for service performance statistics, we use
sampling-based monitoring that allows for effective moni-
toring, while reducing the cost in terms of overhead. Every
service is monitored with a given configurable probability.
The monitoring probability for services marked for monitor-
ing by a Repair Policy is 100%. Dynamic Proxies inside the
monitor measure service response time. For every service
invoked through a Dynamic Proxy, the Monitor computes
an average response time value. This value can be used to
detect performance degradation in a service, in case the ser-
vice SLA is not available or does not specify the normal
service response time.

Monitoring can be used as repair action in two ways. First,
using the timeout mechanism through which a service that
takes too long to respond is interrupted (setTimeout in
Fig. 4), causing a service invocation failure in the process
instance. Subsequently, the process instance will request a
replacement service using ADULA’s failure recovery fea-
ture [25]. Second, the Repair Policy can dictate a Violation
Detector to be used to validate the service response time
(setViolationDetector in Fig. 4). In order to deter-
mine a service timeout, the Monitor makes use of the service

123

Automated maintenance of service compositions with SLA 173

Fig. 5 System dynamics for service selection

Web
Services

Monitored invocation

Unmonitored
invocation

Transformed
Process
Instance

Monitor

…

Dynamic Proxies

Fig. 6 Monitored and unmonitored service invocation

statistics. A service that has been interrupted because of time-
out or has violated the constraint tested by the Violation
Detector is put in quarantine.

Figure 6 shows the monitored and unmonitored service
invocations from a process instance. In case of a monitored
invocation, the service binding returned by the Bind Manager
to the process instance upon process instance start refers to a

Dynamic Proxy, while in case of an unmonitored invocation,
the service binding refers to a service. The service binding
represents a service endpoint reference. If a selected service
is to be monitored, the Bind Manager embeds the endpoint
reference of the selected service within the endpoint refer-
ence of the Dynamic Proxy as ReferenceParameters [40].
The Bind Manager then returns the endpoint reference of
that Dynamic Proxy to the process instance.

When a Dynamic Proxy receives a request, it first inspects
the header of the SOAP [36] message, building the endpoint
reference of the service to invoke from the ReferenceParam-
eters. Then the Dynamic Proxy invokes the service while
measuring its response time.

3.4 History of process evolution

There are two important issues concerning process mainte-
nance when dynamically replacing service bindings: first,
process performance, which is the main reason driving the
replacement; and second, traceability of replacements, and
thus of process evolution. The knowledge gained during the
execution of process instances, respectively, through moni-
toring, is useful for the future development of processes, as
well as for business metrics (e.g., computing process rent-
ability, service reliability). It is important that information is
stored and provided on request. ADULA preserves process

123

174 A. Mosincat, W. Binder

and service statistics that are available through the Process
Evolution Web Interface to users.

The process statistics represent the history of the pro-
cess evolution determined by SLA violations and obtained
through automated process maintenance. Service statistics
are obtained through monitoring and represent information
on service performance.

The statistics preserved in the system are:

– All bindings that have been used for a process. The default
bindings and the bindings that are currently in use are
highlighted. The history of the process is presented as a
list of bindings and the timestamps when the updates took
place.

– For each bindings, the total number of process instances
that have used the bindings.

– For each bindings, the minimum, maximum, average exe-
cution time of instances using the bindings, as well as the
standard deviation.

– Violations that have occurred. For each violation, the
bindings that have caused the violation and the time when
the violation occurred are shown, as well as the repair
actions taken.

– Quarantine: services in quarantine and for each service
the time left until exiting the quarantine.

– For each service: the number of process instances that
have used the service; the violations in which the service
has been part of the diagnosis; the number of times the
service was put in quarantine and total time of quaran-
tining; the number of timeouts the service has caused;
service performance statistics.

The statistics provide an overview on service performance
and reliability, and on process usage. Thus, the statistics allow
the developer to track the evolution of the process, as well as
help selecting the services to use in future processes.

ADULA provides a performance comparison test that can
be used to determine if there are bindings that perform on
average better than the default bindings. The developer can
tune the process performance by changing the default bind-
ings using the performance comparison test provided by
ADULA.

