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Abstract In this paper we derive a sufficient condition for the existence of extremal
surfaces of a parametric functional J with a dominant area term, which do not furnish
global minima of J within the class C∗(�) of H1,2-surfaces spanning an arbitrary closed
rectifiable Jordan curve � ⊂ R

3 that merely has to satisfy a chord-arc condition. The
proof is based on the “mountain pass result” of (Jakob in Calc Var 21:401–427, 2004)
which yields an unstable J -extremal surface bounded by an arbitrary simple closed
polygon and Heinz’ ”approximation method” in (Arch Rat Mech Anal 38:257–267,
1970). Hence, we give a precise proof of a partial result of the mountain pass theo-
rem claimed by Shiffman in (Ann Math 45:543–576, 1944) who only outlined a very
sketchy and partially incorrect proof.

1 Introduction and main result

Shiffman considered Plateau’s problem for the two-dimensional parametric functional

J (X) :=
∫

B

F(Xu ∧Xv)+ k | Xu ∧Xv | dudv =: F(X)+ k A(X),

on surfaces X ∈ H1,2(B, R3) of the type of the open disc B := B2
1(0) ⊂ R

2. The
Lagrangian F is assumed to satisfy the following list of requirements (A∗):

F ∈ C0(R3) ∩ C2(R3 \ {0}), (1)

F(tz) = t F(z) ∀ t ≥ 0, ∀ z ∈ R
3, (2)

m1 | z |≤ F(z) ≤ m2 | z | ∀ z ∈ R
3, 0 < m1 ≤ m2, (3)

F − λ | · | has to be convex on R
3, for some λ > 0. (4)
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As in [6,8] we will also consider integrands F that have to be only convex, i.e. that
have to satisfy the list of requirements

(A) := requirements (1)–(3) and convexity on R
3,

but eventually have to satisfy the additional requirement (R∗):
The restriction of the function g(z) := F(z) + F(−z) to the S

2 is assumed to have
three linearly independent critical points, i.e. there have to be at least three linearly
independent unit vectors a1, a2, a3 ∈ S

2 such that ∇g(aj) = rj a�j , for some rj ∈ R,
j = 1, 2, 3. Finally we assume as in [6] and [8] that

k > max
S2

F = m2. (5)

Thus J is a controlled perturbation of the area functional A, where F depends only
on the normal Xu∧Xv, but not on the position vector X itself. Moreover with respect
to some closed rectifiable Jordan curve � ⊂ R

3 we consider the Plateau class C∗(�) of
surfaces X ∈ H1,2(B, R3)whose L2-traces X |∂B are continuous, monotonic mappings
of S

1 onto � satisfying a three-point condition:

X |∂B (eiψk)
!= Pk, ψk := 2πk

3
, k = 0, 1, 2, (6)

where P0, P1, P2 are three fixed points on �. Furthermore we topologize C∗(�) ∩
C0(B̄, R3) by the C0(B̄, R3)-norm. Only assuming the requirements (A∗) on the inte-
grand F we are going to prove (see Definitions 4.2 and 4.3 in Sect. 4.2 and Definition
3.5 in [6])

Theorem 1.1 (Main result) Let � be an arbitrary closed rectifiable Jordan curve in R
3

satisfying a chord-arc condition (57). If there exist two different conformally parame-
trized surfaces X1 �= X2 in (C∗(�)∩C0(B̄, R3), ‖ · ‖C0(B̄)) which are in a mountain pass
situation w. r. to J with some elevation e > 0, then there exists a J -extremal surface X∗
in C∗(�) ∩ C0(B̄, R3) with J (X∗) ≥ max{J (X1), J (X2)} + e

4 > infC∗(�)∩C0(B̄,R3) J .

Following Shiffman we replace J by its dominance functional

I(X) :=
∫

B

F(Xu ∧Xv)+ k
2
| DX |2 dudv = F(X)+ k D(X).

Now a crucial tool which allows a derivation of the above theorem from the moun-
tain pass result in [6] is the following compactness result of [8] for minimizers of I,
whose integrand F has to satisfy the requirements (A) and (R∗), within boundary
value classes H1,2

ϕ (B, R3), termed I-surfaces (see Theorem 1.2 and Definition 1.1 in
[8] for the notion “md”):

Theorem 1.2 Let F be an integrand satisfying the requirements (A) and (R∗). Let
moreover {Xn} be a sequence of I-surfaces with D(Xn) ≤ const., ∀n ∈ N, and with
equicontinuous and uniformly bounded boundary values. Then there exists a subse-
quence {Xnj} such that

Xnj −→ X̄ in C0(B̄, R3) and Xnj ⇀ X̄ in H1,2(B, R3),

for a surface X̄ ∈ H1,2(B, R3) ∩ C0(B̄, R3) with md((A X̄)i) = 0, i = 1, 2, 3.
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Furthermore we show in Theorem 2.2 that such a limit surface X̄ is an I-surface
again. It should be emphasized here that Shiffman asserted the wrong statement that
the restriction of any even C1-function to the S

2 would possess three linearly indepen-
dent critical points (see p. 552 in [12]), which would allow us to drop the unpleasant
requirement (R∗) from the very beginning. In fact the author constructed a counter-
example of this assertion in Sect. 2 of [8] but proved on the other hand (in this section)
that any integrand F that satisfies the requirements (A∗) can be “approximated” by a
family of Lagrangians {Fε}ε>0 meeting the conditions (A)+(R∗) for sufficiently small
ε, which we shall use in the final section of the present paper. In Sect. 4 we will follow
the lines of Heinz’s article [4] in which he proved an analogue of the mountain pass
theorem 4.1 for the H-surface functional instead of J respectively I by approximating
� by a sequence of simple closed polygons and applying his achievements of [3] and
the “finite dimensional” mountain pass lemma.

2 H1,2
loc(B, R3)-convergence and closedness of the set of I-surfaces in C0(B̄, R3)

In this section we give rigorous proofs of Theorems 10.2 and 10.3 in [12], pp. 558–561,
where F is assumed to satisfy only the requirements (A). Throughout the paper we
will use the notations Z := Xu ∧Xv, δZ := Xu ∧ ϕv + ϕu ∧Xv and δ2Z := ϕu ∧ ϕv for
any X,ϕ ∈ H1,2(B, R3),

R := R(X) := {(u, v) ∈ B | (Xu ∧Xv)(u, v) �= 0},
S := S(X) := B \R(X)

and Cr,ρ := Bρ(0) \ Br(0) for r < ρ ∈ (0, 1]. Firstly we prove

Proposition 2.1 Let {Yn} be a sequence in H1,2(B, R3) with D(Yn) ≤ const. and let
{δn} ⊂ R>0 be some sequence with δn → 0. Setting rn := r + δn for each r ∈ (0, 1) we
prove that

m(r) := lim inf
n→∞ DCr,rn

(Yn) = 0 for a.e. r ∈ (0, 1). (7)

Proof We assume that there is some ε0 > 0 such that Pε := {r ∈ (0, 1) | m(r) ≥ ε}
is non-empty for ε ∈ (0, ε0], otherwise we are done. We choose some ε ∈ (0, ε0]
arbitrarily and a collection of finitely many different radii r1, . . . , rq in Pε , where q ≤
card(Pε) is arbitrarily fixed (which means that we choose q ∈ N arbitrarily if Pε should
have infinitely many elements). Firstly due to δn → 0 there exists a number N1 such
that Cri,ri

n ∩ C
rj,rj

n
= ∅ ∀ i �= j, ∀n > N1, which implies that

q∑
i=1

DCri ,ri
n
(Yn) ≤ D(Yn) ≤ const. =: M, (8)

∀n > N1. Furthermore we can determine a number N2 ≥ N1 such that DCri ,ri
n
(Yn) ≥

m(ri)
2 ≥ ε

2 ∀n > N2 and for i = 1, . . . , q simultaneously. Hence, together with (8) we
see that q ε2 ≤ M, i.e. q ≤ 2M

ε
. This shows that card(Pε) ≤ 2M

ε
. Now every r ∈ (0, 1)

with m(r) > 0 lies in some set P 1
n

for some n > 1
m(r) , i.e. B := {r ∈ (0, 1) | m(r) > 0} ⊂
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⋃
n∈N P 1

n
which is a countable set on account of card(P 1

n
) ≤ 2Mn, for n > 1

ε0
, and by

P 1
n
⊂ P 1

n′
for n ≤ n′, thus in particular L1(B) = 0. ��

For the reader’s convenience we recall here that we have by Proposition 3.3, Lemma
4.1 and (8) in [6]:

δ+I(X,ϕ) = δFR(X,ϕ)+ δ+FS(X,ϕ)+ k δD(X,ϕ)

=
∫

R
〈∇F(Z), δZ〉dudv+

∫

S
F(δZ)dudv+ k

∫

B

DX ·Dϕ dudv (9)

for any X,ϕ ∈ H1,2(B, R3).

Theorem 2.1 Let {Xn} be a sequence of I-surfaces with D(Xn) ≤ const., ∀n ∈ N, and

Xn −→ X̄ in C0(B̄, R3)

for some X̄ ∈ C0(B̄, R3) . Then there holds for every r ∈ (0, 1):

‖ Xn − X̄ ‖H1,2(Br(0))−→ 0 for n→∞. (10)

Proof Without loss of generality we may assume that ‖ X̄ − Xn ‖C0(B̄)> 0 ∀n ∈ N.
We choose some r ∈ (0, 1) arbitrarily such that (7) holds for Yn := X̄ − Xn and
δn :=‖ X̄ −Xn ‖C0(B̄) and consider the sequence {rn} given by rn := r+ δn (as in (7)).
Without loss of generality we may assume that {rn} ⊂ (r, 1) ∀n ∈ N. By Lemma 2 of
Sect. 2.5 in [7], p. 23, the I-surfaces Xn are characterized by the variational inequality

δ+I(Xn,ϕ) ≥ 0 ∀ϕ ∈ H̊1,2(B, R3), (11)

(see (9)) which we are going to test now by

ϕn(w) :=
⎧⎨
⎩

X̄(w)−Xn(w) : w ∈ Br(0)
rn−|w|
rn−r (X̄(w)−Xn(w)) : w ∈ Cr,rn

0 : w ∈ Crn,1.

