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Abstract The present paper is dedicated to the precondi-
tioning of boundary element matrices which are given in
wavelet coordinates. We investigate the incomplete Cholesky
factorization (ICF) for a pattern which includes also the coef-
ficients of all off-diagonal bands associated with the level–
level-interactions. The pattern is chosen in such a way that
the ICF is computable in log-linear complexity. Numerical
experiments are performed to quantify the effects of the pro-
posed preconditioning.

1 Introduction

Various problems in science and engineering lead to bound-
ary integral equations. In general such boundary integral
equations are discretized by the boundary element method
(BEM). For example, BEM is a favorable approach for the
treatment of exterior boundary value problems, especially
for problems in electrostatics and electromagnetics, or in
case of the Helmholtz equation. Nevertheless, traditional dis-
cretizations will lead to linear systems with densely pop-
ulated matrices. This feature makes the computation very
costly in both respects, the computation time and computer
memory requirements.

Over recent decades, several ideas for the efficient approx-
imation of the discrete system have been developed. Most
prominent examples of such methods are the fast multipole
method [7], the panel clustering [9], the wavelet BEM [1,4],
and the hierarchical matrix approach [8]. These discretiza-
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tion methods end up with linear or almost linear complexity
with respect to the number of boundary elements.

The present paper is concerned with wavelet BEM.
A Galerkin discretization by wavelet bases yields quasi-
sparse matrices, i.e., most matrix entries are negligible and
can be treated as zero. Discarding the non-relevant matrix
entries is called matrix compression. In [19] a fully discrete
wavelet Galerkin method has been developed which produces
approximate solutions within discretization accuracy in lin-
ear complexity.

If the boundary integral operator has an order different
from zero, it acts on different length scales in a different way.
This is well known to entail the linear systems to become
more and more ill-conditioned when the level of resolution
increases. Due to the explicit multilevel structure, properly
scaled wavelet bases satisfy norm equivalences for a whole
range of Sobolev spaces. This fact leads to a simple diago-
nal preconditioner. Since matrix-vector multiplications can
be performed extremely fast due to the sparsity of the com-
pressed system matrix, the linear system of equations can be
rapidly solved.

However, despite of the preconditioning, the iterative
solver often needs still a lot of iterations. There are many
applications which require extremely good preconditioners.
This is for example the case when the system has to be
solved for several right hand sides as in shape optimization
(e.g. [11]) or in inverse obstacle problems (e.g. [13]) to com-
pute the local shape derivates. In the latter application, due
to the so-called adjoint approach, the iterative solution has
additionally to be very accurate to ensure the symmetry in
the iteratively regularized Gauss-Newton method (IRGNM).

A further important application issues from the coupling
of FEM and BEM. Here, the system matrix involve, besides
the boundary element matrices, also finite element matri-
ces. The whole system corresponds to a saddle point prob-
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lem that involves operators of positive and negative order.
Hence, preconditioning becomes an extremely important
issue since a matrix-vector multiplication is quite expensive,
see [2,17,21]. Other examples concerning continuum solva-
tion models and uncertainty quantification are given in the
numerical results in Sect. 6.

To improve the standard diagonal preconditioner we shall
incorporate the block diagonals of the sub-matrices belong-
ing to fixed level combinations of the ansatz and test wavelets.
That way, also the interactions between different levels
are considered. More generally, we develop an incomplete
Cholesky factorization (ICF) which includes all block diag-
onal bands, where the width of the bands is controlled by
a parameter. The larger the bandwidth parameter the more
coefficients are included, which improves the precondition-
ing. We prove log-linear complexity of the ICF precondi-
tioner and quantify it by numerical experiments. It turns out
that the number of iterations decreases impressively.

The paper is organized as follows. Section 2 introduces
the problem class under consideration. The wavelet bases
and their properties are considered in Sect. 3. Section 4
briefly repeats the main features of the fully discrete wavelet
Galerkin method from [19]. Then, in Sect. 5, the ICF is devel-
oped. Section 6 is devoted to numerical experiments. Finally,
Sect. 7 contains concluding remarks.

In the following, in order to avoid the repeated use of
generic but unspecified constants, by C � D we mean that
C can be bounded by a multiple of D, independently of para-
meters which C and D may depend on. Obviously, C � D
is defined as D � C , and C ∼ D as C � D and C � D.