The comparison test makes use of the Mann–Whitney non-
parametrical statistical test [21] to determine the chances of
obtaining better performance using the default bindings ver-
sus alternative bindings. The Mann–Whitney test is the Wil-
coxon signed-rank test variant for two independent samples.
The null-hypothesis is that the performance of the process
instances using the default bindings is not worse than the per-
formance of the process instances using the alternative bind-
ings. The alternative hypothesis is that the performance of
the process instances using the alternative bindings exceeds
the performance of the process instances using the default

bindings. As samples, the test uses the monitored response
times of the process instances. The alternative bindings are
the ones used as replacement when one of the default services
has been put in quarantine.

4 Evaluation

In this section, we evaluate the ADULA framework. First,
we explore the response time of processes using ADULA
compared to processes that statically bind services when the
performance of composing services degrades. We consider
two different kinds of SLA guarantees, which are validated
with different techniques, and explore the effectiveness of
using statistical tests to detect violations. Second, we mea-
sure the overhead introduced by ADULA for different service
response times when no SLA is violated.

We present the common settings we use in our evalua-
tion, the implementation details, and the evaluation results
for violation detection and overhead.

4.1 Common settings

Our evaluation is based on two processes, one of them extend-
ing the loan-approval sample process (included in the BPEL
specification [8]) and interacting with three different ser-
vices. The other process is interacting with only one service.
The loan-approval process takes as input a sum of money and
a currency and outputs the response on approving the loan.
It interacts with three services: the convertor (to convert the
sum of money from the given currency in euro), the loan
assessor (to assess the risk of the loan), and the loan approver
(to decide if the loan is approved or not). The second process
just invokes a loan assessor service. Both processes use the
same default loan assessor service, which we will call asses-
sor1. There are three different available substituting services
for each service functionality.

We developed a testbed which models web service perfor-
mance with discrete time Markov chains [23]. The testbed
includes web services, client workload generators, as well as
performance measurement tools.

For measuring response time, we use two different set-
tings in which the assessor1 service follows a service model
with five states, as depicted in Fig. 7. All other services are in
the fast state (500 ms) and do not change state. In the first set-
ting, the assessor1 service changes state on every time slot5

until it reaches the slowest state (2,500 ms) and then remains
in the same state; in the second setting the assessor1 service
changes state on every time slot.

5 A time slot is the moment in time when a decision is made randomly
based on the current state and the transition probability to change or to
keep state.

123

Automated maintenance of service compositions with SLA 175

Fig. 7 Service performance model: discrete Markov chains with 5
states

Our implementation uses Java 5, Apache Axis 1.4, and
BPEL 2.0; as BPEL engine we use ActiveBPEL 4 [1].
Both ADULA and the BPEL engine are deployed in an
Apache Tomcat 4.1.24 installation. The violation detectors
using statistical tests are implemented with the Apache Com-
mons Mathematics 2.0 library. Our measurement machine
is an Intel Core 2 Duo (2.4 GHz, 2GB RAM) running
Mac OS X v10.4. All measurements were repeated 15 times
and we report the median of these measurements.

4.2 Violation detection

4.2.1 SLA limits the maximum process response time

In the following evaluation (Figs. 8, 9), we assume the loan-
approval process SLA guarantees that the response time does
not exceed 3,000 ms, and the simple assessor process SLA
guarantees that the response time does not exceed 2,000 ms.
For Figs. 8 and 9 we use a simple ViolationDetector that tests
whether the response time of the process is below a given
threshold. If a violation occurs, all services in the violating
process instance are quarantined. The quarantining period is
30 s. The time slot for our service model is 30 s.

