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Abstract

Introduction Different approaches for disc regeneration

are currently under investigation. Beside gene therapy and

tissue engineering techniques, the application of growth

and differentiation factors own promising potential. Studies

using reduced intervertebral disc models, such as cell or

tissue fragment cultures, have limited validity and show

controversial results depending on the employed experi-

mental model. Therefore, the goal of the current study was

to investigate the effect of BMP-2 and TGF-b3 on inter-

vertebral disc degeneration using an in vitro full-organ

disc/endplate culture system.

Materials and methods Intervertebral rabbit disc explants

were cultured in the presence of 1 lg/ml BMP-2 or TGF-

b3 for 21 days in DMEM/F12 media. Nucleus and annulus

were analyzed for gene expression of collagen type I and II

(Col I/II), aggrecan, collagenases (MMP-1/MMP-13) with

RT-qPCR, histological changes with bone and proteogly-

can-specific staining (von Kossa, toluidine blue) and dif-

ferences in cellularity (DNA) and proteoglycan content

(alcian blue binding assay).

Results The results demonstrate that disc proteoglycan

concentration decreased with time in the TGF-b3 and

BMP-2 groups. In the annulus fibrosus (AF), TGF-b3 and

BMP-2 resulted in an up-regulation of Col I and type II,

and of aggrecan gene expression. In contrast, MMP genes

were inhibited. In the nucleus, the growth factors decreased

gene expression of aggrecan and spontaneous Col I up-

regulation was inhibited by TGF-b3, whereas expression of

Col II was decreased with BMP-2. There was no effect on

expression of MMP-1 and MMP-13 for most sampling

points. However, TGF-b3 and BMP-2 induced ossification

of the AF was demonstrated by histology.

Conclusion It can be concluded that both growth factors,

at the tested concentrations, may not be suitable to regen-

erate the whole intervertebral disc organ but they are

interesting candidates for being injected alone or in com-

bination into a painful intervertebral disc to induce osseous

fusion (spondylodesis).

Keywords Intervertebral disc degeneration � TGF-b3 �
BMP-2 � In vitro model � Ossification

Introduction

Current treatment of symptomatic intervertebral disc

degeneration consists of either conservative measures, such

as the application of analgesics and physiotherapy or, if not

helpful, surgery is performed [1]. These approaches are not

proven to slow down the degeneration process and conse-

quently relapses or other adverse sequelae of discectomy,
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dynamic stabilization techniques, total disc replacement, or

fusion surgery can be expected [2–6]. Therefore, and as

disc degeneration has a high prevalence and is associated

with major socioeconomic costs, regeneration of the organ

would be desirable [7–9].

Different approaches are currently under investigation:

gene therapy including gene silencing [10, 11], cell-based

tissue engineering strategies including the utilization of

stem cells from different origin [12–15] or the application

of growth factors [10, 16–18].

Growth factors are small signaling proteins, which direct

the development of cells and play a role in embryogenesis,

proliferation and differentiation, tissue homeostasis, immune

response, wound healing and angiogenesis, [19–21]. The

TGF-b (transforming growth factor) superfamily consists

currently of four major subfamilies of dimeric polypeptides:

the TGF-b subfamily (with three isotypes) [22], the DVR

related subfamily including the bone morphogenic proteins

(BMPs) [23, 24], the growth differentiation factor subfamily

(GDF) and the activin/inhibin subfamily.

One of the best described factors is BMP-2, which has

been tested in various in vivo or in vitro intervertebral disc

models. The osteoinductive potential of BMP-2 and pro-

motion of spinal fusion have initially been demonstrated in

animal models [25, 26]. Later, the factor entered clinical

usage for anterior and posterior spondylodesis [27–30].

The capability to reverse intervertebral disc degenera-

tion by up-regulating anabolic factors was described by

Tim Yoon et al. [31] in 2003. In a rat model, BMP-2

increased gene expression of collagen type 2 and aggrecan

in isolated annulus fibrosus (AF) cells. Similar results were

demonstrated in a study employing alginate encapsulated

nucleus pulposus (NP) cells. Here co-cultures with trans-

duced bovine cartilage cells expressing BMP-2 resulted in

cell proliferation and increased accumulation of proteo-

glycans and collagens [32]. However, there is some con-

troversy with regard to the BMP-2 effect between these

positive in vitro results and the later published animal

studies. Animal studies have been conducted to reproduce

the observed in vitro effects, using different kinds of disc

degeneration models, such as the annular puncture method.