2 Problem formulation and preliminaries

We consider a boundary integral equation on the closed
boundary surface � := ∂� of a three-dimensional domain
� ⊂ R

3:

(Au)(x) =
∫

�

k(x, y)u(y) dσy = f (x), x ∈ �. (2.1)

Herein, the boundary integral operator A : Hq(�) →
H−q(�) is assumed to be a symmetric and bijective operator
of order 2q �= 0. The kernel functions under consideration
are supposed to be smooth as functions in the variables x
and y, apart from the diagonal {(x, y) ∈ � × � : x = y} and
may have a singularity on the diagonal. Such kernel functions
arise, for instance, by applying a boundary integral formu-
lation to a second order elliptic problem [29,33]. In general,
they decay like a negative power of the distance of the argu-
ments which depends on the order 2q of the operator. More
precisely, there holds
∣∣∂α

x ∂
β
y k(x, y)

∣∣ ≤ cα,β‖x − y‖−2−2q−|α|−|β|. (2.2)

We will assume that the boundary � is represented by piece-
wise parametric mappings. Let � := [0, 1]2 denote the unit
square. We subdivide the given manifold into several patches

� =
M⋃

i=1

�i , �i = γi (�), i = 1, 2, . . . ,M,

such that each γi : � → �i defines a diffeomorphism of
� onto �i . The intersection �i ∩ �i ′ , i �= i ′, of the patches
�i and �i ′ is supposed to be either ∅, a common edge, or a
common vertex.

A mesh of level j on � is induced by dyadic subdivisions
of depth j of the unit square into 4 j squares. This generates
4 j M elements (or elementary domains). In order to get a
regular mesh of �, the parametric representation is supposed
to be globally continuous.

The surface representation is in contrast to the common
approximation of surfaces by panels. It has the advantage
that the rate of convergence is not limited by approximation.
Technical surfaces generated by tools from computer aided
design (CAD) are often represented in the present form.

The most common geometry representation in CAD is
defined by the initial graphics exchange specification (IGES)
standard. Here, the initial CAD object is a solid, bounded
by a closed surface that is given as a collection of para-
metric surfaces which can be trimmed or untrimmed. An
untrimmed surface is already a four-sided patch, parameter-
ized over a rectangle. Whereas, a trimmed surface is just
a piece of a supporting untrimmed surface, described by
boundary curves. There are several representations of the
parameterizations including B-splines, nonuniform rational
B-Splines (NURBS), surfaces of revolution, and tabulated
cylinders [22].

In [15], an algorithm has been developed to decompose
a technical surface, described in the IGES format, into a
collection of parameterized four-sided patches, fulfilling all
the above requirements. In [14,16], the algorithm has been
extended to molecular surfaces. Figure 1 visualizes two para-
meterizations which satisfy the present requirements.

3 Wavelets and multiresolution analysis

In general, a multiresolution analysis consists of a nested
family of finite dimensional subspaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ · · · ⊂ L2(�), (3.1)

such that dim Vj ∼ 4 j and
⋃

j≥0 Vj = L2(�). Each space
Vj is defined by a single-scale basis � j = {φ j,k : k ∈ 	 j },
i.e., Vj = span � j , where 	 j denotes a suitable index set
with cardinality |	 j | ∼ 4 j . It is convenient to identify bases
with row vectors, such that, for v = [vk]k∈	 j ∈ 
2(	 j ),
the function v j = � j v is defined as v j = ∑

k∈	 j
vkϕ j,k . A
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Incomplete Cholesky factorization 321

Fig. 1 Parameterizations of a hammer and a gearwheel

final requirement is that the bases � j are uniformly stable,
i.e., ‖v‖
2(	 j )

∼ ‖� j v‖L2(�) for all v ∈ 
2(	 j ) uniformly
in j . Furthermore, the single-scale bases satisfy the locality
condition diam supp φ j,k ∼ 2− j .

Additional properties of the spaces Vj are required for
using them as trial spaces in a Galerkin scheme. The trial
spaces shall have approximation order d ∈ N and regularity
γ > 0, that is

γ = sup{s ∈ R : Vj ⊂ Hs(�)},
d = sup

{
s ∈ R : inf

v j ∈Vj
‖v − v j‖L2(�) � 2− js‖v‖Hs (�)

}
.

Note that conformity of the Galerkin scheme induces γ > q.
Instead of using only a single-scale j , the idea of wavelet

concepts is to keep track to the increment of information
between two adjacent scales j − 1 and j . Since Vj−1 ⊂ Vj ,
one can decompose Vj = Vj−1⊕W j with some complemen-
tary space W j , W j ∩ Vj−1 = {0}, not necessarily orthogonal
to Vj−1. Of practical interest are the bases of the comple-
mentary spaces W j in Vj

� j = {ψ j,k : k ∈ ∇ j := 	 j \	 j−1}.
It is supposed that the collections � j−1 ∪ � j are also uni-
formly stable bases of Vj . If � = ⋃

j≥0� j , where �0 :=
�0, is a Riesz-basis of L2(�), it is called a wavelet basis.
We assume the functions ψ j,k to be local with respect to the
corresponding scale j , i.e., diam supp ψ j,k ∼ 2− j , and we
normalize them such that ‖ψ j,k‖L2(�) ∼ 1.