Figure 8 shows the response time of the transformed6 loan-
approval process compared to the original loan-approval pro-
cess when the performance of the assessor1 service degrades
and remains poor (setting 1). Once ADULA detects an SLA
violation, it replaces the assessor1 service allowing the trans-
formed process to recover, while the original process con-
tinues violating the SLA because of the degradation of the

6 We refer to the process that uses ADULA as the transformed process.

1000

1500

2000

2500

3000

3500

4000

1 10 20 30 40 50

Process instance

P
ro

ce
ss

 r
es

p
o

n
se

 t
im

e
[m

s]

Transformed Loan Approval Process

Original Loan Approval Process

Fig. 8 Response time of the original and transformed loan-approval
processes. SLA guarantees a maximum process response time
≤3,000 ms. Response time of assessor1 degrades from 500 to 2,500 ms
and remains slow (setting 1 in Fig. 7). Time slot: 30 s

0

500

1000

1500

2000

2500

3000

3500

4000

1 10 20 30 40 50

Process instance

P
ro

ce
ss

 r
es

p
o

n
se

 t
im

e
[m

s]

Transf. Simple Assessor Process Transf. Loan Approval Process
Orig. Simple Assessor Process Orig. Loan Approval Process

Fig. 9 Response time of the original and transformed loan-approval
and simple assessor processes. SLA guarantees a maximum pro-
cess response time ≤3,000 ms for the loan-approval process, respec-
tively ≤2,000 ms for the simple assessor process. assessor1 repeatedly
changes state between 500 and 2,500 ms (setting 2 in Fig. 7). Time slot:
30 s

assessor1 service. The peaks in the transformed process
response time correspond to the elapsing of quarantining
time for service assessor1. Because assessor1 is the default
service, ADULA tries to use it as soon as it exits the quaran-
tine. As the performance of assessor1 is still causing a pro-
cess SLA violation, the service is quarantined again. Thus,
ADULA ensures that the process will return to the default
service bindings after the service causing the violation has
been repaired, ensuring the control over the process evolution
and the preservation of the developer’s original choices.

Figure 9 shows the response time of the transformed
processes compared to the original processes when the per-
formance of assessor1 fluctuates (setting 2). Although the
performance degradation of assessor1 does not yet cause an
SLA violation for the simple assessor process, when asses-
sor1 is put into quarantine (because it causes the violation
of the loan-approval process’ SLA), it is replaced in all

123

176 A. Mosincat, W. Binder

Fig. 10 Average response time (calculated for each 25 process
instances) of the original and the transformed loan-approval processes.
SLA guaranteeing an average process response time ≤2,000 ms. Vio-
lation detector with Student t test, α = 0.0005. assessor1 repeatedly
changes state between 500 and 2,500 ms (setting 2 in Fig. 7). Time slot:
60 s

Fig. 11 Response time of the original and the transformed loan-
approval processes. SLA guaranteeing an average process response
time ≤2,000 ms. Violation detector with Student t test, α = 0.0005
and α = 0.25. assessor1 repeatedly changes state between 500 and
2,500 ms (setting 2 in Fig. 7). Time slot: 60 s

processes that use it, hence also in the instances of the simple
assessor process. Thus, ADULA prevents an SLA violation
in other processes, the simple assessor process in our case,
which would be caused by the service performance degra-
dation. When service performance is constant, the increase
in response time of the transformed process compared to the
original process is caused by the overhead introduced by the
interactions with ADULA and monitoring.

4.2.2 SLA guarantees an average process response time

In the following evaluation (Figs. 10, 11), we assume the
loan-approval process SLA guarantees that the average pro-
cess response time does not exceed 2,000 ms. The Violation-
Detector relies on the Student t test; we consider both a very
low α-value (alpha = 0.0005) and a very high α-value

0%

5%

10%

15%

20%

25%

30%

35%

40%

500 700 900 1100 1300 1500

Service response time [ms]

O
ve

rh
ea

d

Simple Assessor Process
one service invocation

Loan Approval Process
three service invocations

Fig. 12 Overhead for processes with one and three service invocations
for service response time between 500 and 1,500 ms

(alpha = 0.25).7 If an SLA violation is detected, all ser-
vices in the violating process instance are quarantined. The
quarantining period is always 30 s. In the service performance
model the time slot is 60 s.

Figure 10 shows the average response time for the original
and the transformed loan-approval processes when using the
Student t test for SLA violation detection with α = 0.0005;
the average response time is computed after each 25 pro-
cess instances. In this scenario, we use a service performance
model according to setting 2 in Fig. 7. The overall average
response time is 2,461 ms for the original process, respec-
tively, 1,952 ms for the transformed process. Despite the very
low α-value, the transformed process reacts to SLA viola-
tions in a timely way, avoiding any long-term performance
degradation.