Knowing that Xn, X̄ ∈ H1,2(B, R3) one easily verifies that ϕn ∈ H̊1,2(B, R3), ∀n ∈ N,
on account of Lemma A 6.9 in [1], p. 254, and by the estimate

| Dϕn |≤ rn− | w |
rn − r

| D(X̄ −Xn) | + | X̄ −Xn |
rn − r

≤| D(X̄ −Xn) | +1 on Cr,rn . (12)

We will use the following abbreviations as in Sect. 4 of [6]:

Zn := Xn
u ∧Xn

v , δZn := ϕn
u ∧Xn

v +Xn
u ∧ ϕn

v , δ2Zn := ϕn
u ∧ ϕn

v , (13)

and we observe that
Z = Zn + δZn + δ2Zn on Br(0). (14)

Furthermore we define Rn := R(Xn) and Sn := S(Xn). Firstly we note:
∫

Bρ(0)

DXn ·D(X̄ −Xn)dudv = DBρ(0)(X̄)−DBρ(0)(X
n)−DBρ(0)(X̄ −Xn)
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∀ ρ ∈ (0, 1]. Now combining this with (9), (11) and F(0) = 0 we arrive at:

0 ≤ δ+I(Xn,ϕn) =
∫

Rn∩Br(0)

〈∇F(Zn), δZn〉dudv

+
∫

Rn∩Cr,rn

〈∇F(Zn), δZn〉dudv+
∫

Sn∩Br(0)

F(δZn)dudv

+
∫

Sn∩Cr,rn

F(δZn)dudv+ k (DBr(0)(X̄)−DBr(0)(X
n)

−DBr(0)(X̄ −Xn))+ k
∫

Cr,rn

DXn ·Dϕn dudv. (15)

As in (9) and (11) of [6] we gain by (14), the convexity of F ∈ C2(R3 \{0}), | ∇F |≤ m2
on R

3 \ {0} and | δ2Zn |≤ 1
2 | Dϕn |2:

FRn∩Br(0)(X̄)− FRn∩Br(0)(X
n) ≥

∫

Rn∩Br(0)

〈∇F(Zn), δZn〉dudv

−m2 DRn∩Br(0)(ϕ
n), (16)

and together with F ≥ 0 on R
3 and F(0) = 0, using that Zn ≡ 0 on Sn:

FSn∩Br(0)(X̄)− FSn∩Br(0)(X
n) ≥

∫

Sn∩Br(0)

F(δZn)dudv−m2 DSn∩Br(0)(ϕ
n). (17)

Now combining (16) and (17) with (15) and noting that k > m2 we obtain:

IBr(0)(X̄)− IBr(0)(X
n)

≥
∫

Rn∩Br(0)

〈∇F(Zn), δZn〉dudv+
∫

Sn∩Br(0)

F(δZn)dudv

−m2 DBr(0)(ϕ
n)+ k (DBr(0)(X̄)−DBr(0)(X

n))

≥ −
∫

Rn∩Cr,rn

〈∇F(Zn), δZn〉dudv−
∫

Sn∩Cr,rn

F(δZn)dudv

+(k−m2)DBr(0)(ϕ
n)− k

∫

Cr,rn

DXn ·Dϕn dudv

≥ −
∫

Rn∩Cr,rn

〈∇F(Zn), δZn〉dudv−
∫

Sn∩Cr,rn

F(δZn)dudv

−k
∫

Cr,rn

DXn ·Dϕn dudv = −δ+ICr,rn
(Xn,ϕn). (18)

Next we gain by (12) and Cauchy–Schwarz inequality:

DCr,rn
(ϕn) ≤ 2 DCr,rn

(X̄ −Xn)+ 2π (rn − r), (19)
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∀n ∈ N. Moreover by Proposition 2.1 and our choice of r ∈ (0, 1) we obtain an
increasing sequence {nj} ⊂ N, depending on r, with

DCr,rnj
(X̄ −Xnj) −→ 0 for j→∞. (20)

Combining this with (19), D(Xnj) ≤ const. by hypothesis, rn → r and Hölder’s inequal-
ity we arrive at ∫

Cr,rnj

DXnj ·Dϕnj dudv ≤ const.
√

DCr,rnj
(ϕnj) −→ 0. (21)

Moreover by (12) we estimate δZnj = ϕnj
u ∧X

nj
v +X

nj
u ∧ ϕnj

v on Cr,rnj
by

| δZnj |≤ 2 | DXnj || Dϕnj |≤ 2 | DXnj | (| D(X̄ −Xnj) | +1),

which implies by Hölder’s inequality, (20), D(Xnj) ≤ const. and rnj → r:
∫

Cr,rnj

| δZnj | dudv ≤ const.
√

DCr,rnj
(X̄ −Xnj)+ const.

√
rnj − r −→ 0. (22)

Hence by | ∇F |≤ m2 on R
3 \ {0} and F(z) ≤ m2 | z | ∀z ∈ R

3 we obtain:∣∣∣∣
∫

Rnj∩Cr,rnj

〈∇F(Znj), δZnj〉dudv

∣∣∣∣ ≤ m2

∫

Cr,rnj

| δZnj | dudv −→ 0, (23)

∣∣∣∣
∫

Snj∩Cr,rnj

F(δZnj)dudv

∣∣∣∣ ≤ m2

∫

Cr,rnj

| δZnj | dudv −→ 0. (24)

Now combining (21), (23) and (24) with (18) we gain

lim inf
j→∞ (IBr(0)(X̄)− IBr(0)(X

nj)) ≥ 0. (25)

On the other hand we have ‖ Xn ‖H1,2(B)≤ const. by the requirements of the theorem,
thus we obtain a weakly convergent subsequence {Xni} of {Xnj}:

Xni ⇀ X̄ in H1,2(B, R3). (26)

Hence, by the weak lower semicontinuity of IBr(0) (see [6], p. 403) and (25) we finally
obtain

lim sup
i→∞

IBr(0)(X
ni) ≤ lim sup

j→∞
IBr(0)(X

nj) ≤ IBr(0)(X̄) ≤ lim inf
i→∞ IBr(0)(X

ni).

Due to this result and (26) we infer from Lemma 6 in Chap. 4 of [7]:

DBr(0)(X
ni) −→ DBr(0)(X̄) for i→∞,

which again combined with (26) and the convergence of {Xn} to X̄ in C0(B̄, R3) finally
yields the assertion in (10) for the chosen radius r ∈ (0, 1) and the selected subse-
quence {Xni}. Now we suppose that there would exist some subsequence {Xnl } of the
original sequence {Xn} that satisfies

Xnl −→ X̃ in H1,2(Br(0), R3) (27)
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for some different surface X̃ �= X̄. Then we could apply Proposition 2.1 to Yl :=
X̄ −Xnl and δl :=‖ X̄ −Xnl ‖C0(B̄) and could choose some radius r̃ ∈ (r, 1) such that
(7) holds. Then by the above reasoning we would obtain a further subsequence {Xnm}
of {Xnl } such that

Xnm −→ X̄ in H1,2(Br̃(0), R
3),

thus especially in H1,2(Br(0), R3) by r < r̃, which contradicts (27). Hence, we proved
the assertion of the theorem for a.e. r ∈ (0, 1), thus ∀ r ∈ (0, 1). ��

A combination of this result with Lemma 2 of Sect. 2.5 in [7] yields

Theorem 2.2 The limit surface X̄ of Theorem 2.1 is an I-surface again.

Proof We choose some arbitrary r ∈ (0, 1) and define Sr := S(X̄)∩Br, Rr := R(X̄)∩
Br, Sn

r := S(Xn) ∩ Br, Rn
r := R(Xn) ∩ Br, with Br := Br(0),

σ n := Sn
r \ Sr = Rr \Rn

r and τn := Sr \ Sn
r = Rn

r \Rr (28)

and moreover Z := X̄u ∧ X̄v, Zn := Xn
u ∧ Xn

v , δZ := X̄u ∧ ϕv + ϕu ∧ X̄v and
δZn := Xn

u ∧ ϕv + ϕu ∧ Xn
v for some arbitrarily chosen ϕ ∈ H̊1,2(Br(0), R3). The

decisive step consists of the proof of

δ+FBr(0)(X̄,ϕ) ≥ lim inf
n→∞ δ+FBr(0)(X

n,ϕ) (29)

∀ϕ ∈ H̊1,2(Br(0), R3). Firstly we estimate:

| Zn − Z |=| Xn
u ∧Xn

v − X̄u ∧ X̄v |≤ (| DXn | + | DX̄ |) | D(Xn − X̄) | .

From this we infer by the Hölder inequality and (10):

∫

Br(0)

| Zn − Z | dudv ≤ 2
(√

DBr(0)(Xn)+
√

DBr(0)(X̄)
)√

DBr(0)(Xn − X̄) −→ 0.

(30)

Next we estimate:

| δZn − δZ |=| (Xn
u − X̄u) ∧ ϕv + ϕu ∧ (Xn

v − X̄v) |≤ 2 | Dϕ || D(Xn − X̄) |,

which implies again by (10):

∫

Br(0)

| δZn − δZ | dudv ≤ 4
√

DBr(0)(ϕ) DBr(0)(Xn − X̄) −→ 0. (31)



390 R. Jakob

Next we split up the integrals on the sets Rn
r and Rr occuring in (29):∫

Rn
r

〈∇F(Zn), δZn〉dudv−
∫

Rr

〈∇F(Z), δZ〉dudv

=
∫

Br(0)

χRn
r ∩Rr〈∇F(Zn), δZn〉 + χτn〈∇F(Zn), δZn〉

−χRr∩Rn
r 〈∇F(Z), δZ〉 − χσn〈∇F(Z), δZ〉dudv

=
∫

Br(0)

χRn
r ∩Rr〈∇F(Zn), δZn − δZ〉dudv

+
∫

Br(0)

χRn
r ∩Rr 〈∇F(Zn)− ∇F(Z), δZ〉dudv

−
∫

Br(0)

χσn〈∇F(Z), δZ〉dudv+
∫

Br(0)

χτn〈∇F(Zn), δZn〉dudv. (32)

For the first integral in (32) we have by | ∇F |≤ m2 on R
3 \ {0} and (31):∣∣∣∣∣∣∣

∫

Br(0)

χRn
r ∩Rr 〈∇F(Zn), δZn − δZ〉dudv

∣∣∣∣∣∣∣
≤ m2

∫

Br(0)

| δZn − δZ | dudv −→ 0. (33)

Now we are going to examine the second integral in (32). By (30) we obtain a subse-
quence {Znk} for which

Znk(w) −→ Z(w) for a.e. w ∈ Br(0). (34)

We rename {nk} into {n} again and shall consider this sequence henceforth. Now
we choose some point w ∈ Br(0) \ N arbitrarily, where N ⊂ Br(0) is the subset of
L2-measure zero on which (34) does not hold and δZ does not exist, and distinguish
between the following two cases:
Case (1) There holds w ∈ Rnj

r ∩ Rr for an increasing sequence {nj} ⊂ N. Then we
obtain by (34) and the continuity of ∇F on R

3 \ {0}:
∇F(Znj)(w) −→ ∇F(Z)(w) for j→∞.