At first glance it would be very convenient to deal with a
single orthonormal system of wavelets. But it was shown in
[4,6,32] that orthogonal wavelets are not completely appro-
priate for the efficient solution of boundary integral equa-
tions. For that reason we use biorthogonal wavelet bases.
Then, we have also a biorthogonal, or dual, multiresolution
analysis, i.e., dual single-scale bases �̃ j = {φ̃ j,k : k ∈ 	 j }
and wavelets �̃ j = {ψ̃ j,k : k ∈ ∇ j } which are coupled to the
primal ones via (� j , �̃ j )L2(�) = I and (� j , �̃ j )L2(�) = I.
The associated spaces Ṽ j := span �̃ j and W̃ j := span �̃ j

satisfy

Vj−1 ⊥ W̃ j , Ṽ j−1 ⊥ W j . (3.2)

Also the dual spaces shall have some approximation order
d̃ ∈ N and regularity γ̃ > 0.

Denoting likewise to the primal side �̃ = ⋃
j≥0 �̃ j ,

where �̃0 := �̃0, then every v ∈ L2(�) has a unique rep-
resentation v = �̃(v,�)L2(�) = �(v, �̃)L2(�). Moreover,
there hold the well known norm equivalences [3,23]

‖v‖2
Ht (�)

∼
∑
j≥0

22 j t
∑
k∈∇ j

∥∥(v, ψ̃ j,k)L2(�)

∥∥2

2(∇ j )

, t ∈(−γ̃ , γ ),

‖v‖2
Ht (�)

∼
∑
j≥0

22 j t
∑
k∈∇ j

∥∥(v, ψ j,k)L2(�)

∥∥2

2(∇ j )

, t ∈(−γ, γ̃ ).

(3.3)

The relation (3.2) implies that the wavelets provide van-
ishing moments of order d̃
∣∣(v, ψ j,k)L2(�)

∣∣ � 2− j (1+d̃)|v|W d̃,∞(supp ψ j,k)
. (3.4)

Here |v|W d̃,∞(�) := sup|α|=d̃ ‖∂αv‖L∞(�) denotes the semi-

norm in W d̃,∞(�). We refer to [3] for further details.
Piecewise constant and bilinear wavelets which provide

the above properties have been constructed in [18,20]. In the
rest of the paper we will denote the wavelet basis of VJ by
�J = {ψλ : λ ∈ ∇J }, where the multi-index λ = ( j,k)
incorporates the scale j = |λ| and the spatial location k =
k(λ).

4 Wavelet Galerkin BEM

We shall be concerned with the Galerkin method for the
solution of the given boundary integral equation (2.1): find
u J ∈ VJ which solves the variational problem

(Au J , vJ )L2(�) = ( f, vJ )L2(�) for all vJ ∈ VJ .

Traditionally this equation is discretized by the single-scale
basis of VJ which yields a densely populated system matrix.
This means that, if NJ ∼ 4J denotes the number of
basis functions in the space VJ , the system matrix contains
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322 H. Harbrecht

O(N 2
J ) nonzero matrix coefficients. Contrastingly, if we use

a Galerkin discretization in wavelet coordinates, the matrix
becomes quasi-sparse. In fact, by combining (2.2) and (3.4),
we arrive at the decay estimate

(Aψλ′ , ψλ)L2(�) � 2−(|λ|+|λ′|)(1+d̃)

dist(�λ,�λ′)2(1+q+d̃)
(4.1)

which is the main foundation of compression estimates [4].
Herein, �λ := conv� supp ψλ and �λ′ := conv� supp ψλ
denote the convex hulls of the supports of the wavelets ψλ
and ψλ′ relative to the surface �, respectively.

Based on (4.1), we can set all matrix entries to zero, for
which the distance of the supports between the associated
trial and test functions is larger than a level dependent cut-
off parameter B j, j ′ . Further compression, reflected by a cut-
off parameter Bs

j, j ′ , is achieved by neglecting some of those
matrix entries, for which the corresponding trial and test func-
tions have overlapping supports.

To formulate this result, we introduce the abbreviation
�s
λ := sing supp ψλ which denotes the singular support of

the wavelet ψλ, i.e., that subset of � where the wavelet is not
smooth.

Theorem 4.1 (A-priori compression [4]) Let �λ and �s
λ be

given as above and define the compressed system matrix AJ ,
corresponding to the boundary integral operator A, by

[AJ ]λ,λ′ :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, dist(�λ,�λ′) > B|λ|,|λ′| and |λ|, |λ′| > 0,

0, dist(�λ,�λ′) ≤ 2− min{|λ|,|λ′|} and

dist(�s
λ,�λ′) > Bs

|λ|,|λ′| if |λ′| > |λ| ≥ 0,

dist(�λ,�
s
λ′) > Bs

|λ|,|λ′| if |λ| > |λ′| ≥ 0,

(Aψλ′ , ψλ)L2(�), otherwise.

(4.2)

Fixing

a > 1, d < δ < d̃ + 2q, (4.3)

the cut-off parameters B j, j ′ and Bs
j, j ′ are set as follows

B j, j ′ = a max

{
2− min{ j, j ′}, 2

2J (δ−q)−( j+ j ′)(δ+d̃)
2(d̃+q)

}
,

Bs
j, j ′ = a max

{
2− max{ j, j ′}, 2

2J (δ−q)−( j+ j ′)δ−max{ j, j ′}d̃
d̃+2q

}
.