Figure 11 illustrates the effectiveness of the ViolationDe-
tector using the Student t test in terms of how quickly vio-
lations are detected. As expected, with α = 0.0005, a larger
number of samples with long response time are needed until
a violation is detected (i.e., until the null-hypothesis can be
rejected), whereas with α = 0.25 violations are detected
very quickly. However, a high α-value increases the risk of
false positives, that is, spurious violations may be detected,
resulting in unnecessarily frequent quarantining of services.
Nonetheless, if we assume that there is a sufficient number of
replacement services, the negative impact of false positives
is mitigated. Hence, for this particular use of the Student t
test, we consider a relatively high α-value appropriate.

4.3 Overhead

We present the overhead of the transformed processes rela-
tive to the execution time of the original processes. We con-
sider the relative overhead for varying service response time
between 500 ms and 1,500 ms. Figure 12 shows the overhead

7 The α-value is the probability of committing a type-I error; for details,
see Sect. 3.2.

123

Automated maintenance of service compositions with SLA 177

introduced by ADULA. The overhead is mainly caused by
the two interactions with the Bind Manager: requesting the
service bindings at process instance start, respectively, noti-
fying process instance completion. The percentage of over-
head decreases with the increase of process complexity and
process response time; for a process with three service invo-
cations and service response time of more than 600 ms, the
overhead introduced by ADULA is below 10%.

In summary, our evaluation confirms that ADULA effec-
tively and efficiently detects, diagnoses, and repairs pro-
cesses, keeping the process evolution traceable and visible.
The cost in terms of overhead introduced when there is no
SLA violation is moderate, and is compensated by the gain
obtained through service replacement in case of performance
degradation. Moreover, ADULA prevents subsequent SLA
violations and improves performance of processes once the
service causing the performance degradation is detected.

5 Related work

There is a number of approaches that deal with QoS aware-
ness of service compositions. Some of these solutions
analyze and compose the QoS of individual services to obtain
the QoS of the process statically at design time [22,41]. In
contrast, our solution is dynamic and we consider failures and
changes in the environment. Other solutions continuously
recompute the estimated QoS [9,10,42]. The re-computa-
tions can be expensive and thus affect process performance.
Our solution reduces overhead by using sampling-based
monitoring and asynchronous violation detection. Solutions
that use regression models and machine learning techniques
to compute and predict SLO values [11,12,20,38] may yield
higher accuracy of prediction in the presence of unknown
factors that affect the QoS parameters of the composition,
but often incur higher runtime overhead. Our solution relies
on statistical tests that offer sufficient accuracy with less
resource usage when monitoring information is available.

Our approach to automated process update is based on
dynamic binding of services. Different solutions deal with
dynamic binding of services in BPEL processes [4–6,15,16,
24]. Some of these solutions also use monitoring to replace
a failing service [15,16,24], others [6] use different analysis
techniques to detect SLA violations, but none of them take
into consideration the original services used in the process,
and the history of process evolution. Most of these solutions
rely on a modified BPEL engine [4–6,24]. Our approach
is transparent to the user and to the BPEL engine, ensures
the process fulfills its SLA, provides process statistics, and
controls the process evolution in such a way to preserve the
choices done at development time.

An interesting solution close to our approach is presented
by Canfora et al. in [9,10]. The solution introduces a tool to

define new domain specific QoS parameters, a language, and
an interpreter to define QoS aggregation formulae to compute
the QoS of a composition based on the QoS of the compos-
ing services. The system integrator has to specify aggrega-
tion formulae for QoS and define an abstract composition.
Our approach does not require defining a special composi-
tion, but automatically transforms existing processes. In the
framework presented by Canfora et al., all service invocations
used in the abstract composition are linked to proxies which
bind services at runtime. For every abstract composition, the
system determines the optimal service composition comput-
ing different genomes by making use of genetic algorithms.
The estimation of the composition’s QoS is re-computed at
every step of the composition execution and different ser-
vices can be re-bound if the estimated QoS does not meet
the required one. In our approach, information about service
status is shared between processes allowing to prevent SLA
violations without adding the cost of QoS re-computation.