In contrast to the former in vitro findings, when injected

into the punctured intervertebral disc, BMP-2 provoked an

acceleration of the degenerative process and even sponta-

neous osseous fusion occurred, as demonstrated on radi-

ography and histology in rabbits [33]. In rabbit disc

puncture models, the injection of transfected disc cells

expressing BMP-2 did not show any regenerative potential

[34] while the intradiscal injection of BMP-7 (OP-1) was

able to restore biomechanical function [35]. Using human

intervertebral disc cells encapsulated in alginate beads,

BMP-7 has been shown to stimulate cell proliferation and

proteoglycan synthesis [36].

Different tissue-specific isoforms of TGF-b with a

homology of 70–80 % and its three receptors are produced

by practically all mammalian cells. TGF-b1 is expressed

primarily by endothelial, connective tissue and hemato-

poietic cells, TGF-b2 by epithelial and neuronal cells and

TGF-b3 mRNA is found mainly in mesenchymal cells

[19, 20].

The gene expression of all three TGF beta isoforms and

type I and type II TGF receptors has been shown to

decrease in cervical intervertebral discs in a senescence-

accelerated mouse model [37]. The potential therapeutic

effect of TGF-b on degenerated intervertebral discs has

been studied in different systems. Gruber et al. [38] stim-

ulated annular cells embedded in alginate or agarose beads

with TGF-b1 and observed an increased cell proliferation

in vitro. In a rabbit adenoviral vector transduction model,

TGF-b1 secretion resulted in an increase of proteoglycan

production in NP cells [39]. Similarly, the injection of

TGF-b1 and GDF-5 into degenerated murine intervertebral

discs resulted in an increase of collagen type II and

aggrecan gene expression [40].

Unlike TGF-b1, the TGF-b3 isotype is currently spar-

sely investigated in disc degeneration or other spinal

models. Steffen et al. [41] demonstrated a massive bone

formation with b-tricalcium phosphate (TCP) cylinders

impregnated with TGF-b3 in an anterior fusion baboon

model. In another study, differences in gene expression

patterns between TGF-b1 and TGF-b3 stimulation of rat

intervertebral discs cells were demonstrated in vitro under

different osmotic conditions [42].

As indicated above, the effects of BMP-2 and TGF-b
strongly depend on the application and the model used. Our

previous studies with full organ rabbit disc cultures have

elicited a spontaneous degeneration of the organ in vitro

over extended culture periods, while basic properties such

as cell viability and differentiation status remained intact.

The model has been validated and shown to be versatile for

studying various pathological conditions [43–45]. The aim

of the study was to investigate if BMP-2 or TGF-b3 are

able to modify the spontaneous degenerative process of

rabbit intervertebral discs in vitro.

Materials and methods

Preparation and culture of intervertebral disc specimens

Intervertebral discs from T7/8 to L6/S1 (12/animal) with

adjacent vertebral endplates were isolated under sterile

conditions within 12 h after sacrifice from six adult female

Burgundy Rabbits (4–5 kg, 4–6 months old) as previously

described [43, 45]. Specimens were assigned to three

groups and cultured for 3 weeks in 6-well plates with
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sampling points at days 1, 3, 14 and 21. Standard media

(9 ml DMEM/F12, 10 % FCS, 25 lg/ml L-ascorbate,

50 lg/ml penicillin, 100 U/ml streptomycin) was supple-

mented with BMP-2 (Medtronic, Inc., Minneapolis, MN,

USA) or TGF-b3 solution (both dissolved in CaCl and

acetate 0.002 %) (Produced by Novartis, kindly donated by

Prof. T. Arvinte, Therapeomics AG, Basel, Switzerland),

both factors with a final concentration of 1 lg/ml. The

control group received CaCl/acetate solution without pro-

tein. Media and growth factors changes were performed

three times/week.

Quantification of proteoglycans

Disc specimens (n = 3/group) were digested overnight with

papain (Sigma, 60 �C, 125 lg/ml dissolved in 5 mM L-cys-

teine HCl, 5 mM Na-citrate, 150 mM NaCl, 5 mM EDTA,

pH 6.0). Equal volume of 8 M guanidine HCl was added. For

quantification of proteoglycans, the Alcian blue binding assay

was applied [46] after a two-step precipitation with H2SO4 and

Triton X-100; Alcian blue (2 %, 8GX, Fluka), Triton X-100

(0.25 %, Sigma) and guanidine-HCI (0.5 M) were added to

the samples and left to precipitate overnight at 5 �C. Samples

were washed with 40 % DMSO and the precipitate was dis-

sociated with guanidine-HCI (4 M) and propanol (33 %).