(4.4)

Then, the system matrix AJ has only O(NJ ) nonzero coeffi-
cients. Moreover, the error estimate

‖u − u J ‖H2q−d (�) � 2−2J (d−q)‖u‖Hd (�) (4.5)

holds for the solution u J of the compressed Galerkin system
provided that u and � are sufficiently regular.

The compressed system matrix can be assembled in lin-
ear complexity if one employs the exponentially convergent
hp–quadrature method proposed in [19]. Moreover, for per-
forming faster matrix-vector multiplications, an additional a-
posteriori compression might be applied which reduces again
the number of nonzero coefficients by a factor 2–5 [4]. The
pattern of the compressed system matrix exhibit the typical
finger structure, see Fig. 2.

If the boundary integral operator A has an order q dif-
ferent from 0, the compressed system matrix AJ becomes
more and more ill-conditioned when the level J increases.
More precisely, the condition number of the system matrix
will asymptotically grow like 22J |q| as the level J increases.
However, as an immediate consequence of the norm equiva-
lences (3.3) of wavelet bases, normalizing the wavelets rela-
tive to the energy norm leads to uniformly bounded condition
numbers.

Fig. 2 Compression pattern in case of a circle (left) and a sphere (right)
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Incomplete Cholesky factorization 323

Theorem 4.2 (Preconditioning [5,32]) Let the diagonal
matrix Dr

J defined by
[
Dr

J

]
λ,λ′ = 2r |λ|δλ,λ′ , λ, λ′ ∈ ∇J .

Then, if the regularity γ̃ of the dual wavelets satisfies γ̃ >
−q, the diagonal matrix D2q

J defines an asymptotically opti-
mal preconditioner to AJ , i.e.,

cond
2(D−q
J AJ D−q

J ) ∼ 1.

Remark 4.3 The entries on the main diagonal of AJ satisfy

(Aψλ,ψλ)L2(�) ∼ 22|q||λ|.

Therefore, the above preconditioning can be replaced by a
diagonal scaling. In fact, the diagonal scaling improves and
even simplifies the standard wavelet preconditioning.

5 Incomplete Cholesky factorization

Often the above diagonal preconditioner does not lead to
satisfactory results. The idea to improve the wavelet precon-
ditioning is to use not only the main diagonal of the sys-
tem matrix as a preconditioner, but also all block diagonals
of the sub-matrices A j, j ′ := [

(Aψλ′ , ψλ)L2(�)

]
|λ|= j,|λ′|= j ′ .

More generally, we shall compute the ICF AJ ≈ LJ LT
J with

respect to a matrix pattern which is finger structured like
the compressed system matrix. For a suitable matrix pattern
I ⊂ ∇J × ∇J , the ICF is given by the following algorithm:

Algorithm 1: Incomplete Cholesky factorization
Data: matrix AJ = [aμ,λ] ∈ R

n×n and pattern I
Result: incomplete Cholesky factor LJ = [
μ,λ] ∈ R

n×n such
that LJ LT

J ≈ AJ
begin

for λ = 1 to NJ do

set 
λ,λ :=
√√√√aλ,λ −

∑
ν<λ

(λ,ν)∈I


2
λ,ν ;

foreach μ > λ with (μ, λ) ∈ I do

set 
μ,λ := 1


λ,λ

(
aμ,λ −

∑
ν<λ

(λ,ν),(μ,ν)∈I


μ,ν
λ,ν

)
;

end

We shall demonstrate at first that we cannot simply com-
pute the ICF with respect to the pattern of the compressed
system matrix AJ since it is too expensive. To this end, let
for sake of simplicity the pattern I be just the main diago-
nal band of the compressed system matrix AJ . In the main
diagonal blocks of AJ , only the first compression is active,
where the associated cut-off parameter (cf. (4.3) and (4.4))
satisfies

B j, j = a2−J 2(J− j)M where 1 < M := δ + d̃

d̃ + q
< 2.

Thus, the main diagonal band of the compressed system
matrix owns O([2 jB j, j ]2

) = O(
4(J− j)(M−1)

)
coefficients

per row on the level j . Consequently, since there are O(4 j )

wavelets on level j , the computational effort of the associated
ICF would be

J∑
j=0

4 j ([2 jB j, j ]2)2 ∼
J∑

j=0

4 j 4(J− j)(2M−2)∼4J
J∑

j=0

4(J− j)(2M−3).

Since it holds 2M > 3 for realistic choices of (d, d̃), we
arrive at the complexity O(4J (2M−2)) which is always less
than a quadratic complexity, but significantly higher than a
linear complexity.

This reasoning shows that we need another strategy to
define the pattern of ICF. In fact, the problem is that the
bandwidth of the fingers increases when the level decreases
(cf. Fig. 2). We shall thus choose a fixed bandwidth of the
fingers. The resulting pattern is shown in Fig. 3.