AgFlow [42] is a middleware platform that enables the
quality-driven composition of web services. AgFlow com-
putes optimal plans for the execution of the composition
using integer programming. The middleware makes use
of two service selection approaches, one based on local
optimization that does not take into account the overall QoS,
and one based on global planning that considers the com-
position QoS constraints rather then the QoS of individual
tasks. The cost of continuously re-computing QoS can be
high and cause a penalty on the process performance. While
our solution does not support complex QoS constraints and
the composition may not always be the optimal, we ensure
low penalty on process performance.

Xiao et al. [41] present a framework for verifying SLA
compliance of composition models at design time. The solu-
tion integrates a simulator engine in a composition envi-
ronment and checks all execution paths of the composition.
While the approach ensures that SLA requirements are met at
design time, it does not take into consideration the dynamics
of the services and QoS changes at runtime. Our focus is to
ensure SLA fulfillment also in exceptional situations, taking
into account dynamic service performance fluctuations.

Mei et al. [22] propose a solution that selects services
based on their failure rates and popularity (how often they
are used in compositions). The popularity of services is
computed by applying link analysis on WSDL information
extracted from public registries. The developer can select the
highly ranked services for the compositions. The aim of the
proposed solution is to reduce the number of service failures
experienced by the consumers, while our aim is to ensure the
process’ SLA fulfillment.

A flexible approach allowing for integration of user pref-
erences in the computation of QoS parameters that affect
service selection is the LCP-nets framework [11,12]. When
computing the QoS of the process the framework takes

123

178 A. Mosincat, W. Binder

into consideration user preferences, relative importance, and
tradeoffs between QoS parameters, which are expressed in
linguistic terms using LCP-nets. It then compares the candi-
date services upon several different QoS dimensions, apply-
ing the expressed preferences to the currently measured QoS
values. Our approach is targeted at individual QoS parame-
ters, which allow for lightweight computational techniques,
such as statistic tests.

Another solution using machine-learning techniques is
presented in [20,38]. The solution proposes the use of regres-
sion models to predict the SLO values in the presence of
unknown factors that affect the QoS parameters of the pro-
cess. The QoS parameter values are recomputed at different
points during the process execution, specified initially by the
process developer. The solution allows for high accuracy of
prediction and can react to changes that occur between the
defined checkpoints, but it has to pay the price in computa-
tional expense and to rely on the developer’s ability of instru-
menting the process. In contrast, our solution offers complete
transparency to the developer.

A different direction is taken by the Planning as Model
Checking [33] approach, which allows to monitor the exe-
cution of the composition and take corrective actions in case
some of the conditions are not met. The approach uses plan-
ning techniques as well as the EaGLe goal language [19], a
language that allows expressing system goals such as non-
functional requirements, i.e., QoS parameter requirements.

A different approach to deal with unsatisfactory QoS pro-
vided by services is SLA negotiation [13,14,27,28]. The
negotiation can be manual, requiring human intervention,
or automatic in which case software agents are used. Nego-
tiation of SLA is done on a client basis, which means that
a service can have a different SLA for each of its consum-
ers. These solutions are based on agents that carry out nego-
tiation, i.e., explore possible solutions that eventually lead
to an agreement, using different algorithms and negotiation
strategy models. While some approaches use optimization
algorithms to speed up the negotiation process [28], finding
an agreement may be a long-lasting process. In our solution,
we deal with fixed SLAs that are not negotiable.

[3] takes a new view on contract (SLA) negotiation, con-
sidering the evolution of the contract based on the possible
evolution of the parties involved in the contract. The solu-
tion provides a way of defining constraints on the contract,
defining boundaries in which the provided service QoS can
vary and what is acceptable both to provider and consumer.
Therefore, a contract violation is more strictly defined in an
evolving context and the need of re-negotiation is reduced.

