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Abstract Object: the overall goal
was to study cardiovascular function
in small animals using a clinical
1.5-T MR scanner optimizing a fast
gradient-echo cine sequence to
obtain high spatial and temporal
resolution.
Materials and methods: normal rat
hearts (n = 9) were imaged using a
1.5-T MR scanner with a spiral fast
gradient-echo (fast field echo for
Philips scanners) sequence, three
Cartesian fast gradient-echo (turbo
field echo for Philips scanners)
sequences with different in-plane
resolution, and with and without
flow compensation and half-Fourier
acquisition. The hearts of four rats
were then excised and left-ventricle
mass was weighed. Inter- and
intra-observer variability analysis
was performed for magnetic
resonance imaging (MRI)
measurements.

Results: half-Fourier acquisition
with flow compensation gave the
best sequence in terms of image
quality, spatial as well as temporal
resolution, and suppression of flow
artifact. Ejection fraction was 71 ±
4% with less than 5% inter- and
intra-observer variability. A good
correlation was found between
MRI-calculated left-ventricular mass
and wet weight.
Conclusions: using optimized
sequences on a clinical 1.5-T MR
scanner can provide accurate
quantification of cardiac function in
small animals and can promote
cardiovascular research on small
animals at 1.5-T.

Keywords MRI · Cardiac
imaging · Small animal

Introduction

Cardiac magnetic resonance imaging (MRI) already has
well-established clinical applications with a constantly
increasing list of indications [1–5]. In addition to clin-
ical use, there is intense research into imaging and
assessing the heart function of small animals to better
understand cardiovascular pathologies. Some investiga-
tors have demonstrated the feasibility of imaging and
quantifying the heart function and dysfunction using
2-T [6,7], 4.7-T [8–11], or higher-field MR systems [12–
14], dedicated exclusively to the small animal. However,

such high-field systems are not widely available in con-
trast to 1.5-T MR systems used for clinical and research
applications. Few animal studies at 1.5-T have evaluated
the cardiac function of mice or rats [15–18], and have
been limited by the spatial or temporal resolution and
image quality. In particular, the optimization made pos-
sible by a clinical 1.5-T MR system has not been explored
in these preliminary studies. Therefore, cardiac imaging
of rodents has not been completely developed on clinical
1.5-T MR systems and remains a technical challenge due
to the small size of the animals, fast heart and breathing
rates, as well as the lower signal-to-noise ratio (SNR) of
low-field MR systems.
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The aim of this work was: (1) to demonstrate that
cardiac imaging of rats is feasible at 1.5-T on a clinical
MR scanner with high spatial and temporal resolution
(close to that achieved in humans), (2) to compare four
different optimized fast gradient-echo cine sequences in
the evaluation of heart function.

Materials and methods

Animal preparation

Anesthesia was induced in nine adult male rats (Sprague–Daw-
ley) weighing 381 ± 18 g with isoflurane 3%, and was main-
tained by an intraperitoneal (IP) catheter with a bolus injec-
tion of 40 mg/kg sodium pentobarbital (Nembutal sodium solu-
tion, Abbott Laboratories, North Chicago, IL, USA) followed
by continuous perfusion (20 mg/kg/h). The rats were then placed
in a cradle in supine position. A heating system maintained a
constant temperature of the rats (37–37.5 ◦C), monitored by
a rectal thermal probe; a respiratory pillow was placed on
the abdomen to control the breathing rate. The electrocar-
diogram (ECG) recorded by subdermal electrodes was then
used as a cardiac trigger for the MR system. Monitoring de-
vices were connected with optical fibers to a personal com-
puter (PC, Dell Latitude 800 with Windows 2000) during the
MRI acquisitions [SA Instrument, Inc. (SAII), Stony Brook,
NY, USA, MR-compatible model 1025 monitoring and gat-
ing system]. The data-acquisition modules were located near the
animal in the MR scanner; a control/gating module was con-
nected to a PC next to the operator console. Modules were con-
trolled by menu-driven software from the PC. All output from
ECG/temperature, respiration/IBP (pressure transducer) was
transmitted through optical fibers. This system allowed acqui-
sitions with ECG-gated sequences despite the high heart rate of
the rat; furthermore, it allowed for continuous real-time physio-
logical parameters assessment during the whole experiment. All
animal procedures were approved by the ethical committee of
our institution.