Theorem 5.1 Define the pattern of the ICF as that subset I
of ∇J × ∇J which satisfies

dist(�λ,�λ′) ≤ C|λ|,|λ′| := 2− min{|λ|,|λ′|}b, b ≥ 0. (5.1)

Then, the cost of computing of the ICF is O(J 2 NJ ).

Proof We shall first estimate the work to compute the λ-th
column of the ICF. According to Algorithm 1, for a single
coefficient 
μ,λ, the work is bounded by the sum of the num-
bers of all nonzero coefficients 
μ,ν of the μ-th and 
λ,ν of
the λ-th row vector with ν ≤ λ. This number has then to be
multiplied with the number of nonzero coefficients found in
the λ-th column.

Let L j, j ′ denote that matrix block incomplete Cholesky
factorization which consists of the coefficients 
λ,λ′ with
|λ| = j and |λ′| = j ′. The block is empty if j < j ′
since LJ is lower triangular. If j ≥ j ′, then the block
contains only O([2 j− j ′ ]2

)
coefficients per column with

dist(�λ,�λ′) = 0 and O([2 jC j, j ′ ]2
)

coefficients per col-
umn with 0 �= dist(�λ,�λ′) ≤ C j, j ′ . Thus, the number of
nonzero coefficients of the λ-th column vector of LJ is

nnz(
:,λ)�
J∑

j=|λ|

(
4 j−|λ|+4 jC2

j,|λ|
)

∼
J∑

j=|λ|
4 j−|λ| ∼ 4J−|λ|.

Next, we count the number of nonzero coefficients which
enter the computation of 
μ,λ. In each block L j, j ′ with
j ≥ j ′ ≥ |λ|, we find only O(1) coefficients per row with
dist(�λ,�λ′) = 0 and O([2 j ′C j, j ′ ]2

)
coefficients per row

with 0 �= dist(�λ,�λ′) ≤ C j, j ′ . This leads to

123



324 H. Harbrecht

Fig. 3 The pattern of the incomplete Cholesky factorization in case of a circle (left) and a sphere (right)

nnz(
μ,1:λ) �
|λ|∑

j ′=0

(
1 + 4 j ′C2

|μ|, j ′

)
∼

|λ|∑
j ′=0

1 ∼ |λ|,

nnz(
λ,1:λ) �
|λ|∑

j ′=0

(
1 + 4 j ′C2

|λ|, j ′

)
∼

|λ|∑
j ′=0

1 ∼ |λ|.

Hence, the work to compute the complete λ-th column
vector of the ICF is bounded by

nnz(
:,λ) · {
nnz(
μ,1:λ)+ nnz(
λ,1:λ)

}
� 4J−|λ||λ|.

Finally, the over-all work of computing the incomplete
Cholesky factorization is estimated by summing over all col-
umn vectors which yields

cost(ICF) �
J∑

j=0

4 j 4J− j j = 4J J 2,

i.e., the desired log-linear complexity. ��
Checking the distance criterion (5.1) for each matrix coef-

ficient, in order to determine the pattern of the incomplete
Cholesky factorization, would require O(N 2

J ) function calls.
To realize log-linear complexity, we exploit the underlying
tree structure with respect to the supports of the wavelets,
to predict the nonzero matrix coefficients. We will call the
wavelet ψson(λ) a son of ψλ if �son(λ) ⊆ �λ. The follow-
ing observation, already mentioned in [4], is an immediate
consequence of the relation C j, j ′ ≥ C j+1, j ′ ≥ C j+1, j+1′ .

Lemma 5.2 We consider �son(λ) ⊆ �λ and �son(μ) ⊆ �μ.
If

dist
(
�λ,�μ

)
> C|λ|,|μ|,

then there holds

dist
(
�son(λ), �μ

)
> C|λ|+1,|μ|,

dist
(
�son(λ), �son(μ)

)
> C|λ|+1,|μ|+1.

With the aid of this lemma we have to check the distance
criterion only for those coefficients which stem from subdi-
visions of required coefficients on a coarser level. Therefore,
the resulting procedure of checking the distance criterion is
still of log-linear complexity:

Algorithm 2: Pattern determination
Data: bounding boxes {�λ} of the wavelets
Result: computes the pattern I = [I j, j ′ ] ∈ R

n×n of the ICF
begin

initialize I0,0 := �0 × �0 and I j, j ′ := ∅ for all
( j, j ′) �= (0, 0)
for j = 1 to J − 1 do

for j ′ = 1 to j − 1 do
// compute I j, j ′ from I j−1, j ′
foreach (μ, λ) ∈ I j−1, j ′ do

if dist
(
�son(μ),�λ

) ≤ C j, j ′ then
I j, j ′ := I j, j ′ ∪ (

son(μ), λ
)

// compute I j, j from I j−1, j−1
foreach (μ, λ) ∈ I j−1, j−1 do

if dist
(
�son(μ),�son(λ)