Bovine tracheal chondroitin sulphate (Sigma) was used as a

standard. Optical density was determined photometrically

(600 nm). The measures were normalized to DNA.

Quantification of DNA

DNA content was quantified with bisbenzimidol fluores-

cent dye (Hoechst 33258, Sigma). Specimens (n = 3/

group) were prepared as for proteoglycan measurements.

Known concentrations of calf thymus DNA (Sigma) were

used as standard. Samples were diluted 1:50 with tris

(hydroxymethyl)aminomethane (10 mM, Fluka),

Na2EDTA dihydrate (1 mM) and NaCl (100 mM). Fluo-

rescence was detected with Hoefer DyNAQuant (Amer-

sham Biosciences, San Francisco, CA, USA).

Quantitative real time PCR

The disc material (n = 45) was dissected and collected in

RNAlater at the specified sampling point (n = 3/group and

sampling point) and stored at -80 �C until further pro-

cessing. For RNA isolation, the sample was covered with

liquid nitrogen and pulverized with RNase free mortar and

pestle. The samples were resuspended with 1 ml of peq-

GOLD TriFast reagent (Peqlab) followed by further

homogenization with a Polytron mixer (Kinematica,

Newark, NJ, USA). RNA was further processed following

the reagent manufacturer’s instructions.

One microgram of total RNA was used for the synthesis

of the cDNA (iScript cDNA Synthesis Kit, BioRad). The

complementary DNA template (5 ll) was mixed with the

RT-PCR mix solution (iQ SYBR Green Supermix, Bio-

Rad), which contained 5 lM specific primers as follows:

House keeping gene: GAPDH Forward: AAGGCCATCA

CCATCTTCCA Reverse: GGATGCGTTGCTGACAAT

CT, Metalloproteinases: MMP-1 Forward: ATACCTGGA

AAACTACTACAATCTG Reverse: TCTTCAGGGTTTC

AGCATCT, MMP-13 Forward: TGCCCCTCCTCAACAG

TAAC Reverse: GAGCCCGCTGCATTCTTCTT Collagen

I Forward: TTCTTGGTGCTGCTGGCATTC Reverse:

GCAATCCGTTGTGTCCCTTTATG, Collagen II Forward:

GACCCCATGCAGTACATG Reverse: GACGGTCTTG

CCCCACTT, Aggrecan Forward: GAGGTCGTGAAA

GGTGT Reverse: GTGTGGATGGGGTACCTGAC.

Quantitative real time RT-PCR (IQ5, Biorad) was con-

ducted with the following settings: denaturation 95 �C-10 s

(1 cycle), 40 amplification cycles: 95 �C-5 s, 64 �C-40 s;

followed by melting curve analysis.

Histology

After tissue fixation in 4 % buffered p-formaldehyde,

specimens were washed, dehydrated and embedded in

PMMA (Sigma). Samples (n = 3) were subsequently cut in

6 lm slices with a microtome (HM360, Microm Interna-

tional AG, Switzerland). Specimens were stained with von

Kossa (Sigma) and counterstained with toluidine blue

(Sigma) dye to demonstrate bone formation as well as

proteoglycan deposits.

Statistics

For statistical analysis the non-parametric ANOVA by

ranks test (Kruskal–Wallis) was used with Statistica 7.1

software (StatSoft, Inc., Tulsa, OK, USA). A significance

value of p \ 0.05 was specified. For PCR experiments a

difference of at least one PCR cycle was considered sig-

nificant, based on serial dilution standard curves in quin-

tuplicates (not shown).