Ex-vivo measurements

Four rats were killed directly after the imaging session. The heart
was carefully dissected to isolate the left ventricle, which was then
weighed on an analytical balance (Acculab, Sartorius Group,
Epsom, UK).

MRI experiments

Experiments were performed on a 1.5-T MR system (Intera,
Philips Medical Systems, Best, The Netherlands) using a micros-
copy surface coil (47 mm diameter) for reception. A body coil
was used for transmission. Four standard Philips MR fast gradi-
ent-echo (fast field echo on Philips system) sequences were used
to acquire one long-axis and two short-axis views of the heart

(mid-ventricular and apical): (1) spiral gradient echo [spiral fast
field echo (FFE) sequence on Philips system], (2) Cartesian
gradient-echo sequence with short repetition time (TR) and echo
time (TE) [turbo field echo (TFE) sequences on clinical Philips
scanner] with a high in-plane resolution (TFE-highres), (3) Carte-
sian gradient-echo sequence with short TR and TE with a low
in-plane resolution (TFE-lowres), (4) a Cartesian TFE sequence
with flow compensation and with half-Fourier acquisition (TFE-
highres-flowcomp). TFE are gradient echo sequences with very
short TE and TR which acquire k-space data while approach-
ing steady state. In addition, contiguous short slices covering the
entire ventricle length were acquired with the TFE-highres-flow-
comp sequence for the four rats whose hearts were excised and
weighted just after the MRI session.

All the sequences were synchronized to the ECG but no respi-
ratory triggering was used. The animal-specific gating system
allowed adaptations of clinical sequences for very high heart
rates. Parameters of each sequence are detailed in Table 1.

Image analysis

Image analysis was performed on PowerMac G5 (Apple)
using the open-source software OsiriX (http://homepage.mac.
com/rossetantoine/osirix/HomePage.html).

Signal-to-noise ratio was measured in the left-ventricle blood,
in the interventricular septum (myocardium), and in the muscles
of the anterior thoracic wall. Signal intensity (SI) for each struc-
ture was averaged inside a manually drawn region of interest
(ROI) of at least 20 voxels and then divided by the standard
deviation (SD) of the background noise.

Blood–myocardium contrast-to-noise ratio (CNR) was
eval-uated according to CNR=[SI(blood)−SI(myocardium)]/
SD(noise). To compare the different sequences, SNR and CNR
values were normalized by the voxel size.

For each animal, ejection fraction (EF) was assessed as:

Ejection fraction(%)= (Vdiast −Vsyst)/Vdiast.

End-diastolic (Vdiast) and end-systolic (Vsyst) volumes were
calculated by manually drawing endocardial contours and long-
axis length at end-diastolic and end-systolic phases for each axis.
End-diastolic and end-systolic volumes were calculated using the
Simpson’s modified method according to:

Volume= (length/2)(Amitral + (2/3)Aapex)

where Amitral is the diastolic/systolic mitral valve area; Aapex
is the diastolic/systolic area, and length is the diastolic/systolic
long-axis length.

Additionally, volumes were calculated by measuring the sur-
face differences between blood and myocardium for each contig-
uous slice covering the entire ventricle length. Then the surfaces
were multiplied by the slice thickness (2 mm) and summed.

Left-ventricle mass (LVM) was calculated according to the
product of difference between the left-ventricle blood volume and
left-ventricle volume (blood + myocardium) by the volumic mass
(1.05 µg/µl) of the rat heart.