) ≤ C j, j then
I j, j := I j, j ∪ (

son(μ), son(λ)
)

end

6 Numerical results

6.1 Integral equations arising from the Laplace equation

To study the quantitative behavior of the incomplete Cholesky
factorization, we will consider Symm’s integral equation

(Vu)(x) =
∫

�

u(y)
4π‖x − y‖ dσy = f (x), x ∈ � (6.1)
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and the hypersingular integral equation

(Wu)(x) = − ∂

∂n(x)

∫

�

∂

∂n(y)
1

4π‖x − y‖u(y) dσy

= g(x), x ∈ �. (6.2)

The occurring integral operators satisfy

V : H−1/2(�) → H1/2(�),

W : H1/2(�)/R → H−1/2(�)/R.

Piecewise constant and bilinear wavelets with respectively
three and four vanishing moments are used to discretize
Symm’s integral equation (6.1). The bilinear wavelets are
chosen to have double nodes at the edges of the patches.
Whereas, the hypersingular integral equation (6.2) is dis-
cretized by globally continuous bilinear wavelets with two
vanishing moments. Note that the system matrix of the hyper-
singular operator is positive definite if the underlying bilinear
form is modified in accordance with

a(u, v) := (Wu, v)L2(�) + (u, 1)L2(�)(1, v)L2(�),

see e.g. [33].
The related linear systems of equations are solved by the

preconditioned CG method up to the absolute accuracy ε =
10−10. We compare the standard diagonal scaling (indicated
by “diagonal scaling”) with the ICF (indicated by “ICF(b)”),
where the bandwidth parameter b is chosen as 0, 1, 2. In the
case b = 0, the pattern of the ICF contains only coefficients
for which the associated wavelets have overlapping supports.

Firstly, we consider � as the unit sphere, which we repre-
sent via six patches. The harmonic function

f (x)=(x−a)T b/‖x‖3, a=[1.5, 0, 0]T , b=[4, 2, 1]
(6.3)

is used as right hand side in (6.1) and g(x) = (∂ f/∂n)(x) is
used as right hand side in (6.2). In Table 1 we tabulated the
number of iterations, accompanied by the number of nonzero
coefficients of the ICF (measured in percent). Secondly, let
the boundary � be the gearwheel shown in Fig. 1. It is rep-
resented via 331 four-sided patches. The right hand side is
chosen as in (6.3) but with a = 0. The computational results
are tabulated in Table 2.

As one figures out of the Tables 1 and 2, the results
are qualitatively the same for both geometries. We observe
a drastic decrease of the number of CG-iterations even
for the bandwidth parameter b = 0. The gain of the
ICF-preconditioner is at least a factor 10 in the number
of iterations compared to the standard diagonal precondi-
tioner. Moreover, an increase of the bandwidth parameter b
decreases the number of iterations, which, however, has to
be paid by an increase of the number of nonzero coefficients
in the ICF.

Table 1 Numerical results with respect to the sphere

J NJ Diagonal
scaling

ICF (0.0) ICF (1.0) ICF (2.0)

(6.1) solved by piecewise constant wavelets (d, d̃) = (1, 3)
3 384 45 11 (20) 9 (32) 7 (46)

4 1,536 60 11 (7.7) 9 (13) 6 (17)

5 6,144 74 12 (2.4) 10 (3.9) 6 (5.7)

6 24,576 86 12 (0.68) 10 (1.2) 6 (1.7)

7 98,304 97 12 (0.19) 11 (0.33) 6 (0.50)

8 393,216 108 13 (0.052) 11 (0.093) 7 (0.14)

9 1.6 Mio. 117 13 (0.014) 11 (0.026) 7 (0.039)

(6.1) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 486 93 11 (41) 6 (62) 5 (72)

4 1,734 104 11 (16) 7 (27) 5 (35)

5 6,534 108 12 (5.3) 7 (9.1) 6 (14)

6 25,350 111 12 (1.5) 8 (2.8) 6 (4.0)

7 99,846 118 13 (0.44) 8 (0.80) 6 (1.2)

8 396,294 125 14 (0.12) 9 (0.22) 6 (0.34)

9 1.6 Mio. 132 14 (0.033) 9 (0.062) 7 (0.094)

(6.2) solved by piecewise bilinear wavelets (d, d̃) = (2, 2)

3 386 47 5 (63) 4 (70) 3 (78)

4 1,538 56 5 (20) 4 (26) 4 (33)

5 6,146 59 6 (5.8) 5 (8.2) 4 (11)

6 24,578 63 6 (1.6) 5 (2.4) 4 (3.3)

7 98,306 63 6 (0.43) 5 (0.68) 4 (0.95)

8 393,218 63 6 (0.11) 5 (0.19) 4 (0.27)

9 1.6 Mio. 64 6 (0.030) 5 (0.051) 4 (0.075)

Table 2 Numerical results with respect to the gearwheel

J NJ Diagonal
scaling

ICF (0.0) ICF (1.0) ICF (2.0)