As we have χRn
r ∩Rr(w) = 0 for n ∈ N \ {nj} we can conclude:

χRn
r ∩Rr(w) (∇F(Zn)(w)− ∇F(Z)(w)) δZ(w) −→ 0 for n→∞. (35)

Case (2) There exists some number N ∈ N such that w �∈ Rn
r ∩Rr, i.e. χRn

r ∩Rr(w) = 0,
∀n > N. In this case we obtain (35) immediately.
Hence, we gain (35) for a.e. w ∈ Br(0). Furthermore we see due to | ∇F |≤ m2 on
R

3 \ {0}:
| χRn

r ∩Rr (∇F(Zn)− ∇F(Z)) δZ | ≤ 2m2 | δZ |∈ L1(Br(0)),

∀n ∈ N. Therefore the Lebesgue convergence theorem finally implies that∫

Br(0)

χRn
r ∩Rr (∇F(Zn)− ∇F(Z)) δZ dudv −→ 0. (36)
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Now we examine the third integral in (32). We have Zn ≡ 0 a.e. on σn = Sn
r \ Sr.

Hence, we obtain by (30):∫

Br(0)

χσn | Z | dudv =
∫

Br(0)

χσn | Z− Zn | dudv −→ 0.

Thus we gain an increasing sequence {nk} such that χσnk (w) | Z(w) |−→ 0 for a.e.
w ∈ Br(0). Renaming {nk} into {n} again and noticing that | Z |> 0 on σ n ⊂ Rr,
∀n ∈ N, we arrive at χσn(w)→ 0 for a.e. w ∈ Br(0), i.e.

L2(σ n) −→ 0 for n→∞. (37)

As we know 〈∇F(Z), δZ〉 ∈ L1(Rr) due to | ∇F |≤ m2 on R
3 \ {0} we infer from the

absolute continuity of the Lebesgue integral that∫

Br(0)

χσn〈∇F(Z), δZ〉dudv −→ 0 for n→∞. (38)

Now the fourth integral in (32) has to be examined simultaneously with the remaining
integrals on the sets Sn

r and Sr occuring in (29) respectively (9), which we also split
up: ∫

Sn
r

F(δZn)dudv−
∫

Sr

F(δZ)dudv =
∫

Sn
r ∩Sr

F(δZn)dudv+
∫

σn

F(δZn)dudv

−
∫

Sr∩Sn
r

F(δZ)dudv−
∫

τn

F(δZ)dudv. (39)

Since F is Lipschitz continuous with Lip.-const.= m2 by Lemma 3.2 in [6] we firstly
obtain together with (31) that∫

Br(0)

| F(δZn)− F(δZ) | dudv ≤ m2

∫

Br(0)

| δZn − δZ | dudv −→ 0, (40)

which estimates the difference of the first and third integral in (39) in particular. Now
(40) yields a subsequence {δZnk} such that F(δZnk)(w)→ F(δZ)(w) for a.e. w ∈ Br(0)
and by Vitali’s theorem we know that ∀ ε > 0 there exists some δ(ε) such that∫

E

F(δZnk)dudv < ε, if L2(E) < δ(ε) (41)

uniformly ∀k ∈ N. Again we rename {nk} into {n}. As (37) means that for any given
δ > 0 there is some N(δ) with L2(σ n) < δ ∀n > N(δ) we conclude together with (41)
that ∫

σn

F(δZn)dudv −→ 0 for n→∞. (42)

Now there only remain the fourth integrals in (39) and (32). On τn = Rn
r \ Rr we

obtain by the convexity of F ∈ C2(R3 \ {0}) and its positive homogeneity:

〈∇F(Zn), δZn〉 ≤ F(δZn)− F(Zn)+ 〈∇F(Zn), Zn〉 = F(δZn). (43)
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Hence, we obtain together with (40):
∫

τn

〈∇F(Zn), δZn〉 − F(δZ)dudv ≤
∫

τn

F(δZn)− F(δZ)dudv −→ 0. (44)

Now terming {nj} ⊂ N the resulting increasing sequence, having selected subsequences
several times after (29), and collecting (9), (32), (33), (36), (39), (40), (42) and (44) we
finally conclude:

lim inf
n→∞ (δ+FBr(0)(X

n,ϕ)− δ+FBr(0)(X̄,ϕ))

≤ lim inf
j→∞ (δ+FBr(0)(X

nj ,ϕ)− δ+FBr(0)(X̄,ϕ))

= lim inf
j→∞

∫

τ
nj

〈∇F(Znj), δZnj〉 − F(δZ)dudv ≤ 0

∀ϕ ∈ H̊1,2(Br(0), R3), which proves (29). Moreover we obtain immediately by (10)
(for the same sequence as in (29)):

δDBr(0)(X
n,ϕ) =

∫

Br(0)

DXn ·Dϕ dudv −→ δDBr(0)(X̄,ϕ).

Hence, together with (29) and (9) we arrive at

δ+IBr(0)(X̄,ϕ) ≥ lim inf
n→∞ δ+IBr(0)(X

n,ϕ) ≥ 0, (45)

∀ϕ ∈ H̊1,2(Br(0), R3), where we used that the I-surfaces Xn satisfy
δ+IBr(0)(X

n,ϕ) ≥ 0 ∀ϕ ∈ H̊1,2(Br(0), R3) by Lemma 2 in Sect. 2.5 in [7] and F(0) = 0.
Moreover for any ϕ ∈ C∞c (B, R3)we have supp(ϕ) ⊂⊂ Br(0) for some r ∈ (0, 1)which
satisfies (10), hence we gain by (45) and F(0) = 0:

δ+I(X̄,ϕ) ≥ 0 ∀ϕ ∈ C∞c (B, R3). (46)

Now we consider some arbitrarily fixed ϕ ∈ H̊1,2(B, R3) and some approximating
sequence {ϕj} ⊂ C∞c (B, R3), i.e.

ϕj −→ ϕ in H̊1,2(B, R3). (47)

We set δZj := X̄u ∧ ϕj
v + ϕj

u ∧ X̄v and estimate | δZj − δZ |≤ 2 | DX̄ || D(ϕj − ϕ) |,
which implies by (47)

∫
B | δZj − δZ | dudv ≤ 4

√
D(X̄) D(ϕj − ϕ) −→ 0. Therefore

we obtain as in (33) and (40):
∣∣∣∣∣∣
∫

R
〈∇F(Z), δZj − δZ〉dudv

∣∣∣∣∣∣ ≤ m2

∫

R
| δZj − δZ | dudv −→ 0, (48)

∣∣∣∣∣∣
∫

S
F(δZj)− F(δZ)dudv

∣∣∣∣∣∣ ≤ m2

∫

S
| δZj − δZ | dudv −→ 0. (49)

Moreover we have
∫

B DX̄ ·Dϕj dudv −→ ∫
B DX̄ ·Dϕ dudv by (47). Hence, combining

this with (48), (49) and (9) we finally infer from (46):
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δ+I(X̄,ϕ) = lim
j→∞ δ

+I(X̄,ϕj) ≥ 0 ∀ϕ ∈ H̊1,2(B, R3),

which proves X̄ to be an I-surface by Lemma 2 in Sect. 2.5 in [7]. ��

3 Continuity theorems for A, J and I

In this section we shall only quote Shiffman’s “continuity theorems” 11.1 and 12.2
in [12] for the functionals J and I in application to sequences of I-surfaces that
converge in C0(B̄, R3), see Theorem 3.2 and Corollary 3.1 below. In fact these results
can be easily derived from a deep “continuity theorem” for the area functional A
applied to harmonic surfaces on ring regions Cρ,1 = B1(0) \ Bρ(0) with convergent
boundary values in (C0 ∩ BV)(∂Cρ,1, R3) due to Morse and Tompkins in [9], which
states precisely:

Theorem 3.1 Let {ϕn
1 } ⊂ (C0∩BV)(∂B1(0), R3) and {ϕn

ρ} ⊂ (C0∩BV)(∂Bρ(0), R3) be
prescribed boundary values on ∂Cρ,1 = ∂B1(0) ∪ ∂Bρ(0) for some ρ ∈ (0, 1) such that

ϕn
1 −→ ϕ1 in C0(∂B1(0), R

3) and L(ϕn
1 ) −→ L(ϕ1), (50)

ϕn
ρ −→ ϕρ in C0(∂Bρ(0), R3) and L(ϕn

ρ) −→ L(ϕρ). (51)

(L:=length) for some functions ϕ1 ∈ (C0 ∩ BV)(∂B1(0), R3) and ϕρ ∈ (C0 ∩ BV)
(∂Bρ(0), R3). Then we prove for the harmonic extensions Hn respectively H of the
boundary values (ϕn

1 ,ϕn
ρ) respectively (ϕ1,ϕρ) on ∂Cρ,1 that

ACρ,1(H
n) −→ ACρ,1(H) for n→∞. (52)

In the remaining part of this section the integrand F is assumed to satisfy only the
requirements (A). We need the following estimate, Lemma 8.1 in [12], which is gained
by “harmonic substitution”.

Lemma 3.1 Let X be an I-surface and� ⊂ B any open subset with a Lipschitz bound-
ary. Then for the harmonic extension H of the boundary values X |∂� we have:

F�(X) ≤ F�(H)− k D�(X −H).