There are different solutions that handle failure recovery
of processes with the aid of dynamic binding of services. Vie-
DAME [24] is a service monitoring and selection system that
uses aspects to intercept SOAP messages and to dynamically
replace services used in the BPEL process. Another aspect-

based system is the Dynamo system [4,5]. Dynamo provides
self-healing capabilities to the process with the aid of com-
plex recovery strategies specified using two domain-specific
languages (WSCoL, the Web Service Constraint Language
and WSReL, the Web Service Recovery Language). Another
approach to failure recovery is RobustBPEL2 [15,16] which
makes use of a dynamic proxy to discover alternative services
upon failure of services that have previously been marked for
monitoring.

6 Conclusion

In this article, we described ADULA, a framework for auto-
mated maintenance of BPEL processes. ADULA automati-
cally detects and repairs SLA violations caused by service
performance degradation in a way transparent to the user
and to the BPEL engine. Violation detection, diagnosis, and
repair leverage a lightweight sampling monitoring technique
and allow for customizable violation detection strategies and
repair policies. ADULA ensures that the process evolution
obtained through service replacement is traceable, providing
the user with process and service statistics that can be used
for further development. Our evaluation shows that ADULA
maintains process performance ensuring SLA compliance
with moderate cost in terms of overhead. Furthermore, the
framework allows sharing of information about service per-
formance between processes so that ADULA prevents SLA
violations caused by degradation of service performance.

Our current implementation takes only service perfor-
mance into account. Our future research activities include
work on extending the monitoring and detection capabilities
to domain-specific and functional QoS. When no replace-
ment service with good performance is available, ADULA
can detect and diagnose SLA violations, but it cannot prevent
subsequent violations. To address this limitation, the frame-
work capabilities need to be extended so as to include also
repair actions at the service level, such as those presented in
[17].

Acknowledgments We gratefully acknowledge the financial support
of the Swiss National Science Foundation for the project “SOSOA:
Self-Organizing Service-Oriented Architectures” (SNF Sinergia Pro-
ject No. CRSI22_127386/1).

References

1. Active Endpoints. ActiveBPEL engine. http://www.activevos.com/
2. Anderson, T.W., Darling, D.A.: Asymptotic theory of certain

“Goodness of Fit” criteria based on stochastic processes. Ann.
Math. Stat. 23(2), 193–212 (1952)

3. Andrikopoulos, V., Fugini, M., Papazoglou, M.P., Parkin, M.,
Pernici, B., Siadat, S.H.: Qos contract formation and evolution.

123

http://www.activevos.com/

Automated maintenance of service compositions with SLA 179

In: 11th International conference on electronic commerce and web
technologies, pp. 119–130 (2010)

4. Baresi, L., Ghezzi, C., Guinea, S.: Towards self-healing compo-
sition of services. In: Contributions to Ubiquitous Computing,
pp. 27–46. Springer Berlin, Heidelberg (2007)

5. Baresi, L., Guinea, S.: Dynamo and self-healing BPEL composi-
tions. In: ICSE Companion, pp. 69–70 (2007)

6. Baresi, L., Guinea, S., Pasquale, L.: Integrated and composable
supervision of BPEL processes. In: ICSOC ’08: Proceedings of
the 6th international conference on service-oriented computing,
pp. 614–619 (2008)

7. Berger, J.: Statistical Decision Theory and Bayesian Analy-
sis. Springer, Berlin (1999)

8. BPEL: BPEL 2.0 standard specification. http://docs.oasis-open.
org/wsbpel/2.0/wsbpel-v2.0.pdf

9. Canfora, G., Di Penta, M., Esposito, R., Perfetto, F., Villani, M.L.:
Service composition (re)binding driven by application-specific
QoS. In: ICSOC ’06: Proceedings of the 4th international con-
ference on service-oriented computing, pp. 141–152 (2006)

10. Canfora, G., Di Penta, M., Esposito, R., Villani, M.L.: A frame-
work for QoS-Aware binding and re-binding of composite web
services. J. Syst. Softw. 81(10), 1754–1769 (2008)