146

Table 1 Comparison and summary of parameters for sequence acquisition, as well as the rat heart rate

Spiral-FFE TFE-highres- TFE-highres TFE-
flowcomp lowres

Heart rate 360 360 360 360
Acquisition time 1’26 1’26 1’16 1’04
FOV (mm) 120 160 160 160
RFOV (%) – 60 60 60
Matrix scan 256 288 288 160
Matrix 512 512 512 256

reconstruction
Measured 0.47/0.47/2.0 0.56/0.56/2.0 0.56/0.56/2.0 1.0/1.0/2.0
voxel size (mm)
Reconstructed 0.23/0.23/2.0 0.31/0.31/2.0 0.31/0.31/2.0 0.62/0.62/2.0

voxel size (mm)
Technique FFE TFE TFE TFE
Flip angle (deg) 30 15 15 15
NSA 1 6 4 6
TR (ms) 12.9 7.7 9.6 5.5
TE (ms) 3.7 4.1 3.5 2.7
Number of 12 14 11 20

phases/cycle
RR window (%) 50, 15 10, 15 10, 20 10, 15
Cardiac Prospective Retrospective Retrospective Retrospective

synchronization
Flow – Yes No No

compensation
Half-Fourier No Yes No No

acquisition
Partial echo No Yes No No
Partial echo – 0.6 – –

factor
Bandwidth – 496.7 496.7 723.8

per pixel (Hz)
Water fat shift – 0.437 0.437 0.300

(pixel)
TFE SHOTs – 43 57 32
TFE FACTOR – 3 3 3
Interleaves 256

number

The acquisition time is given for a single slice. FOV field of view; RFOV rectangular field of view; NSA number of signal averaging;
RR window time delay between two R waves of the ECG; TFE SHOTS number of shots in case of multishot acquisition to acquire
all the k-space, depending on the TFE factor; TFE FACTOR percentage of matrix acquired within one TR, defines consequently
the number of shots to acquire all the k-space; FFE fast field echo TFE turbo field echo flowcomp flow compensation; highres high
resolution; lowres low resolution

Image quality

All images (all frames) were observed in a consensus reading by
three investigators in order to score qualitatively image qual-
ity obtained from each sequence. The following criteria were
used: presence of flow artifact in the ventricles, blood–myocar-
dium edge sharpness, and signal homogeneity of myocardium.
All images were qualitatively assessed on a five points scale
[from minus minus (worst) to plus plus (best), passing through
zero].

Reproducibility and variability analysis

Each set of data obtained with the TFE-highres-flowcomp
sequence was analyzed by three different investigators in tripli-
cate to evaluate inter- and intra-observer variability. Each inves-
tigator traced by hand the endocardial and epicardial contours
for each end-diastolic and end-systolic slice. The left-ventricle
length was also manually traced at end-diastole and end-systole.
The areas (in cm2) and lengths (in cm) were then gathered and
compared statistically.
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Fig. 1 Representative example
of images obtained with turbo
field echo (TFE) sequence with
flow compensation and
half-Fourier acquisition
(TFE-highres-flowcomp) for a
complete cardiac cycle. The
myocardium has a
homogeneous signal during the
whole contraction cycle in short
axis at mitral (a) and apex (b)
level and in long axis (c) and is
also well differentiated from the
blood. Flowcomp flow
compensation; highres high
resolution. Scale bar = 1 cm

A one-way analysis of variance was performed for each mea-
surement. A p value inferior to 0.05 was considered significant.

Results

The cine protocols were successfully obtained in all the
rats even at high heart rate (371 beats per minute (bpm)
± 57 bpm). An example of the image quality of the cine
MR sequences is presented in Fig. 1. A high contrast be-
tween the blood and the myocardium was observed in all
the series. SNR and CNR values for the left-ventricle
blood and myocardium are presented in Table 2. The
results of the consensus reading are presented in Table 3.
The flow compensation with complex-conjugate recon-
struction (half-Fourier acquisition) provided a homoge-