Now Shiffman combined this estimate with Theorem 3.1 to achieve

Theorem 3.2 Let {Xn} be a sequence of I-surfaces with Xn |∂B∈ (C0 ∩ BV)(∂B, R3),
D(Xn) ≤ const. ∀n ∈ N and

Xn −→ X̄ in C0(B̄, R3), L(Xn |∂B) −→ L(X̄ |∂B) (53)

for an I-surface X̄ with X̄ |∂B∈ (C0 ∩ BV)(∂B, R3). Then there holds:

J (Xn) −→ J (X̄) for n→∞. (54)

This theorem immediately implies Theorem 12.2 in [12]:

Corollary 3.1 Let {Xn} be a sequence of I-surfaces as in Theorem 3.2 that are addi-
tionally (a.e.) conformally parametrized on B. Then firstly there holds

I(Xn) −→ I(X̄) for n→∞, (55)

where X̄ is the limit I-surface as in Theorem 3.2, and secondly X̄ proves to be (a.e.)
conformally parametrized on B.
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Moreover we need an isoperimetric inequality for A� applied to harmonic surfaces
on simply connected subdomains � of B whose boundary is a Jordan curve. This can
easily be derived from the isoperimetric inequality for harmonic surfaces on B (see
[2], pp. 134–138) by means of the homeomorphic extension of Riemann’s mapping

function φ : �
∼=−→ B onto �̄, whose existence can be guaranteed by requiring ∂� to

be a Jordan curve, i.e. � to be a so-called Jordan domain (see [11], pp. 24–25).

Theorem 3.3 Let � be a simply connected Jordan subdomain of B, ϕ ∈ (C0 ∩ BV)
(∂�, R3) and h the unique harmonic extension of ϕ onto �̄, then there holds:

A�(h) ≤ 1
4

L(ϕ)2.

Thus together with Lemma 3.1 and (3) one obtains finally (see [12], p. 557)

Corollary 3.2 Let � be a simply connected Jordan subdomain of B whose boundary
is additionally Lipschitzian and X an I-surface with X |∂�∈ (C0 ∩ BV)(∂�, R3), then
there holds:

A�(X) ≤ m2

4m1
L(X |∂�)2 and J�(X) ≤

(
1+ k

m1

)m2

4
L(X |∂�)2. (56)

4 Combination with the results of [6] and [8]

In this section we combine all achievements of the preceding sections, of [6] and of [8]
with a special continuity theorem, Proposition 4.4, which is shown similarly as Lemma
6 in [4], and a compactness result for boundary values, Proposition 4.5, in order to
prove the following mountain pass result under the conditions (A) and (R∗) on the
integrand F (see Definition 4.2 and 4.3):

Theorem 4.1 Let F be an integrand that satisfies the requirements (A)+(R∗) and let
� be an arbitrary closed rectifiable Jordan curve in R

3 meeting a chord-arc condi-
tion (57). If there exist two different conformally parametrized surfaces X1 �= X2 in
(C∗(�) ∩ C0(B̄, R3), ‖ · ‖C0(B̄)) which are in a mountain pass situation w. r. to J with

elevation e ≥ 0, then there exists an unstable J -extremal surface X∗ in C∗(�)∩C0(B̄, R3)

with J (X∗) > max{J (X1), J (X2)} + e.

In the first two subsections of this section it will suffice to impose only the require-
ments (A) on some arbitrarily fixed integrand F, but in Sects. 4.3 and 4.4 we will
consider the integrand F that was fixed in the above theorem and thus has to meet
additionally the requirement (R∗).

4.1 Limit superior of continua

This subsection is devoted to the following notions of limits of sets:

Definition 4.1 Let (Y,d) be some metric space. For any sequence of subsets {Mn}n∈N of
Y we define its limit inferior by

lim inf
n∈N Mn := {y ∈ Y | ∃ mn ∈Mn such that d(mn, y) −→ 0 for n→∞}
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and its limit superior by

lim sup
n∈N

Mn := {y ∈ Y | ∃ some subseq. {Mnj} of {Mn} and mj ∈Mnj

such that d(mj, y) −→ 0 for j→∞}.

Firstly there holds the identity lim supn∈N Mn =⋂
k∈N

⋃
n≥k Mn, which is proved in

[7], p. 86, and secondly we have (see [10], p. 388)

Proposition 4.1 Let {Mn}n∈N be some sequence of compact and connected subsets of
a metric space (Y, d) such that

⋃
n∈N Mn is compact and lim infn∈N Mn �= ∅. Then

lim supn∈N Mn is again compact and connected, i.e. a continuum.

4.2 Mountain pass situation and instability

We consider some fixed simple closed polygon � with N + 3 vertices. As in Defini-
tion 7.4 in [6] we define the set of continua P(X1,X2) containing a pair of surfaces X1, X2
in (C∗(�) ∩ C0(B̄, R3), ‖ · ‖C0(B̄)) and the set of continua ℘(τ1,τ2) containing a pair of
points τ1, τ2 in the configuration space T ⊂ (0, 2π)N . Using this we define similarly to
Definition 7.7 and 7.5 in [6]:

Definition 4.2 (a) Two different surfaces X1, X2 ∈ (C∗(�) ∩ C0(B̄, R3), ‖ · ‖C0(B̄))

are in a “mountain pass situation” with respect to K := J , I with elevation e ≥ 0
if

sup
�

K > max{K(X1), K(X2)} + e ∀� ∈ P(X1,X2).

(b) A pair of different points τ1, τ2 ∈ T ⊂ (0, 2π)N is in a “mountain pass situation”
with respect to f� = I ◦ ψ� (see Definition 6.3 in [6]) if

max
P

f� > max{f�(τ1), f�(τ2)} ∀P ∈ ℘(τ1,τ2).

(c) A set P∗ ∈ ℘(τ1,τ2) with the property maxP∗ f� = infP∈℘(τ1,τ2)
maxP f� =: β(τ1, τ2)

is called a minimizing connected set and we denote P∗β := {τ ∈ P∗ | f�(τ) =
β(τ1, τ2)}.

Now similarly to the proof of Proposition 7.8 in [6] one can derive

Proposition 4.2 If there exist two different conformally parametrized surfaces X1 �= X2
in (C∗(�) ∩ C0(B̄, R3), ‖ · ‖C0(B̄)) that are in a mountain pass situation with respect to
J with elevation e ≥ 0, then the unique I-surfaces X∗l in the boundary value classes

H1,2
Xl|∂B

(B, R3), l = 1, 2, are in a mountain pass situation with respect to I with elevation e.

Definition 4.3 We call a J -extremal surface X∗ ∈ (C∗(�) ∩ C0(B̄, R3), ‖ · ‖C0(B̄))

K-unstable, for K = I, J , if in every ε-ball Bε(X∗) ∩ C∗(�) around X∗ there is some
surface X̃ such that K(X̃) < K(X∗).



396 R. Jakob

4.3 Approximation of closed rectifiable Jordan curves by simple polygons

Firstly we need the following

Definition 4.4 (i) Let � be an arbitrary closed rectifiable Jordan curve in R
3. Then we

term a simple closed polygon �̃ ⊂ R
3 a polygonal approximation of � if all vertices

Ã1, . . . , ÃM (M > 3) of �̃ lie on � and if the arc on � between any two adjacent points
Ãm, Ãm+1, which does not contain the remaining vertices of �̃, is indeed the shorter one
� |

(Ãm,Ãm+1)
connecting Ãm and Ãm+1. We define its fineness by �(�̃) := maxj=1,...,M |

Ãj − Ãj−1 |, with Ã0 := ÃM.

Definition 4.5 A closed rectifiable Jordan curve � in R
3 meets a chord-arc condition if

there is a constant C such that

L(� |(P1,P2)) ≤ C | P1 − P2 | ∀P1, P2 ∈ �, (57)

where � |(P1,P2) denotes the shorter arc on � connecting P1 and P2.

Now we can state the following approximation lemma (see Lemma 5 in [4]):

Proposition 4.3 Let � be an arbitrary closed rectifiable Jordan curve in R
3 which

satisfies a chord-arc condition (57). Then there exists a sequence {�n} of polygonal

approximations of � and homeomorphisms ϕn : �
∼=−→ �n that keep the vertices of the

�n fixed and satisfy:

L(�n) −→ L(�), �(�n) −→ 0, max
P∈� | P− ϕ

n(P) |−→ 0, (58)

for n→∞, and for any pair P1, P2 ∈ �:

| ϕn(P1)− ϕn(P2) |≤ L(� |(P1,P2)) ∀n ∈ N. (59)

Now let � be a fixed, closed rectifiable Jordan curve in R
3 meeting a chord-arc

condition (57) and {�n} a fixed sequence of polygonal approximations as in Prop. 4.3
with the vertices(

Pn
0 , An

1 , . . . , An
ln ; Pn

1 ; An
ln+1, . . . , An

mn
; Pn

2 ; An
mn+1, . . . , An

Nn

)
, (60)

where we may assume that the three points {Pn
k} of the three-point-condition in C∗(�n)

satisfy Pn
k ≡ Pk, k = 0, 1, 2, (see (6)) and where 0 ≤ ln ≤ mn ≤ Nn are fixed for each

n ∈ N. We consider some arbitrarily chosen I-surface X ∈ C∗(�) and the sequence
of boundary values ϕn(X |∂B) : S

1 −→ �n which by their surjectivity give rise to a
sequence of angles

0 = ψ0 < τn
1 < · · · < τn

ln < ψ1 < · · · < τn
mn
< ψ2 < · · · < τn

Nn
< 2π , (61)

with ψk = 2kπ
3 , for every n ∈ N such that

ϕn(X |∂B)(e
iτn

j ) = An
j for j = 1, . . . , Nn, (62)

respectively ϕn(X |∂B)(eiψk) ≡ Pk for k = 0, 1, 2. (63)

Hence, we obtain a sequence of tuples τn ∈ Tn ⊂ (0, 2π)Nn (see Definition 6.1 in [6])
which yield the unique minimizers X(τn) of I in the sets U(�n, τn) (see (4), (5) and
Definition 6.2, 6.3 in [6]). We are going to prove the crucial
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Proposition 4.4 If the integrand F of F satisfies the requirements (A) and (R∗), then
there holds

X(τn) −→ X in C0(B̄, R3), (64)

I(X(τn)) −→ I(X) for n→∞. (65)

Proof We set Zn := ϕn(X |∂B) and ηn := Zn − X |∂B and consider the harmonic
extensions h respectively hn of X |∂B respectively ηn onto B̄. By (59) and (57) we
derive the estimate

| ηn(eiα)− ηn(eiβ) |≤| X(eiα)−X(eiβ) | + | Zn(eiα)− Zn(eiβ) |
≤| X(eiα)−X(eiβ) | +L(� |(X(eiα),X(eiβ ))) ≤ (1+ C) | X(eiα)−X(eiβ) | (66)

∀α,β ∈ [0, 2π]. Now we combine this with Douglas’ formula ([10], p. 277):

A0(η
n) := 1

4π

2π∫

0

2π∫

0

| ηn(eiα)− ηn(eiβ) |2
4 sin2(

α−β
2 )

dαdβ

≤ (1+ C)2

4π

2π∫

0

2π∫

0

| X(eiα)−X(eiβ) |2
4 sin2(

α−β
2 )

dαdβ

= (1+ C)2 A0(X |∂B) = (1+ C)2 D(h) ≤ (1+ C)2 D(X).