11. Châtel, P., Malenfant, J., Truck, I.: Qos-based late-binding of ser-
vice invocations in adaptive business processes. In: ICWS ’10:
Proceedings of the 2010 IEEE international conference on web
services, pp. 227–234. IEEE Computer Society, Washington, DC,
USA (2010)

12. Châtel, P., Truck, I., Malenfant, J.: Lcp-nets: a linguistic approach
for non-functional preferences in a semantic SOA environment.
J. Univ. Comput. Sci. 16(1), 198–217 (2010)

13. Chhetri, M.B., Lin, J., Goh, S., Zhang, J.Y., Kowalczyk, R., Yan,
J.: A coordinated architecture for the agent-based service level
agreement negotiation of web service composition. In: ASWEC,
pp. 90–99 (2006)

14. Comuzzi, M., Pernici, B.: An architecture for flexible web service
QoS negotiation. In: EDOC, pp. 70–82 (2005)

15. Ezenwoye, O., Masoud Sadjadi, S.: RobustBPEL2: transparent au-
tonomization in business processes through dynamic proxies. In:
Proceedings of the 8th international symposium on autonomous
decentralized systems (ISADS 2007), pp. 17–24. Sedona, Arizona,
March (2007)

16. Ezenwoye, O., Sadjadi, S.M.: A proxy-based approach to enhanc-
ing the autonomic behavior in composite services. JNW 3(5),
42–53 (2008)

17. Gmach, D., Krompass, S., Scholz, A., Wimmer, M., Kemper,
A.: Adaptive quality of service management for enterprise ser-
vices. ACM Trans. Web 2(1), 1–46 (2008)

18. ISO/IEC 14764: Software engineering—software life cycle pro-
cesses—maintenance. http://www.iso.org/iso/catalogue_detail.
htm?csnumber=39064 (2006).

19. Lago, U.D., Pistore, M., Traverso, P.: Planning with a language for
extended goals. In: The 16th AAAI conference on artificial intelli-
gence, pp. 447–454 (2002)

20. Leitner, P., Michlmayr, A., Rosenberg, F., Dustdar, S.: Monitoring,
prediction and prevention of SLA violations in composite services.
In: ICWS ’10: Proceedings of the 2010 IEEE international confer-
ence on web service, pp 369–376 (2010)

21. Mann, H., Whitney, D.: On a test of whether one of two ran-
dom variables is stochastically larger than the other. Ann. Math.
Stat. 18(1), 50–60 (1947)

22. Mei, L., Chan, W.K., Tse, T.H.: An adaptive service selection
approach to service composition. In: ICWS ’08: Proceedings of the
IEEE international conference on web services, pp. 70–77 (2008)

23. Meyn, S.P., Tweedie, R.L.: Markov Chains and Stochastic Stabil-
ity. Springer, London (1993)

24. Moser, O., Rosenberg, F., Dustdar, S.: Non-intrusive monitoring
and service adaptation for WS-BPEL. In: WWW ’08: Proceed-
ing of the 17th international conference on World Wide Web,
pp. 815–824. ACM, New York, NY, USA (2008)

25. Mosincat, A., Binder, W.: Transparent runtime adaptability for
BPEL processes. In: ICSOC ’08: Proceedings of the 6th inter-
national conference on service-oriented computing, pp. 241–255
(2008)

26. Mosincat, A., Binder, W.: Automated performance maintenance for
service compositions. In: WSE ’09: The 11th IEEE international
symposium on web systems evolution, pp. 131–140 (2009)

27. Ncho, A., Aïmeur, E.: Building a multi-agent system for automatic
negotiation in web service applications. In: AAMAS ’04: Pro-
ceedings of the third international joint conference on autonomous
agents and multiagent systems, pp. 1466–1467. IEEE Computer
Society, Washington, DC, USA (2004)

28. Nitto, E.D., Penta, M.D., Gambi, A., Ripa, G., Villani, M.L.:
Negotiation of service level agreements: an architecture and a
search-based approach. In: ICSOC ’07: Proceedings of the 5th
international conference on service-oriented computing, pp. 295–
306 (2007)