Table 2 Signal-to-noise ratio (SNR) for blood of left ventricle and
myocardium and contrast-to-noise ratio (CNR) between blood of
left ventricle and myocardium per voxel volume unit (mean ± SD)

Spiral-FFE TFE-highres- TFE- TFE-
flowcomp highres lowres

SNR blood LV 367 ± 52 265 ± 35 265± 40 307 ± 78
SNR 153 ± 28 133 ± 19 153± 26 135 ± 37
myocardium

CNR blood 214 ± 48 133 ± 40 112 ± 55 173 ± 43
myocardium

Only the spiral-FFE sequence shows a statistical difference for
the parameters SNR blood LV (p < 0.007) and CNR blood
myocardium (p < 0.015) compared to the TFE-flowcomp and
the TFE sequences. FFE fast field echo; TFE turbo field echo,
flowcomp flow compensation, highres high resolution; lowres low
resolution

Table 3 Qualitative comparison of flow artifacts, myocardium edge
sharpness, and homogeneity for each sequence obtained from a con-
sensus reading

Flow Myocardium Myocardium
artifact sharpness homogeneity

Spiral-FFE + ++ ++
TFE-highres- ++ ++ ++
flowcomp

TFE-highres − + −
TFE-lowres + − +

The ‘+’ always represents the best image quality for each cri-
teria analyzed (++: best image quality, –: worst image
quality). FFE fast field echo; TFE turbo field echo; flowcomp
flow compensation; highres high resolution; lowres low resolution

neous signal in the left cavity. Absence of flow artifacts
in the left cavity was also observed in the low-resolution
TFE sequence and to a lesser extent in the spiral-FFE
sequence with flow compensation but without complex-
conjugate reconstruction. The TFE-highres sequence was
degraded by an important flow artifact inside the cav-
ities, as can be seen in Fig. 2. From consensus read-
ing, the best sequence was the Cartesian TFE with both
flow compensation and complex-conjugate reconstruc-
tion (TFE-highres-flowcomp). Using this sequence, high-
resolution images with sharp borders between the blood
and myocardium were constantly obtained, which was
not the case for the other sequences, as demonstrated in
Figs. 1, 2, and 3.

Diastolic and systolic volumes as well as the ejection
fraction were measured for all MR sequences using the
modified Simpson method and by summation of contig-
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Fig. 2 Representation of the flow artifacts from a systole to a diastole (selection of eight phases) for spiral-FFE (a), TFE-highres-flowcomp
(b), TFE-highres (c), and TFE-lowres (d). TFE-highres-flowcomp sequence shows a uniform blood signal. The flow-artifact intensity in the
spiral sequence is more pronounced in the early diastole. Note also a pronounced artifact in the TFE-highres (c) acquisition. The flow is
more homogeneous for the TFE-lowres at the expense of low spatial resolution. FFE fast field echo; TFE turbo field echo; flowcomp flow
compensation; highres high resolution; lowres low resolution. Scale bar = 1 cm

Fig. 3 Rat heart imaged with sequences spiral-FFE (a), TFE-highres-flowcomp (b), TFE-highres (c), and TFE-lowres (d). Diastolic and
systolic phases are represented for the short axis (mitral: row 1, and apex: row 2) and the long axis (row 3). The spiral-FFE sequence
(a) shows a greater contrast comparing to the TFE-highres-flowcomp (b, c), but the septum is partially delineated due to flow artifact. Even
though a good contrast for the TFE-lowres acquisition (d), the sharpness of the image obtained is not satisfactory. Hence the turbo field
echo sequences (b, c) are of great interest. Moreover, the flow compensation for b decreases dramatically the flux artifacts. FFE fast field
echo, TFE turbo field echo, flowcomp flow compensation, highres high resolution, lowres low resolution. Scale bar = 1 cm

uous slices for the TFE-highres-flowcomp sequence. The
results are presented in Table 4. No significant differences
were found between the four sequences (p > 0.05).

For each MRI sequence the left-ventricle mass was
compared with the left-ventricle wet weight obtained dur-
ing autopsy (Table 5). There were no significant differ-
ences between the MR-calculated volume and real volume
as assessed by autopsy.