Hence, (1+C)2 |X(e
iα)−X(eiβ )|2

4 sin2(
α−β

2 )
yields a Lebesgue dominating term for the integrands

|ηn(eiα)−ηn(eiβ )|2
4 sin2(

α−β
2 )

on [0, 2π ]2. Moreover we see by (58) that ηn = ϕn(X |∂B)−X |∂B−→ 0

in C0(∂B, R3). Hence, we can infer by Lebesgue’s convergence theorem:

D(hn) = A0(η
n) = 1

4π

2π∫

0

2π∫

0

| ηn(eiα)− ηn(eiβ) |2
4 sin2(

α−β
2 )

dαdβ −→ 0. (67)

Furthermore we consider the surfaces Xn := X + hn on B̄. By (67) we have that
D(Xn −X) = D(hn) −→ 0, hence, together with D(Xn) ≤ 2 (D(X)+D(hn)) ≤const.
Proposition 3.4 in [8] yields

| I(Xn)− I(X) |≤ const.
√

D(Xn −X) −→ 0 for n→∞. (68)

Moreover we see Xn |∂B= X |∂B +ηn = X |∂B +Zn − X |∂B= ϕn(X |∂B). Hence,
since ϕn(X |∂B) : S

1 −→ �n yields a weakly monotonic continuous map satisfying
the Courant- and three-point-condition, (62) and (63), and by hn ∈ H1,2(B, R3) we
obtain that Xn ∈ U(�n, τn), ∀n ∈ N (see (4), (5) and Definition 6.2 in [6]). Thus
we conclude for the unique minimizer X(τn) of I in U(�n, τn) I(X(τn)) ≤ I(Xn),
∀n ∈ N, implying together with (68):

lim sup
n→∞

I(X(τn)) ≤ lim sup
n→∞

I(Xn) = lim
n→∞ I(Xn) = I(X), (69)

and especially
D(X(τn)) ≤ const. ∀n ∈ N. (70)
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Moreover using that both X(τn), Xn ∈ U(�n, τn) we gain by (58):

| (X(τn)−X) |∂B| ≤ | (X(τn)−Xn) |∂B| + | (Xn −X) |∂B|
≤ �(�n)+ | ηn |−→ 0 in C0(∂B). (71)

Now recalling that the X(τn) are I-surfaces in particular (see Definitions 2.1 and 6.3 in
[6]) and that F meets also (R∗) we infer by (70) and (71) that we may apply Theorems
1.2 and 2.2 which yield a subsequence X(τnj) with

X(τnj) −→ X̄ in C0(B̄, R3), (72)

for some I-surface X̄. Again by (71) we conclude that X̄ |∂B= X |∂B. Thus as we
required X to be an I-surface the uniqueness of I-surfaces, by Theorem 4.3 in [6],
yields X̄ = X. Hence, we gain the assertion (64) by (72) and the “principle of subse-
quences”. Now combining this again with Theorem 1.2 we arrive at X(τnj) ⇀ X in
H1,2(B, R3). Hence, by the weak lower semicontinuity of I and (69) we finally achieve:

lim sup
j→∞

I(X(τnj)) ≤ lim sup
n→∞

I(X(τn)) ≤ I(X) ≤ lim inf
j→∞ I(X(τnj)).

Thus we obtain the assertion (65) again by the “principle of subsequences”. ��

Finally we state a compactness result which is proved in [10], p. 208:

Proposition 4.5 Let � and {�n} be as in Proposition 4.3 and Xn ∈ C∗(�n), n ∈ N, a
sequence of surfaces with D(Xn) ≤ const., ∀n ∈ N, satisfying the three-point-condition
Xn(eiψk) = Pk ∈ � ∀n ∈ N (see (6) and (60)). Then there exists a subsequence {Xnk}
whose boundary values satisfy:

Xnk |∂B−→ β in C0(∂B, R3),

where β : S
1 −→ � is a continuous, weakly monotonic map onto �, with β(eiψk) = Pk.

4.4 Proof of Theorem 4.1

Firstly by Proposition 4.2 we obtain the existence of two I-surfaces X∗l in

H1,2
Xl|∂B

(B, R3), l = 1, 2, that satisfy in particular

sup
�

I > max
l=1,2
{I(X∗l )} ∀� ∈ P(X∗1 ,X∗2 ). (73)

Now let {�n} be a fixed sequence of polygonal approximations as in Proposition 4.3
whose vertices are given in (60) and Zn

l := ϕn(X∗l |∂B), for l = 1, 2, n ∈ N. As explained
in (61) and (62) we gain two sequences of tuples τn

l ∈ Tn ⊂ (0, 2π)Nn with

Zn
l (e

i(τn
l )j) = An

j , l = 1, 2, j = 1, . . . , Nn, ∀n ∈ N,

that yield the unique minimizers X(τn
l ) of I in U(�n, τn

l )which satisfy by Proposition
4.4:

X(τn
l ) −→ X∗l in C0(B̄, R3), l = 1, 2, (74)

I(X(τn
l )) −→ I(X∗l ) for n→∞, l = 1, 2, (75)
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where we used that F is required to meet also condition (R∗). Furthermore by Prop-
osition 7.6 in [6] there exists a minimizing connected set Pn ∈ ℘(τn

1 ,τn
2 )

w. r. to the pair
{τn

l } for every n ∈ N, and we firstly prove:

βn := max
Pn

f�
n ≤ max{I(X(τn

1 )), I(X(τn
2 )), C L(�n)2} ∀n ∈ N, (76)

with C :=
(

1 + k
m1

)
m2
4 . For, if we assume that βn > maxl=1,2{I(X(τn

l ))} =
maxl=1,2{f�n

(τn
l )}, for some n ∈ N, then the pair {τn

l } is in a mountain pass situa-
tion w. r. to f�

n
, and the “finite dimensional” mountain pass lemma, Lemma 7.10 in

[6], yields the existence of a critical point τ̄n ∈ Pn
βn of f�

n
. Then by Theorem 6.17 in

[6] the surface X(τ̄n) = ψ(τ̄n) is a (a.e.) conformally parametrized I-surface. Hence,
in combination with f�

n = I ◦ ψ�n
and the isoperimetric inequality for J , Corollary

3.2, we gain:

βn = max
Pn

f�
n = f�

n
(τ̄n) = I(X(τ̄n)) = J (X(τ̄n)) ≤ C L(�n)2,

with C :=
(

1 + k
m1

)
m2
4 , which proves (76). Combining (76) with (75) and (58) we

obtain a convergent subsequence

βnk −→ d for some d ≤ max{I(X∗1 ), I(X∗2 ), C L(�)2}. (77)

We rename {nk} into {n} again and work with this subsequence henceforth. Now we
consider the images �n := ψ�

n
(Pn) which are compact and connected subsets of

(C∗(�n) ∩ C0(B̄, R3), ‖ · ‖C0(B̄)) on account of the continuity of ψ�
n

with respect to
this topology on the target space, in particular, by Theorem 6.6 (i) in [6]. Now we are
going to prove the relative compactness of the union

⋃
n∈N�n (w. r. to ‖ · ‖C0(B̄)).

To this end we firstly consider an arbitrary sequence {Yk} ⊂ ⋃
n∈N�n. If {Yk} is

contained in only finitely many �n then we can certainly select a convergent sub-
sequence of {Yk} due to the compactness of the �n. Hence, we shall suppose the
contrary, which means that we can select a subsequence {Ykj} satisfying Ykj ∈ �nj

∀ j ∈ N, where {nj} is a monotonically increasing sequence in N. In particular we have
Ykj ∈ C∗(�nj) ∩ C0(B̄, R3) ∀ j ∈ N. Furthermore as (77) implies I(Y) ≤ βn ≤ const.
∀Y ∈ �n and ∀n ∈ N, we obtain especially

D(Y) ≤ const. ∀Y ∈
⋃
n∈N

�n. (78)

Thus also noting (58) and (60) we may apply Proposition 4.5 yielding a further subse-
quence {Ykl } with equicontinuous and uniformly bounded boundary values. Hence,
due to (78) and since the sets �n = ψ�n

(Pn) consist of I-surfaces we see that the Ykl

meet all requirements of Theorem 1.2 which just guarantees the existence of a further
convergent subsequence of {Ykl } w. r. to ‖ · ‖C0(B̄). Now together with a standard

argument one also shows that every sequence {Yk} ⊂⋃
n∈N�n \⋃n∈N�n possesses a

convergent subsequence, aswell, which yields the asserted compactness of
⋃

n∈N�n.
Moreover by X(τn

l ) = ψ(τn
l ) ∈ �n, for l = 1, 2, and recalling (74) we infer that

{X∗l } ⊂ lim inf
n∈N �n. (79)

Hence, we see that the sequence {�n} satisfies all requirements of Proposition 4.1
implying that � := lim supn∈N�n is again compact and connected, i.e. a continuum.
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Furthermore by the definition of � for any X ∈ � there exists a subsequence {�nk}
and I-surfaces Xk ∈ �nk ⊂ C∗(�nk) ∩ C0(B̄, R3) with