Results

Gene Expression

Collagen type I/II

Collagen type I (Col I) mRNA was not detectable in the NP

in any group until day 7 except one sample in the control

group at a very low concentration (delta CT value of

17.08). In the BMP-2 treated group, Col I gene first
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appeared in NP on day seven while it was not expressed in the

controls or in the TGF-b3 group. From day 14 on there was an

increasing expression of Col I in the controls (data not

shown). TGF-b3 strongly inhibited Col I gene expression

from day 14 over the whole period (NP day 14 TGF-b3

0.17 ± 0.05 fold) while BMP-2 did not have any significant

effect on the increasingly expressed Col I (NP day 14 BMP-2

2.02 ± 1.4 fold). On day 21, in the TGF-b3 group, Col I

mRNA was not detectable anymore, while Col I gene

expression further increased in the controls (NP day 21

approx. 1,800 fold compared to day 1 and 4.3 fold compared

to day 14) (data not shown).

In contrast, collagen type II (Col II) gene expression was

decreased by BMP-2 in the beginning from day 1 until day

3 (NP day 1 Col II 0.13 ± 0.19 fold, day 3 0.24 ± 0.13

fold) with no significant difference compared to the

untreated controls in the subsequent course. TGF-b3 did

not have any influence on Col II expression over the entire

observation period in the nucleus (data not shown).

In the AF both BMP-2 and TGF-b3 strongly induced Col I

gene expression on day 1 (AF Col I BMP-2 604 ± 567 fold,

TGF-b3 171 ± 140 fold) with a subsequent decline (Fig. 1a).

There was no qualitative difference between both growth

factors except the kinetics of decline.

Collagen type II gene expression in the annulus was

constantly increased by both growth factors. This however

was statistically significant only for day 14 (AF Col II

BMP-2 5.3 ± 1.2 fold, TGF-b3 17.7 ± 6.2 fold) (Fig. 1b).

Aggrecan

Both, BMP-2 and TGF-b3, had an inhibitory effect on gene

expression of aggrecan in the NP in the first week (NP day

1 BMP-2 0.23 ± 0.02 fold, TGF-b3 0.3 ± 0.002). How-

ever, after 14 days and further after 21 days, BMP-2 and

TGF-b3 did not show any significant difference compared

to the controls (NP day 21 BMP-2 1.3 ± 0.4 fold, TGF-b3

2.1 ± 2.8) (Fig. 2a).

In contrast, BMP-2 and TGF-b3 slightly increased

aggrecan gene expression in the annulus from day 14 until

day 21 (AF BMP-2 5.9 ± 4.8 fold, TGF-b3 9.4 ± 5.9 fold)

(Fig. 2b).
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Fig. 1 Effect of BMP-2 (black bars) and TGF-b3 (white bars) on

gene expression of collagen type I (a) and collagen type II (b) in the

annulus fibrosus. Gene expression of both collagens were increased

with both growth factors. Tissue was analyzed with RT-qPCR at

indicated time points. Data are presented as relative gene expression

to the untreated control and normalized to GAPDH. Values represent

the mean ± SD from triplicates. Asterisk sign. versus ctrl (see

‘‘Method’’ section)
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Fig. 2 Effect of BMP-2 (black bars) and TGF-b3 (white bars) on

gene expression of aggrecan in nucleus (a) and annulus (b) disc

tissue. Gene expression of aggrecan was inhibited by both growth

factors in the nucleus pulposus. In the annulus fibrosus a late minimal

up-regulation of aggrecan could be observed. Nucleus and annulus

tissue was analyzed separately with RT-qPCR at indicated time

points. Data are presented as relative gene expression to the untreated

control and normalized to GAPDH. Values represent the mean ± SD

from triplicates. Asterisk sign. versus ctrl (see ‘‘Method’’ section)
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Collagenases MMP-1, MMP-13

In the annulus, as demonstrated in Fig. 3a, gene expres-

sions of both tested collagenases, MMP-1 and MMP-13,

were markedly suppressed by the growth factors over the

whole observation period (AF maximum day 14 MMP-1

BMP-2 0.13 ± 0.18 fold, TGF-b3 0.007 ± 0.006 fold).

In contrast, in the nucleus, TGF-b3 and BMP-2 did not

have any significant effect on MMP-1 and MMP-13 gene

expression after 21 days (NP MMP-1 BMP-2 2.0 ± 2.3

fold, TGF-b3 2.0 ± 0.6 fold, MMP-13 BMP-2 2.4 ± 0.5

fold, TGF-b3 0.9 ± 0.5 fold). Interestingly TGF-b3 sup-

pressed gene expression of MMP-1 and MMP-13 only at

day 3 in all tested nuclei (NP day 3 MMP-1 0.05 ± 0.04

fold, MMP-13 0.05 ± 0.05 fold). The other samples did

not show any significant difference compared to the

untreated controls (Fig. 3b).