From the statistical analysis of the inter- and intra-
observer measurements variability was very small. In-
deed, the standard errors of mean were between 1.12%
and 4.73% for intra-observer variability and between

1.57% and 3.90% for inter-observer variability for the
sequence chosen.

Discussion

This work demonstrates that high spatial and temporal
resolution images of rat cardiac cine can reliably be ob-
tained on a clinical 1.5-T MR system and can yield accu-
rate cardiac function estimates. Moreover, the acquisition
is reproducible. The current in-plane resolution retained
in this study was 0.31 mm after zero-filling (0.56 mm ac-



149

Table 4 Values of diastolic, systolic volumes and the ejection frac-
tion measured and calculated for each sequence (mean ± SD)

Spiral-FFE TFE-highres- TFE- TFE-
flowcomp highres lowres

Diastolic 512 ± 72 569 ± 72 555 ± 76 519 ± 53
volume (µl)

Systolic 117 ± 22 166 ± 29 151 ± 23 160 ± 23
volume (µl)

Ejection 77 ± 4 71 ± 4 72 ± 4 69 ± 5
fraction (%)

FFE fast field echo; TFE turbo field echo; flowcomp flow com-
pensation; highres high resolution; lowres low resolution

Table 5 Heart mass values in four rats

LV mass (g)

Spiral-FFE 0.80 ± 0.08
TFE-highres-flowcomp 0.76 ± 0.15
TFE-highres 0.72 ± 0.12
TFE-lowres 0.63 ± 0.15
TFE-flowcomp whole heart 0.71 ± 0.18
Autopsy 0.82 ± 0.07

The weight was evaluated for each MRI sequence and compared
with wet weight assessed through autopsy (mean ± SD). There
were no significant differences between the measurements
obtained with MRI against real weight (T test). FFE fast field
echo; TFE turbo field echo; flowcomp flow compensation; highres
high resolution; lowres low resolution; whole heart MRI slices
2 mm thick along the long heart axis

quired) with a temporal resolution allowing the imaging
of 14 phases per heart beat for a heart rate of 360 bpm.
A similar resolution of 0.5 mm with 10–14 phases per
heart beat has already been obtained on a clinical 1.5-T
MR system in the mouse [18]. However, no detailed indi-
cations on the sequence parameters (such as acquisition
time, repetition time, echo time, bandwidth, or interpo-
lation) and no validation of the method were provided
in this preliminary study. It should be emphasized that
in cardiac cine imaging spatial resolution is closely re-
lated to temporal resolution. For a fixed acquisition time,
spatial resolution can be increased by reducing the num-
ber of cardiac phases imaged. For cardiac cine at 1.5-T,
higher in-plane resolution of 0.19 mm in mice [15,16] or
0.35 mm in the rat [17] have been used. The matrices were
obtained at the expense of temporal resolution since the
number of cardiac phases of the cine was limited to five
or six. To maintain a high number of heart phases, we
kept the repetition time as short as possible (7.7 versus
39 ms in the Franco et al. protocol) by increasing the
field of view (FOV) and compensated the loss of SNR by

averaging. This strategy yields a high resolution in both
the spatial and temporal dimensions while maintaining
a reasonably short acquisition time per slice (less than
1.5 min). It should be emphasized that the number of
phases could be easily increased if needed by reducing
the TFE factor (percentage of matrix acquired within one
TR) from three to one or by using the option of phase
sharing during the reconstruction [19,20].

A low in-plane resolution (reconstructed: 0.62 ×
0.62 mm, acquired: 1.00 × 1.00 mm) was tested to increase
the number of phases: 20 phases per cardiac cycle were
obtained at a cardiac frequency of 360 bpm with a high
CNR. However, the resulting low resolution appears as a
limiting factor for myocardium segmentation in compar-
ison to others sequences [21].