Xk −→ X in C0(B̄, R3). (80)

Now recalling (78) Theorem 2.2 yields that X has to be an I-surface again which
lies in C∗(�) on account of Proposition 4.5 (see again (60)). Hence, � is a continuum
consisting of I-surfaces in C∗(�)∩C0(B̄, R3) and containing the pair {X∗l } due to (79),
which implies � ∈ P(X∗1 ,X∗2 ) in particular, thus

sup
�

I > max
l=1,2
{I(X∗l )} (81)

on account of (73). Next we prove that

β := sup
�

I ≤ d. (82)

If this would be wrong then there would have to exist some surface X ∈ � with
I(X) > d. By the definition of � we infer the existence of some sequence {Xk} as in
(80) which implies together with (78) ‖ Xk ‖H1,2(B)≤ const. Hence, we obtain some
subsequence Xj ∈ �nj with Xj ⇀ X in H1,2(B, R3), which yields by the weak lower
semicontinuity of I and (77):

d < I(X) ≤ lim inf
j→∞ I(Xj) ≤ lim inf

j→∞ βnj = lim
n→∞β

n = d,

which is a contradiction. Hence, combining (82) with (75), (77), (81) and f�
n = I ◦ψ�n

we conclude that there exists some n0 ∈ N such that

βn > max
l=1,2
{I(X(τn

l ))} = max
l=1,2
{f�n

(τn
l )} ∀n > n0. (83)

As below (76) this yields by Lemma 7.10 in [6] a critical point τ̄n ∈ Pn
βn of f�

n
and by

Theorem 6.17 in [6] a conformally parametrized I-surface X(τ̄n) ∈ �n satisfying

βn = I(X(τ̄n)) ∀n > n0. (84)

Now as below (78) we firstly infer by (78) (and (60)) that we may apply Proposition 4.5
yielding a subsequence {X(τ̄nk)} with converging boundary values in C0(∂B, R3),
which enables us to apply Theorem 1.2 to the I-surfaces X(τ̄nk) guaranteeing the
existence of a further convergent subsequence:

X(τ̄nj) −→ X̄ in C0(B̄, R3). (85)

Hence, since X(τ̄nj) ∈ �nj we obtain X̄ ∈ � by the definition of �, which implies in
particular that X̄ has to be again an I-surface lying in C∗(�). Since we additionally
know that the I-surfaces X(τ̄nj) are conformally parametrized and that

L(X(τ̄nj) |∂B) = L(�nj) −→ L(�) = L(X̄ |∂B) for j→∞
on account of the weak monotonicity of the boundary values and (58), we infer from
Corollary 3.1 that

I(X(τ̄nj)) −→ I(X̄) for j→∞ (86)
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and that X̄ is also conformally parametrized on B, hence in particular a J -extremal
surface by Lemma 3.6 in [6]. Now combining (77), (82), (84) and (86) with the fact
that X̄ ∈ � we arrive at:

β ≤ d←− βnj = I(X(τ̄nj)) −→ I(X̄) ≤ sup
�

I = β for j→∞, (87)

which implies at once:
I(X̄) = d = β, (88)

i.e. X̄ “sits on the top of �”. This gives rise to consider the set

�∗ := {X ∈ � | I(X) = β, X is conform. param. on B} (�= ∅). (89)

Furthermore (81) guarantees that � \ �∗ �= ∅. Now we prove that �∗ is closed. To
this end we consider a sequence {Yj} ⊂ (�∗, ‖ · ‖C0(B̄)) satisfying

Yj −→ Y in C0(B̄, R3).

First of all we see that Y ∈ �, as � is closed. As all Yj are conformally parametrized
I-surfaces in C∗(�), satisfying L(Yj |∂B) ≡ L(�) and D(Yj) ≤ β

k ∀ j ∈ N by (89) we
see due to Corollary 3.1 that firstly β ≡ I(Yj) −→ I(Y), thus I(Y) = β, and sec-
ondly that Y is again conformally parametrized on B. Hence, in fact we confirm that
Y ∈ �∗. Using this we can conclude that the boundary ∂�∗ of �∗ in � is non-empty,
i.e. there exists at least one point X∗ ∈ �∗ which satisfies Bε(X∗) ∩ (� \ �∗) �= ∅
∀ ε > 0. Otherwise �∗ would be an open and closed subset of the connected set �, in
contradiction to the fact that both � \�∗ and �∗ are non-empty. We choose such a
boundary point X∗ and show firstly that X∗ is I-unstable. To this end we consider the
(non-empty) intersection Bε(X∗)∩(�\�∗) for an arbitrarily fixed ε > 0. If there were
a surface X̃ in Bε(X∗) ∩ (� \�∗) with I(X̃) < β = I(X∗), then we would be done.
Hence, we have to consider the case in which I(Y) ≥ β ∀Y ∈ Bε(X∗) ∩ (� \�∗),
but then we have

β ≤ I(Y) ≤ sup
�

I = β, i.e. I(Y) = β ∀Y ∈ Bε(X∗) ∩ (� \�∗). (90)

Now we fix some Y ∈ Bε(X∗) ∩ (� \�∗) and choose another ball Bδ(Y) ⊂ Bε(X∗)
around Y for a sufficiently small δ > 0. Again we only have to consider the case in
which

I(Z) ≥ β = I(Y) ∀Z ∈ Bδ(Y) ∩ C∗(�), (91)

otherwise we would be done. Now we choose an arbitrary family φε : B̄
∼=−→ B̄ of

inner variations of “medium type”, i.e. of the class V , as defined in Definition 6.7 in
[6], which do not affect the three points {eiψk} of the three-point-condition. Then the
inner variations Y ◦ φε still satisfy Y ◦ φε ∈ Bδ(Y) ∩ C∗(�), for | ε |≤ ε0 sufficiently
small. Hence, we infer by (91):

F(Y)+ k D(Y) = I(Y) ≤ I(Y ◦ φε) = F(Y ◦ φε)+ k D(Y ◦ φε) ∀ | ε |≤ ε0.

Together with the invariance of the parametric functional F w. r. to orientation pre-
serving reparametrizations of B̄ we arrive at D(Y) ≤ D(Y ◦ φε), ∀ | ε |≤ ε0, yielding
∂D(Y, λ) = d

dεD(Y ◦ φε) |ε=0= 0, with λ := d
dε φε |ε=0 (see Proposition 6.10 in [6]).

Moreover an arbitrary family {φε} ∈ V can be “renormed” by a uniquely determined
family of Moebius transformations {Kε} ⊂ Aut(B), which means that φ̃ε := φε ◦ Kε
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satisfies φ̃ε(eiψk) ≡ eiψk and again {φ̃ε} ∈ V (see Remark 6.11 in [6] and p. 71 in [7]).
Since D is invariant with respect to conformal reparametrizations of B̄ we infer for an
arbitrary family {φε} ∈ V :

∂D(Y, λ) = d
dε

D(Y ◦ φε) |ε=0= d
dε

D(Y ◦ φ̃ε) |ε=0= ∂D(Y, λ̃) = 0,

with λ := d
dε φε |ε=0 and λ̃ := d

dε φ̃ε |ε=0. Now by Lemma 6.18 and Proposition 6.19
in [6] we conclude from this that Y is conformally parametrized on B. Thus together
with (90) we conclude Y ∈ �∗, in contradiction to our choice Y ∈ Bε(X∗)∩ (� \�∗).
Thus in fact there has to be a surface X̃ ∈ Bε(X∗) ∩ (� \ �∗) ⊂ Bε(X∗) ∩ C∗(�)
with I(X̃) < I(X∗). Now using J ≤ I and that X∗ is conformally parametrized we
conclude from this:

J (X̃) ≤ I(X̃) < I(X∗) = J (X∗),
which proves the J -instability of the J -extremal surface X∗ ∈ C∗(�) ∩ C0(B̄, R3).
Moreover by our assumption that X1 and X2 are two different conformally parame-
trized surfaces in C∗(�) ∩ C0(B̄, R3) that are in a mountain pass situation w. r. to J
with elevation e ≥ 0 we obtain as in the proof of Proposition 7.8 in [6] that for the
continuum� ∈ P(X∗1 ,X∗2 ) there has to exist some�∗ ∈ P(X1,X2) with sup� I ≥ sup�∗ I.
Thus again using that J ≤ I and that X1 and X2 are in a mountain pass situation w.
r. to J with elevation e we finally obtain by �∗ ∈ P(X1,X2):

J (X∗) = I(X∗) = β = sup
�

I ≥ sup
�∗

I ≥ sup
�∗

J > max{J (X1), J (X2)} + e.

5 Proof of the main result

In this final section we drop the condition (R∗) on the integrand F but require F
to meet (A∗) instead of only (A), i.e. that F − λ | · | is convex, for some fixed
λ > 0, and consider an approximating sequence of integrands {Fε} for F in the sense
of Proposition 2.1 in [8], satisfying the requirements (A) and (R∗). We will denote
Fε(X) := ∫

B Fε(Xu ∧ Xv)dudv, Jε := Fε + k A and Iε := Fε + k D. Firstly we need
the following crucial compactness result which we can derive from an idea due to
Hildebrandt in [5], Theorems 4.1 and 4.2, on account of our isoperimetric inequality
(56) for Iε-surfaces and the imposed chord-arc-condition (57) on �.

Theorem 5.1 An arbitrary family {Xε}ε>0 of Iε- (respectively Jε-) extremal surfaces
in C∗(�) is equicontinuous on B̄.