Proteoglycan and DNA measures

The quantification of the glycosaminoglycan content within

the intervertebral disc after 21 days in culture demonstrated

that both factors with BMP-2 or TGF-b3 resulted in a

reduction of proteoglycan content compared to the control

(Fig. 4a, day 21 BMP-2 65.8 ± 21.7 mg GAG/mg DNA,

TGF-b3 57.4 ± 13.3 mg/mg, control 101.01 ± 23.18 mg/

mg, p = 0.125 and p = 0.047).

In contrast the quantification of DNA content did not

show any significant difference between the groups at day

21 (Fig. 4b, day 21 BMP-2 865 ± 100 ng/mg, TGF-b3

950 ± 272 ng/mg, control 859 ± 107 ng/mg, p = 0.94,

p = 0.62).

Histology

Histological analysis demonstrated the ossification of the

AF in the TGF-b3 and the BMP-2 treated groups. Bone

formation was more pronounced with BMP-2 than with

TGF-b3 and first noticed at the anchorage of the annulus

fibers with the endplate. An ossification of the NP was not

observed. Semi-quantitative analysis indicated that pro-

teoglycan contents in the annulus were reduced in the

factor-treated groups (Fig. 5).

Discussion

The objective of the study was to investigate the in vitro

effects of BMP-2 and TGF-b3 on disc degeneration in the

AF and NP compartment, as indicated by changes of ana-

bolic/catabolic gene expression, alterations of proteoglycan

content and histological alterations, in a full organ disc/

endplate rabbit model. Spontaneous degenerative changes

of disc explants with culture time has been observed in a
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Fig. 3 Effect of BMP-2 (black bars) and TGF-b3 (white bars) on

gene expression of collagenases MMP-1 (a, b) and MMP-13 (c, d) in

nucleus (a, c) and annulus disc tissue (b, d). Gene expression of both

collagenases were suppressed with both growth factors in the annulus

fibrosus. In the nucleus pulposus there was no effect of both growth

factors except on day three. Nucleus and annulus tissue was analyzed

separately with RT-qPCR at indicated time points. Data are presented

as relative gene expression to the untreated control and normalized to

GAPDH. Values represent the mean ± SD from triplicates. Asterisk
sign. versus ctrl (see ‘‘Method’’ section)

1728 Eur Spine J (2012) 21:1724–1733

123



previous study, as demonstrated by an up-regulation of col-

lagen I and a decrease of aggrecan and type II collagen gene

transcription in the nucleus and annulus compartment [43].

The hypothesis of the study was that BMP-2 and TGF-b3 may

counteract disc degeneration with anabolic genes being

increasingly expressed and the catabolic pathway blocked.

Both employed growth factors were administered with the

culture media for 21 days in the concentration of 1 lg/ml. We

decided in favour of a comparatively high concentration

because of the potentially limited bio-availability and diffu-

sion capacity of each factor within the relatively large disc

organ. Furthermore, at neutral pH TGF-b3 tends to form

inactive large precipitating aggregates [47]. Risbud et al. [42]

employed the same factor at low concentrations of 10 ng/ml in

a disc organ explant rat model. In other studies using cell

cultures, BMP-2 factor concentrations ranged from 10 to

1,000 ng [31, 48]. However, for in vivo and clinical applica-

tion, BMP-2 was administered in high concentrations such as

1.5 mg/ml as in the rhesus macaque study or 6 mg/cage in an

interbody fusion study in humans [26, 29].

Our results demonstrate that TGF-b3 and BMP-2 show

very similar characteristics in the defined outcome

parameters in the AF and a few divergent responses in the

nucleus pulposus.
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Fig. 4 a, b Effect of BMP-2 and TGF-b3 on GAG and DNA

concentration in full organ disc cultures. A decline of proteoglycan

content was detectable for both growth factors (BMP-2 p = 0.125,

TGF-b3 p = 0.048) after 21 days compared to the control group

which showed an increase of the protein concentration with culture

time. No differences were found for DNA content (BMP-2 p = 0.94,

TGF-b3 p = 0.62). Proteoglycans were quantified using an Alcian

blue-based colorimetric binding assay. DNA amount was determined

with bisbenzimide (Hoechst). GAG content was normalized to DNA

content and DNA was normalized organ weight. Values at indicated

time points represent the mean ± SD from double measures of

triplicates. Asterisk sign. versus ctrl p \ 0.05
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In the gene expression studies with the AF, the quali-

tative results are uniform: both factors strongly continu-

ously increased Col I mRNA at day 1 while Col II

expression was only slightly elevated and aggrecan

expression was mostly unchanged with a slight marginal

late increase at day 21. In parallel the expression of the

catabolic collagenases MMP-1 and MMP-13 were

suppressed.