(6.1) solved by piecewise constant wavelets (d, d̃) = (1, 3)
3 18,560 163 16 (1.8) 13 (2.9) 11 (4.3)

4 74,240 185 17 (0.57) 13 (0.90) 11 (1.3)

5 296,960 198 18 (0.16) 14 (0.25) 12 (0.36)

6 1.2 Mio. 213 20 (0.043) 14 (0.068) 12 (0.10)

(6.1) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 27,216 205 11 (2.4) 8 (4.7) 8 (8.1)

4 97,104 199 11 (0.51) 9 (1.3) 8 (2.5)

5 365,904 212 12 (0.13) 10 (0.36) 8 (0.72)

6 1.4 Mio. 236 12 (0.035) 11 (0.10) 9 (0.20)

(6.2) solved by piecewise bilinear wavelets (d, d̃) = (2, 2)

3 21,504 209 16 (8.1) 15 (11) 14 (13)

4 86,016 218 16 (1.2) 15 (2.0) 13 (3.0)

5 344,064 228 17 (0.25) 16 (0.49) 13 (0.79)

6 1.4 Mio. 235 18 (0.065) 16 (0.13) 13 (0.22)

The computing times of the ICF with respect to the sphere
and b = 0 are found in the left plot of Fig. 4. For all three
cases under consideration, we observe the asymptotic rate
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Fig. 4 Computing time (left) and number of nonzero coefficients (right) of the incomplete Cholesky factorization

NJ log(NJ ) (indicated by the dashed line). This is better
than the rate NJ log2(NJ ) which has been proven in The-
orem 5.1. The number of nonzero coefficient scales also like
NJ log(NJ ) which however is expected.

6.2 Polarization continuum model

Continuum solvation models are widely used to model quan-
tum effects of molecules in liquid solutions. In the polariz-
able continuum model, introduced in [25], the molecule under
study (the solute) is located inside a cavity�, surrounded by a
homogeneous dielectric (the solvent) with dielectric constant
ε ≥ 1. The solute-solvent interactions between the charge
distributions which compose the solute and the dielectric are
reduced to those of electrostatic origin.

For a given charge ρ ∈ H−1(�) located inside the cavity,
the solute-solvent interaction is expressed by the apparent
surface charge σ ∈ H−1/2(�). It is given by the integral
equation

Vσ =
(

1 + ε

2
+ (1 − ε)K

)−1

Nρ − Nρ on � := ∂�,

(6.4)

where V is the single layer potential operator from (6.1), K
is the double layer potential operator

(Ku)(x) =
∫

�

u(y)
〈n(y), x − y〉
4π‖x − y‖ dσy, (6.5)

and Nρ denotes the Newton potential of the given charge

Nρ(x) :=
∫

�

ρ(y)
4π‖x − y‖ dy.

In the quantum chemical simulations, for example when
solving the Hartree–Fock equations in a self consistent field
approximation, one has to compute the interaction energies

Fig. 5 Parameterization of the molecular surface of benzene

between the different particles. This amounts to the determi-
nation of different apparent surface charges. Therefore, the
fast solution of (6.4) for different right hand sides is indis-
pensable for fast simulations in chemistry.

We consider benzene as solute and water as solvent (ε =
78.39). The associated cavity is represented by 91 four-sided
patches, as seen in Fig. 5. The boundary integral equation
(6.4) is discretized by piecewise constant and linear wavelets
with 3 and 4 vanishing moments. The solution of the second
kind integral equation on the right hand side is well posed
and requires thus no preconditioning since K is compact. In
contrast to this, the single layer potential operator needs to
be preconditioned.

The given charge ρ consists of point charges which are
placed in the nuclei positions. The solution accuracy of the
conjugate gradient method is set to 10−6. In Table 3, we
tabulated the numerical results. As observed in the previous
subsection, the ICF reduces the number of iterations about a
factor 10 compared to the standard diagonal preconditioner.
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Table 3 Numerical results for the polarization continuum model

J NJ Diagonal
scaling

ICF (0.0) ICF (1.0) ICF (2.0)

(6.4) solved by piecewise constant wavelets (d, d̃) = (1, 3)
3 5,824 48 12 (2.0) 9 (3.9) 8 (6.3)

4 23,296 61 12 (0.74) 9 (1.4) 8 (2.1)

5 93,184 70 13 (0.23) 9 (0.42) 8 (0.66)

6 372,736 81 14 (0.065) 10 (0.12) 7 (0.19)

(6.4) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 7,371 141 8 (5.2) 6 (7.7) 6 (11)

4 26,299 140 10 (1.8) 7 (2.5) 6 (3.6)

5 99,099 133 11 (0.49) 7 (0.78) 6 (1.1)

6 384,475 134 14 (0.14) 7 (0.23) 6 (0.33)