Proof Let w0 ∈ B2(0) be an arbitrary point and set Sr(w0) := B ∩ Br(w0), for any
r > 0, C′r(w0)∪Cr(w0) := (Br(w0)∩∂B)∪(∂Br(w0)∩B̄) = ∂Sr(w0), {ζ 1

r (w0), ζ 2
r (w0)} :=

∂Br(w0) ∩ ∂B, γε(r) := γε(r, w0) := trace(Xε |Cr(w0)), γ
′
ε(r) := γ ′ε(r, w0) :=

trace(Xε |C′r(w0)). Noting that the Fε all share the same growth constants m1 and m2
we firstly infer from the isoperimetric inequality (56) for Iε-surfaces, the conformality
of the Xε on B and {Xε} ⊂ C∗(�):

D(Xε) ≤ m2

4m1
L(�)2 ∀ ε > 0. (92)

Thus the Courant–Lebesgue Lemma yields the equicontinuity of the boundary val-
ues {Xε |∂B}. Using this we prove now that there is some R > 0 independent of
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w0 and ε such that γ ′ε(r) coincides with the shorter arc on � connecting Xε(ζ
1
r (w0))

and Xε(ζ
2
r (w0)) for any r ≤ R, where we note that if C′r(w0) is empty, for some w0

and r > 0, then the corresponding empty arcs γ ′ε(r) tautologically satisfy this condi-
tion. For if this were not true, then for every R > 0 there would have to exist some
point wR ∈ B2(0) and some ε(R) > 0 such that γ ′

ε(R)(R) was the longer arc on �

connecting Xε(R)(ζ
1
R(wR)) and Xε(R)(ζ

2
R(wR)). Due to {wR} ⊂ B2(0) we would obtain

a null-sequence {Rj} such that wRj −→ w∗ for some point w∗ ∈ B2(0). Thus there
exists some index N such that C′Rj

(wRj)would contain at most one of the points {eiψk},
k = 0, 1, 2, of the three-point condition for j > N, which implies that � \ γ ′εj

(Rj)

would contain at least two points, say P1, P2, of the three-point condition for j > N,
where we denote εj := ε(Rj). Since we may apply the chord-arc condition to the
shorter arcs � \ γ ′εj

(Rj) we can conclude from the equicontinuity of {Xεj |∂B} and

| ζ 1
Rj
(wRj)− ζ 2

Rj
(wRj) |< 2 Rj −→ 0:

L(� \ γ ′εj
(Rj)) ≤ C | Xεj(ζ

1
Rj
(wRj))−Xεj(ζ

2
Rj
(wRj)) |−→ 0 (93)

for j → ∞. On the other hand we know that L(� \ γ ′εj
(Rj)) ≥| P1 − P2 | ∀ j > N,

which contradicts (93) and proves our claim. Hence, applying the chord-arc condition
to γ ′ε(r) we achieve:

L(γ ′ε(r)) ≤ C | Xε(ζ
1
r (w0))−Xε(ζ

2
r (w0)) | (94)

∀ r ≤ R, any w0 ∈ B2(0) and any ε > 0. As we have trivially | Xε(ζ
1
r (w0)) −

Xε(ζ
2
r (w0)) |≤ L(γε(r)) we arrive at

L(γ ′ε(r)) ≤ C L(γε(r)) (95)

∀ r ≤ R and any ε > 0, where w0 ∈ B2(0) is arbitrarily chosen. We note that if C′r(w0)

is empty and therefore L(γ ′ε(r)) ≡ 0, then (95) is satisfied trivially. Now we combine
this estimate with the isoperimetric inequality (56) applied to the conformally param-
etrized Iε-surfaces Xε on Sr(w0), which yields for φε(r) := φε(r, w0) := DSr(w0)(Xε):

φε(r) = ASr(w0)(Xε) ≤ m2

4m1
(L(γ ′ε(r))+ L(γε(r)))2 ≤ m2

4m1
(C + 1)2 L(γε(r))2, (96)

∀ r ≤ R and any ε > 0. Now introducing polar coordinates about the point w0 one
easily achieves

d
dr
φε(r) ≥

θ2(r)∫

θ1(r)

1
r
| (Xε)θ (r, θ) |2 dθ ,

for a.e. r > 0. From this one derives as in the proof of Theorem 4.1 in [5]:

L(γε(r))2 ≤ 4πr
d
dr
φε(r),

for a.e. r > 0 and any ε > 0. Hence, in combination with (96) we achieve the differen-

tial inequalityφε(r) ≤ r
μ

d
dr
φε(r), for a.e. r ∈ (0, R) and any ε > 0, withμ := m1

m2π (C+1)2
.
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Now by a well-known lemma, Lemma 4.2 in [5], and (92) we achieve a uniform
“Dirichlet growth condition” for the Xε :

DSr(w0)(Xε) = φε(r) ≤ φε(R)
( r

R

)μ ≤ m2

4m1
L(�)2

( r
R

)μ
,

∀ r ≤ R, any ε > 0 and any w0 ∈ B2(0). Thus by a well-known reasoning due to
Morrey, as stated in Lemma 2.3 in [5], one can derive from this estimate a uniform
bound of the “Hölder-quotients” of the Xε on B̄, which only depends on m1, m2, C
and L(�), i.e.

| Xε(w)−Xε(w′) |≤ const.(m1, m2, C, L(�)) | w− w′ | μ2 ∀w, w′ ∈ B̄

and for any ε > 0, which proves the assertion of the theorem. ��
Now let � be an arbitrary subdomain of B and (Fε)�(X) := ∫

�
Fε(Xu ∧Xv)dudv.

We can easily derive from (9) in [8]:

Proposition 5.1 There holds for any X ∈ H1,2(B, R3), for ε ↘ 0:

| (Fε)�(X)− F�(X) |≤ sup
R3\{0}

| ∇Fε − ∇F | A�(X) −→ 0. (97)

Proof By Fε(0) = F(0) = 0 and 〈∇Fε(z), z〉 = Fε(z) respectively 〈∇F(z), z〉 = F(z),
for z �= 0, we obtain, abbreviating Z := Xu ∧Xv and R := R(X):

| (Fε)�(X)− F�(X) |≤
∫

�

| Fε(Z)− F(Z) | dudv

=
∫

�∩R
| Fε(Z)− F(Z) | dudv =

∫

�∩R
| 〈∇Fε(Z)− ∇F(Z), Z〉 | dudv

≤ sup
R3\{0}

| ∇Fε − ∇F | A�(X) −→ 0, for ε ↘ 0,

due to property (9) of {Fε} in [8]. ��
Now we can prove (see Definition 4.2)

Proposition 5.2 If X1, X2 ∈ C∗(�) ∩ C0(B̄, R3) are in a mountain pass situation with
respect to J with some elevation e > 0, then there exists some ε̄ > 0 such that X1, X2
are in a mountain pass situation with respect to Jε with elevation e

4 , ∀ ε < ε̄.

Proof We denote m := maxl=1,2{J (Xl)} and M := m + e. Firstly we infer from the
above proposition the existence of some ε̄ > 0 such that

| Jε(Xl)− J (Xl) |=| Fε(Xl)− F(Xl) |< e
4

(98)

∀ ε < ε̄ and for l = 1, 2. Now we choose some� ∈ P(X1,X2) arbitrarily. By our require-
ment there has to exist some surface X ∈ � with J (X) =M+δ for some δ > 0, which
yields in particular A(X) ≤ M+δ

k . Hence, denoting ρ(ε) := supR3\{0} | ∇Fε − ∇F | we
obtain together with the above proposition

Jε(X) ≥ J (X)− | Jε(X)− J (X) | ≥ M + δ − ρ(ε)M + δ
k

=
(

1− ρ(ε)
k

)
(M + δ) >

(
1− ρ(ε)

k

)
M, (99)
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for sufficiently small ε. Hence, by choosing ε̄ that small such that ρ(ε) < k
2

(
1 − m

M

)
,

∀ ε < ε̄, we obtain by (99):

sup
�

Jε ≥ Jε(X) >
(

1− ρ(ε)
k

)
M >

M +m
2
= m+ e

2
,

and therefore together with (98):

sup
�

Jε >
(

m+ e
4

)
+ e

4
> max

l=1,2
{Jε(Xl)} + e

4
,

∀ ε < ε̄ and for any � ∈ P(X1,X2), which proves our assertion. ��
Hence, combining the above proposition with the requirements of our desired main

result, Theorem 1.1, we achieve

Corollary 5.1 There exists some sequence {X∗εn
} of unstable Jεn -extremal surfaces with

Jεn(X
∗
εn
) > max{Jεn(X1), Jεn(X2)} + e

4 , for some null-sequence {εn}, and some limit
surface X∗ in C∗(�) ∩ C0(B̄, R3) such that

X∗εn
−→ X∗ in C0(B̄, R3) and weakly in H1,2(B, R3). (100)

Proof By Proposition 5.2 we can apply Theorem 4.1 to X1, X2 and Fε , for ε < ε̄,
yielding the existence of some unstable Jε-extremal surface {X∗ε } with Jε(X∗ε ) >
max{Jε(X1), Jε(X2)} + e

4 . Moreover by Theorem 5.1 the family {X∗ε }ε<ε̄ is equi-
continuous on B̄ and by (92) together with a suitable Poincaré inequality we also
know that ‖ X∗ε ‖H1,2(B)≤ const. Thus together with Rellich’s embedding theorem,
Riesz’ selection theorem and the proof of Arzela-Ascoli’s theorem we achieve our
assertion. ��

Now combining this with (56) and Proposition 5.1 we can apply the ideas of the
proof of Theorem 2.1 in order to show

Theorem 5.2 There holds also for every r ∈ (0, 1):

‖ X∗εn
−X∗ ‖H1,2(Br(0))−→ 0 for n→∞. (101)

In particular, X∗ turns out to be conformally parametrized a.e. on B.