In the nucleus, however, gene expression of Col I and

type II was differently influenced by both growth factors.

Physiologically, collagen I gene expression is seen only in

the inner annulus but not in the nucleus [49]. With culture

time type I collagen starts to be increasingly expressed in

the NP, which has also been demonstrated in an earlier

study using the same in vitro model [43]. This was

observed by other groups as well [50–52]. TGF-b3 inhib-

ited this gene up-regulation while BMP-2 tended to pro-

mote type I collagen expression in the nucleus similar to

the annulus. In contrast, for Col II, BMP-2 inhibited its

expression while TGF-b3 was ineffective.

The expression of the collagenases MMP-1 and MMP-

13 were unaffected in the nucleus in almost all samples

over the whole culture period, except that TGF-b3 strongly

inhibited both genes exclusively at day three.

The literature regarding gene pattern responses towards

both growth factors in annulus and nucleus tissues is not

consistent. The outer AF mainly consists of type I collagen,

similar to tendon tissue produced by fibrocartilagenous

cells [49, 53]. Yoon et al. [31] could demonstrate that

isolated AF cells in monolayers up-regulated type II

collagen (4.6 fold) and aggrecan (11.5 fold) expression in

response to 1 lg/ml BMP-2. In contrast to our results,

in this study gene expression of type I collagen was

unaffected. Similarly, Li et al., demonstrated an increase of

aggrecan and type II collagen gene expression employing a

substance concentration of 200 ng/ml BMP-2 in cell cul-

ture media on rat annulus cells. Again type I collagen

mRNA concentration did not respond to the growth factor

application [48]. In contrast, in the cell culture studies by

Kuh et al. [54] using AF cells BMP-2 stimulated the

expression of both collagen types.

In the annulus, both applied growth factors induced a

strong gene response of Col I expression in the first week

and secondarily, when collagen I declined, an increase of

Col II gene and to a smaller extent aggrecan in the second

and third week.

In the NP we found that BMP-2 tended to increase type I

collagen expression. This effect has also been demon-

strated using 3D alginate bead cultures from isolated

human nucleus (NP)/transition zone cells by Kim et al.

[55]. Beside type I collagen, the expression of aggrecan

and type II collagen but not of the osteocalcin gene were

increased using various concentrations of BMP-2 (up to

2 lg/ml). This finding was confirmed by Gilbertson et al.

[56] using human NP monolayer cultures and by Zhang

et al. [57] with the quantification of the gene products

(collagen and proteoglycan content). In contrast to this, in

the current study we observed a down regulation of

aggrecan and type II collagen gene expression in the first

week in the NP with BMP-2. Conflicting Col I, Col II and

aggrecan gene pattern in annulus and nucleus samples may

be due to the organ culture characteristics, with resident

growth factors embedded in the retained physiological

extracellular matrix and the present cell-matrix interac-

tion and/or to the high concentration of growth factors

employed.

A B C

Fig. 5 Effect of BMP-2 and TGF-b3 on disc histology. Disc

specimens were embedded into PMMA and histological section were

stained with von Kossa (bone specific, black stain) and toluidine blue

(GAG specific, blue stain). Unlike the untreated control (left side) an

ossification of the annulus (arrows) with a decrease of GAG

concentration could be observed with BMP-2 (right side) and to a

lesser extent with TGF-b3 (middle) after 21 days (12.5x)
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The effects of most growth and differentiation factors are

studied predominantly in the context of cell differentiation

using undifferentiated stem cells of different origin or using

isolated organ cells like cartilage/connective tissue cells to

study gene expression and matrix production under differ-

ent environmental conditions such as in scaffolds for tissue

engineering [58]. Consequently, data on the effects of the

TGF beta isoforms on differentiated organs such as the

intervertebral disc are sparse. Haberstroh et al. [59] studied

human cell cultures using isolated NP cells from surgical

specimens obtained from routine microdiscectomy. TGF-

b3 (10 ng/ml) resulted in gene up-regulation of collagen

types I, II, III, IX and aggrecan as well as matrix production.