The resolution achieved in this study (with a heart
diameter of 15 mm for the rat [6]) has to be compared
to values obtained in the human heart which is almost
seven times larger in diameter (approximately 100 mm)
[6]: 2.2 × 1.4 mm2 in-plane resolution for standard cine
sequence and 4.2 × 2.7 mm2 for real-time cine [22] for
human studies and 0.31 × 0.31 mm2 in this study. There-
fore, the spatial resolution in the rat, normalized to heart
diameter is between the resolution of the standard cine
and the real-time cine.

The typical resolution of high-field MR systems ded-
icated to small animals is 0.39 mm with 11–12 cardiac
phases per heart beat at 4.7-T [10], or 0.23 mm with 12
frames per heart cycle at 7.05-T [12,13]. The spatial reso-
lution obtained on our clinical MR scanner without losing
temporal resolution is lower than the spatial resolution
that can be achieved with small-animal dedicated sys-
tems, but yet enables sufficient image quality to accurately
delineate heart contours.

Regarding the choice of the MR sequences, in order
to suppress flow artifacts, it was important to use flow
compensation (gradient moment nulling of the first or-
der). The use of a clinical scanner (i.e., 1.5-T) implies
longer gradient rise time compared to high-field systems,
hence imposing longer acquisition times. Consequently,
the system is more sensitive to flow artifacts which justifies
the use of the flow-compensation parameter. The TFE-
highres-flowcomp sequence with this correction exhib-
ited a homogeneous blood signal in ventricles, as shown
in Fig. 2.

Using a spiral sequence, higher resolution as well
as high blood-to-myocardium contrast can be obtained
(p < 0.02) (Table 2). However, flow artifacts at the
blood–myocardium interface were often present in sys-
tole (Figs. 2, 3). This result was at first surprising as
spiral sequences are known to be more robust to flow arti-
facts due to the intrinsic gradient moment-nulling of the
sequence. In our sequence, the high number of spiral inter-
leaves (256) decreases drastically the number of rotations
per spiral. The resulting trajectory covers less than one
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quarter of k-space and does no longer have the gradient
moment-nulling property.

We did not evaluate balanced steady-state free-pre-
cession sequence (True Fisp on Siemens MR scanners)
that is one of the reference MR sequences for cardiac cine
in patients. In our studies, True Fisp imaging on the rat
heart was degraded by severe banding artifacts that could
not be resolved by the shim available on our MR system.
Flow artifacts that may be related to off-resonance effects
[23] were also present.

Due to the high image quality of the TFE-highres-
flowcomp sequence, the variation of measurements was
very small (Table 4), and the measurements were compa-
rable to published data [17,24]. The low inter- and intra-
observer variability of the heart function measurements
demonstrates the reproducibility and feasibility of deter-
mining physiological characteristics of the myocardium
with a 1.5-T MR system, indicating that this protocol
yields robust measurements.

The following physiological values are presented in
Tables 4 and 5 and are in agreement with previous studies
made at different field strengths (from 1.5 to 7-T): the ejec-
tion fraction [10,12,17,25], left-ventricular diastolic [10]
and systolic volumes [10,26], and left-ventricular mass
[10,13,25].

This study demonstrated an efficient protocol to mea-
sure in less than 30 min the cardiac function of rat on

a clinical 1.5-T MR system. In view of the availability of
such systems installed in cardiac research centers, small-
animal cardiovascular research may progress rapidly in
the near future. However, high-resolution imaging us-
ing other cardiac MR sequences (such as tag, perfusion,
or late enhancement) needs to be implemented in future
work.

Conclusion

We performed a systematic comparison of fast gradient-
echo cine sequences in the rat. The best MR sequence was
the TFE-highres-flowcomp MR sequence with flow com-
pensation and complex-conjugated reconstruction, yield-
ing high temporal and spatial resolution. As reproducible
images of cardiac cine were obtained in the rat, we dem-
onstrated that a clinical 1.5-T MR system successfully
monitors cardiac function of small animals.
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