29. O’Brien, L., Bass, L., Merson, P.: Quality attributes and service-
oriented architectures. Technical Report CMU/SEI-2005-TN-014,
CMU - Software Engineering Institute, Pittsburgh, PA, September
(2005)

30. Open Grid Forum. WS-Agreement specification. http://www.ogf.
org/documents/GFD.107.pdf

31. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Service-
oriented computing: state of the art and research challenges. IEEE
Comput. 40(11), 38–45 (2007)

32. Papazoglou, M.P., Traverso, P., Dustdar, S., Leymann, F.: Ser-
vice-oriented computing: a research roadmap. Int. J. Co-Op. Inf.
Syst. 17(2), 223–255 (2008)

33. Pistore, M., Barbon, F., Bertoli, P., Shaparau, D., Traverso, P.: Plan-
ning and monitoring web service composition. In: The 8th interna-
tional conference on artificial intelligence: methodology, systems,
applications, pp. 106–115 (2004)

34. Romano, J.: Testing Statistical Hypotheses. Springer, Ber-
lin (2005)

35. Skene, J., Lamanna, D.D., Emmerich, W.: Precise service level
agreements. In: Proceedings of ICSE ’04, pp. 179–188. IEEE Com-
puter Society (2004)

36. SOAP. SOAP specification. http://www.w3.org/TR/soap12-part1/
37. Swanson, E.B.: The dimensions of maintenance. In: ICSE ’76: Pro-

ceedings of the 2nd international conference on software engineer-
ing, pp. 492–497. IEEE Computer Society Press, Los Alamitos,
CA, USA, (1976)

38. Wetzstein, B., Leitner, P., Rosenberg, F., Brandic, I., Dustdar, S.,
Leymann, F.: Monitoring and analyzing influential factors of busi-
ness process performance. In: EDOC, pp. 141–150 (2009)

39. Wilcoxon, F.: Individual comparisons by ranking methods. Bio-
metrics Bull. 1, 80–83 (1945)

40. WS-Addressing. WS-Addressing standard specification. http://
www.w3.org/Submission/ws-addressing/

41. Xiao, H., Chan, B., Zou, Y., Benayon, J.W., O’Farrell, B., Litani,
E., Hawkins, J.: A framework for verifying SLA compliance in
composed services. In: ICWS ’08: Proceedings of the IEEE inter-
national conference on web services, pp. 457–464 (2008)

42. Zeng, L., Benatallah, B., Ngu, A.H.H., Dumas, M., Kalagnanam,
J., Chang, H.: QoS-Aware middleware for web services composi-
tion. IEEE Trans. Softw. Eng. 30(5), 311–327 (2004)

123

http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://www.iso.org/iso/catalogue_detail.htm?csnumber=39064
http://www.ogf.org/documents/GFD.107.pdf
http://www.ogf.org/documents/GFD.107.pdf
http://www.w3.org/TR/soap12-part1/
http://www.w3.org/Submission/ws-addressing/
http://www.w3.org/Submission/ws-addressing/

	Automated maintenance of service compositions with SLA violation detection and dynamic binding
	Abstract
	1 Introduction
	2 System description
	2.1 Terminology
	2.2 Process transformation and failure recovery
	2.3 ADULA

	3 Automated maintenance
	3.1 Service selection
	3.2 Violation detection, diagnosis, and repair
	3.3 Monitoring
	3.4 History of process evolution

	4 Evaluation
	4.1 Common settings
	4.2 Violation detection
	4.2.1 SLA limits the maximum process response time
	4.2.2 SLA guarantees an average process response time

	4.3 Overhead

	5 Related work
	6 Conclusion
	Acknowledgments
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 149
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 149
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 599
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200038002000280038002e0032002e00310029000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300031003000200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f0061006400650064002000610074002000680074007400700073003a002f002f0070006f007200740061006c002d0064006f0072006400720065006300680074002e0073007000720069006e006700650072002d00730062006d002e0063006f006d002f00500072006f00640075006300740069006f006e002f0046006c006f0077002f00740065006300680064006f0063002f00640065006600610075006c0074002e0061007300700078000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c00200030003800200061006e0064002000500069007400530074006f0070002000530065007200760065007200200030003800200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