6.3 Laplace equation with stochastic Dirichlet datum

The expectation Eu ∈ H1(�) and the two-point correlation
Coru ∈ H1(�) ⊗ H1(�) of the solution u(ω) ∈ H1(�) to
the Laplace equation with stochastic Dirichlet datum

	u(ω) = 0 in �, u(ω) = f (ω) on �

is given by the equations

	Eu = 0 in �, Eu = E f on �

and

(	⊗	)Coru = 0 in �×�,

(	⊗ id)Coru = 0 in �× �,

(id ⊗	)Coru = 0 in � ×�,

Coru = Cor f on � × �,

(6.6)

see [28,33]. Note that the two-point correlation of u is a
high-dimensional object which lives in R

6.
Having a low-rank approximation of the Dirichlet datum’s

two point-correlation at hand,

Cor f ≈
m∑

k=1

θk ⊗ θk ∈ H1/2(�)⊗ H1/2(�), (6.7)

then the solution’s two point correlation is given by

Coru ≈
m∑

k=1

ηk ⊗ ηk

with ηk ∈ H1(�) solving the Laplace equation

	ηk = 0 in �, ηk = θk on �. (6.8)

Here, the Neumann datum ∂ηk/∂n ∈ H−1/2(�) is computed
from the Dirichlet datum θk ∈ H1/2(�) by the Dirichlet-to-
Neumann map

V ∂ηk

∂n
=

(
1

2
− K

)
θk (6.9)

Fig. 6 The parameterization of a pipe clamp

where V and K denotes the single and double layer potential
operator (6.1) and (6.5), respectively. Thus, having solved
(6.9) for all k = 1, 2 . . . ,m, the two-point correlation Coru

of the solution u in a point (x, y) ∈ � × � is given by the
representation formula

Coru(x, y) =
m∑

k=1

νk(x) · νk(y)

with

νk(x) :=
∫

�

∂ηk

∂n
(z)

1

4π‖x − z‖ dσz

−
∫

�

θk(z)
〈n(z), x − z〉
4π‖x − z‖ dσz.

We will consider two-point correlation kernels from the
Matérn family [10,24], namely

k3/2(r) =
(

1 +
√

3r




)
exp

(
−

√
3r




)
,

k5/2(r) =
(

1 +
√

5r



+ 5r2

3
2

)
exp

(
−

√
5r




)

where r = ‖x − y‖ denotes the spatial distance of the points
x, y ∈ � and 
 > 0 is the correlation length. For the com-
putations, we consider � as the pipe clamp seen in Fig. 6,
whose surface � is represented by 66 four-sided patches.
The Dirichlet-to-Neumann map (6.9) is discretized by 67,584
piecewise constant and 71,874 piecewise bilinear boundary
elements, respectively. The low-rank approximation (6.7) is
determined by the use of a pivoted Cholesky factorization as
proposed in [12]. The absolute error of the low-rank approx-
imation is set to ε = 0.001. The resulting rank m is found
in Table 4. It depends on the correlation kernel’s smoothness
[31] and correlation length 
.

123



328 H. Harbrecht

Table 4 Numerical results of
the stochastic boundary value
problem

Matérn kernel k3/2(r) Matérn kernel k5/2(r)


 Rank Diagonal
scaling (s)

ICF (1.0) (s) 
 Rank Diagonal
scaling (s)

ICF (1.0) (s)

(6.9) solved by piecewise constant wavelets (d, d̃) = (1, 3)
1 167 781 733 0.5 162 1,006 760

0.75 296 1,376 1,047 0.375 286 1,400 1,039

0.5 668 3,072 1,945 0.25 624 3,038 1,879

0.25 2,631 14,222s 6,888 0.125 2,441 14,308 6,478

(6.9) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

1 170 3,123 1,758 0.5 165 2,722 1,728

0.75 309 5,544 2,230 0.375 283 4,704 2,114

0.5 665 11,758 3,408 0.25 627 11,391 3,217

0.25 2,651 39,547 8,392 0.125 2,457 43,340 8,264

The computation of the ICF for b = 1.0 consumes 320 s in
case of the piecewise constant wavelets and 633 s in case of
the piecewise bilinear wavelets. We mostly need only 3 iter-
ations per CG-solve with the ICF-preconditioning instead of
about 70 iterations (in case of piecewise constants) and 200
iterations (in case of piecewise bilinears), respectively, per
CG-solve with the diagonal preconditioning. Thus, we save
per CG-solve about 50 % of the computing time in case of
piecewise constants and about 80 % of the computing time in
case of piecewise bilinears. As can be seen from Table 4, we
thus save up to 80 % of the over-all computing time for the
m solves of (6.9) although the incomplete Cholesky decom-
position has to be determined first.

7 Conclusion

In the present paper, we proposed a new wavelet precon-
ditioning by an ICF with respect to a pattern which takes
into account all wavelet-wavelet interactions. The computa-
tional complexity of the preconditioner is log-linear. In all
numerical tests, the ICF reduces the number of iterations of
the preconditioned CG method by at least a factor of 10 in
comparison with the standard wavelet preconditioner.
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