In NP cell cultures from volunteers, which were stimulated

with platelet-rich plasma and 1 ng/ml TGF-b1, type II

collagen, aggrecan as well as sox 9 were significantly up-

regulated as demonstrated with real time PCR [60]. In a

murine model encompassing the induction of disc degen-

eration with static compression 200 ng/ml TGF-b1 caused

an expansion of fibrocartilage cells into the nucleus which

were positive for Col II and aggrecan mRNA as demon-

strated by in situ hybridization [40].

The histological results indicated a decrease of proteo-

glycan content in the annulus which can be explained by a

slow loss via diffusion into the media and/or activation of

gelatinases with time, which was not compensated by

synthesis. The last finding could be confirmed by our

measures of proteoglycan content, which, however, were

taken from the entire intervertebral disc. Here a decrease of

proteoglycan amount could be observed in both factor-

treated groups after 21 days with a significance level of

p \ 0.05 only for TGF-b3. The decrease of the extracel-

lular matrix macromolecule is in accordance with our PCR

results, which demonstrated that aggrecan gene expression

was down-regulated in the nucleus pulposus, the major

localization of this protein and a mostly unchanged gene

expression in the AF.

Histological analysis using von Kossa stain, further-

more, clearly demonstrated that BMP-2 and TGF-b3

induced ossification of the AF, which was pronounced at

the anchorage of the annulus fibers with the vertebral

endplate. Ossification encompassed the mineralization of

the annular fibers with deposition of calcium salts. Similar

to annulus tissue, a major compound of the organic bone

matrix is Col I.

Several different spinal pathologies involve dystrophic

ossification of the annulus and/or the longitudinal ligaments

such as ankylosing spondylitis, ossification of the posterior

longitudinal ligament (OPLL), diffuse idiopathic skeletal

hyperostosis (DISH) or fibrodysplasia ossificans progressi-

va (FOP) [61, 62]. The latter is caused by a single nucleo-

tide missense mutation of the bone morphogenic protein

type I receptor (ACVR1/ALK2) [63]. Experimentally-

induced ossification of the intervertebral discs by injection

of BMP-2 (1 mg/ml) with or without coral was demon-

strated by Huang et al. [33] in an annular stab incision rabbit

model. Similarly, in a baboon model when using a TGF-b3/

beta-TCP compound to fill vertebral bone defects, a mas-

sive regional bone formation around the bone implicating

soft tissue ossification could be observed [41].

Taken together, the data demonstrated that the admin-

istration of BMP-2 or TGF-b3 to the intervertebral disc

with its naturally retained microenvironment caused ossi-

fication of the AF within 3 weeks with an increased Col I

gene expression (and to a lesser extent also Col II

expression) and inhibition of catabolic collagenases. This

may be regarded as an osseous anabolic process but

involves changes of the original disc architecture and is

commonly observed in late state disc degeneration. How-

ever, this conclusion must be qualified by our selection of a

relatively high, yet clinically relevant, concentration of

1 lg/ml in the culture media.

In the nucleus pulposus, anabolic genes such as aggre-

can and Col II were inhibited by BMP-2 and catabolic

collagenases were practically unaffected by both factors.

Interestingly, unlike in the annulus compartment, TGF-b3

inhibited the expression of Col I. Collagen type I expres-

sion in the NP is an indicator of disc degeneration. The

relevance of these findings remains unclear as well as a

possible impact on an eventual later ossification of the

nucleus, which was so far not observed. This, however,

may be a question of culture time. The employed protein

concentration, intra-organ concentration differences and

the way of growth factor administration are key points and

have to be considered cautiously. Although both factors at

the tested concentrations may not be suitable to regenerate

the whole intervertebral disc organ, they are interesting

candidates for being injected alone or in combination into a

painful intervertebral disc to induce osseous fusion

(spondylodesis). Whether the in vivo application of TGF-

b3 would be devoid of MMP-2 typical adverse effects,

which have been lately reviewed by Carragee [64] such as

ectopic bone formation [65], radiculopathy [66], wound

complications [67], implant migration [68] and even car-

cinogenesis [64] as well as the observed divergent effects

of both factors and the analysis of the involved bone-

related genes need further investigations.
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