Proof We denote (Iε)� := (Fε)�+k D� for any domain� ⊂ B. Firstly we infer from
Proposition 5.1:

| (Iε)�(X∗)− I�(X∗) |=| (Fε)�(X∗)− F�(X∗) |−→ 0, (102)

and together with inequality (56) and property (9) of {Fε} in [8] even:

| (Iε)�(X∗ε )− I�(X∗ε ) | = | (Fε)�(X∗ε )− F�(X∗ε ) |
≤ ρ(ε)AB(X∗ε ) ≤ ρ(ε)

m2

4 m1
L(�)2 −→ 0 for ε ↘ 0,

(103)

with ρ(ε) := supR3\{0} | ∇Fε−∇F |. We choose some r ∈ (0, 1) arbitrarily such that (7)
holds for Yn := X∗ −X∗εn

and set δn :=‖ X∗ −X∗εn
‖C0(B̄), consider the sequence {rn}
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given by rn := r + δn and set Br := Br(0). Firstly as in (20) we select a subsequence
{εnj}, depending on r, such that

DCr,rnj
(X∗ −X∗εnj

) −→ 0 for j→∞. (104)

Now we can follow the lines of the proof of Theorem 2.1 in order to show:

lim sup
j→∞

(Iεnj
)Br(X

∗
εnj
) ≤ lim

j→∞(Iεnj
)Br(X

∗) = IBr(X
∗). (105)

To this end we simply have to replace F by Fεn , X̄ by X∗ and Xn by X∗εn
, thus now

using the notations Rn := R(X∗εn
), Zn and δZn with the analogous meanings. We test

the variational equalities

δIεn(X
∗
εn

,ϕ) = 0 ∀ϕ ∈ H̊1,2(B, R3)

(see (9) and p. 407 in [6]) of the Iεn -extremal surfaces X∗εn
by the functions

ϕn(w) :=
⎧⎨
⎩

X∗(w)−X∗εn
(w) : w ∈ Br(0)

rn−|w|
rn−r (X

∗(w)−X∗εn
(w)) : w ∈ Cr,rn

0 : w ∈ Crn,1.

Since the Fε share the same properties (A) with the replaced F, especially the same
growth constants m1 and m2, we obtain as in (18), (21) and (23) on account of (104)
for the subsequence {εnj}:

(Iεnj
)Br(X

∗)− (Iεnj
)Br(X

∗
εnj
)

≥ −
∫

Rnj∩Cr,rnj

〈∇Fεnj
(Znj), δZnj〉dudv− k

∫

Cr,rnj

DX∗εnj
·Dϕnj dudv

= −δ(Iεnj
)Cr,rnj

(X∗εnj
,ϕnj) −→ 0,

for j→∞, i.e.

lim inf
j→∞ ((Iεnj

)Br(X
∗)− (Iεnj

)Br(X
∗
εnj
)) ≥ 0,

which yields (105) taking also (102) into account. As we also know that X∗εn
⇀ X∗

in H1,2(B, R3) by (100) we obtain by the weak lower semicontinuity of IBr , (103) and
(105):

lim sup
j→∞

(Iεnj
)Br(X

∗
εnj
) ≤ IBr(X

∗) ≤ lim inf
j→∞ IBr(X

∗
εnj
)

= lim inf
j→∞ (Iεnj

)Br(X
∗
εnj
),

and therefore again combined with (103):

IBr(X
∗) = lim

j→∞(Iεnj
)Br(X

∗
εnj
) = lim

j→∞ IBr(X
∗
εnj
).

Now in combination with the weak H1,2(B)-convergence in (100) we infer by Lemma
6 on p. 43 in [7] that

DBr(X
∗
εnj
) −→ DBr(X

∗) for j→∞, (106)
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thus again combined with the weak H1,2(B)-convergence and the C0(B̄)-convergence
in (100) we arrive at the assertion (101) for the chosen radius r ∈ (0, 1) and the con-
sidered subsequence {X∗εnj

}. Now (101) follows exactly as in the ending of the proof

of Theorem 2.1, which implies in particular that X∗ inherits its conformality from the
X∗εn

a.e. on Br(0) for any r < 1, thus a.e. on B. ��
Now we follow the lines of the proof of Theorem 2.2 to achieve

Theorem 5.3 The limit surface X∗ of Corollary 5.1 is an I-surface again, thus a J -ex-
tremal surface.

Proof We replace X̄ by X∗ and Xn by X∗εn
in the proof of Theorem 2.2, choose some

arbitrary r ∈ (0, 1), define the sets Sr, Rr, Sn
r , Rn

r , σ n and τn analogously to (28) and
use the abbreviations Z, Zn, δZ and δZn with the analogous meanings. Taking into
account the conformality of the involved surfaces the desired inequality (29) becomes
now

δFBr(X
∗,ϕ) ≥ lim inf

n→∞ δ(Fεn)Br(X
∗
εn

,ϕ) (107)

∀ϕ ∈ H̊1,2(Br(0), R3), with Br := Br(0), and (32) turns into∫

Rn
r

〈∇Fεn(Z
n), δZn〉dudv−

∫

Rr

〈∇F(Z), δZ〉dudv

=
∫

Br

χRn
r ∩Rr〈∇Fεn(Z

n), δZn − δZ〉dudv (108)

+
∫

Br

χRn
r ∩Rr 〈∇Fεn(Z

n)− ∇F(Z), δZ〉dudv

−
∫

Br

χσn〈∇F(Z), δZ〉dudv+
∫

Br

χτn〈∇Fεn(Z
n), δZn〉dudv.

Since the Fε have the same growth constants as F we obtain from the above theorem
the analogue of (33). Furthermore due to (101) we obtain a subsequence {Znk} for
which

Znk(w) −→ Z(w) for a.e. w ∈ Br(0). (109)

We rename {nk} into {n} again and shall consider this sequence henceforth. Now we
choose some point w ∈ Br(0) \ N arbitrarily, where N ⊂ Br(0) is defined as in the
proof of Theorem 2.2, and only have to refine the argument for the first case in which
we suppose to hold w ∈ Rnj

r ∩Rr for an increasing sequence {nj} ⊂ N. Then we obtain
by (109), the continuity of ∇F on R

3 \ {0} and (9) in [8]:

| ∇Fεnj
(Znj)(w)− ∇F(Z)(w) |

≤| ∇Fεnj
(Znj)(w)− ∇F(Znj)(w) | + | ∇F(Znj)(w)− ∇F(Z)(w) |

≤ sup
R3\{0}

| ∇Fεnj
− ∇F | + | ∇F(Znj)(w)− ∇F(Z)(w) |−→ 0 for j→∞.

As we have χRn
r ∩Rr(w) = 0 for n ∈ N \ {nj} we can conclude:

χRn
r ∩Rr(w) (∇Fεn(Z

n)(w)− ∇F(Z)(w)) δZ(w) −→ 0 for n→∞, (110)
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and in Case (2), i.e. if there exists some number N ∈ N such that w �∈ Rn
r ∩Rr, ∀n > N,

we obtain (110) immediately. Hence, we gain (110) for a.e. w ∈ Br(0) and by | ∇Fεn |,
| ∇F |≤ m2 on R

3 \ {0} Lebesgue’s convergence theorem finally implies
∫

Br

χRn
r ∩Rr (∇Fεn(Z

n)− ∇F(Z)) δZ dudv −→ 0. (111)

Moreover we gain here (38) without any changes on account of (101). Finally we
achieve as in (43) by the properties (A) of the Fεn for any n ∈ N:

〈∇Fεn(Z
n), δZn〉 ≤ Fεn(δZ

n). (112)

Hence, noting that δZ = 0 on τn = Sr\Sn
r we obtain by Fεn(0) = 0, (112), the Lipschitz

continuity of the Fεn with Lip.-const.= m2 and (101):
∫

τn

〈∇Fεn(Z
n), δZn〉dudv ≤

∫

τn

Fεn(δZ
n)− Fεn(δZ)dudv

≤ m2

∫

Br

| δZn − δZ | dudv −→ 0.

Hence, combining this with (108), (111), the analogous convergences of (33) and (38)
and recalling that we have selected subsequences twice, we obtain for a subsequence
{nj}:

lim inf
n→∞ (δ(Fεn)Br(X

∗
εn

,ϕ)− δFBr(X
∗,ϕ))

≤ lim inf
j→∞ (δ(Fεnj

)Br(X
∗
εnj

,ϕ)− δFBr(X
∗,ϕ))

= lim inf
j→∞

⎛
⎜⎜⎝

∫

Rnj
r

〈∇Fεnj
(Znj), δZnj〉dudv−

∫

Rr

〈∇F(Z), δZ〉dudv

⎞
⎟⎟⎠ ≤ 0

∀ϕ ∈ H̊1,2(Br(0), R3), which proves (107). Together with (101) we gain

δIBr(X
∗,ϕ) ≥ lim inf

n→∞ δ(Iεn)Br(X
∗
εn

,ϕ) = 0

∀ϕ ∈ H̊1,2(Br(0), R3), where we used that the X∗εn
are Iεn -extremal surfaces. Now one

can follow the ending of the proof of Theorem 2.2 to achieve even

δI(X∗,ϕ) ≥ 0 ∀ϕ ∈ H̊1,2(B, R3),

which characterizes X∗ to be an I-surface by Lemma 2 in Section 2.5 in [7]. ��

Now following the lines of Shiffman’s proof of the “continuity theorem” 11.1 in
[12], i.e. of Theorem 3.2, we show

Corollary 5.2 There holds also

lim
n→∞J (X∗εn

) = J (X∗) = lim
n→∞Jεn(X

∗
εn
). (113)



Unstable extremal surfaces of the “Shiffman functional” 409

Proof On account of Corollary 5.1, Theorem 5.2, L(X∗εn
|∂B) ≡ L(�) = L(X∗ |∂B),

m1 | z |≤ Fε(z) ≤ m2 | z | ∀ z ∈ R
3 uniformly in ε > 0 and (92) one can see that all

estimates in the proof of the “continuity theorem” 11.1 in [12], i.e. of Theorem 3.2,
especially the estimate on p. 548 in [12], remain valid uniformly in n, if we replace
F by Fεn , J by Jεn , Xn by X∗εn

and X̄ by X∗. Hence, we conclude firstly only for a
subsequence {εnj} that for any ρ > 0 there exists some N(ρ) ∈ N with

| Jεnj
(X∗εnj

)− Jεnj
(X∗) |<

(
1+ 3m2 + 2m2 +m1

m1
k
)
ρ,

if j > N(ρ). Thus together with (102) and (103) for � := B we obtain:

lim
j→∞J (X∗εnj

) = J (X∗) = lim
j→∞Jεnj

(X∗εnj
).

Now the principle of subsequences yields assertion (113). ��
Hence, combining (113) with Corollary 5.1 and (97) we arrive at:

J (X∗)←− Jεn(X
∗
εn
) > max

l=1,2
{Jεn(Xl)} + e

4
−→ max

l=1,2
{J (Xl)} + e

4
,

which finally proves the last assertion of the main result, Theorem 1.1, about the J -
(respectively I-) extremal surface X∗.
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