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Abstract. We describe the transport properties of a point contact under the influence of a classical two-level
fluctuator. We employ a transfer matrix formalism allowing us to calculate arbitrary correlation functions
of the stochastic process by mapping them on matrix products. The result is used to obtain the generating
function of the full counting statistics of a classical point contact subject to a classical fluctuator, including
extensions to a pair of two-level fluctuators as well as to a quantum point contact. We show that the noise
in the quantum point contact is a sum of the (quantum) partitioning noise and the (classical) noise due to
the two-level fluctuator. As a side result, we obtain the full counting statistics of a quantum point contact
with time-dependent transmission probabilities.

1 Introduction

The impact of mobile impurities on transport through a
quantum conductor attracted a lot of attention soon after
it was realized that the conductance of a dirty coherent
sample is sensitive to the position of a single impurity; this
discovery formed the basis for the explanation of flicker
noise as it appears due to the presence of bistable mo-
bile impurities [1,2]. A detailed characterization of charge
transport through a quantum conductor is provided by the
full counting statistics (FCS) [3]. During the past decade,
this description has been applied to numerous systems [4]
and a first attempt to describe the influence of a two-
level fluctuator on the FCS of quantum transport has been
given in reference [5]. In the present paper, we calculate
the full counting statistics of charge transport through a
(classical or quantum) point contact coupled to a classi-
cal two-level fluctuator; we go beyond previous studies by
considering the combined effects of the presence of one or
many mobile impurities, as well as quantum-partitioning
and the Fermi statistics on the FCS. Also, we reconsider
carefully the case when partitioning is neglected and cor-
rect previous findings which are flawed when calculating
the fourth or higher cumulants.

The influence of a fluctuating (uncontrollable) envi-
ronment on a (controllable) device is a generic problem [6]
and our work is related to other studies, e.g., the transport
statistics through a quantum dot in the Coulomb-blockade
regime [7,8] or the effect of a bistability on the transport
through a quantum point contact [9,10]. Another exam-
ple is the dephasing of qubits due to a classical [11] or
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quantum [12] two-level system, or the studies on 1/f -noise
originating from telegraph noise due to classical [13,14] or
quantum [11,15–17] two-level fluctuators. The two prob-
lems, full counting statistics of charge transport and de-
phasing of a quantum system (qubits) are related through
the equivalence of fidelity [18] and full counting statis-
tics [3], as has been pointed out recently [19].

In our analysis below, we describe the time evolu-
tion of the two-level fluctuator by rate equations which
can be solved explicitly. We then study the full count-
ing statistics of a wire with a conductance depending on
the state of the fluctuator. The fluctuator induces noise
in the transport current through the wire which we eval-
uate using a mapping of correlation functions on matrix
products. Using this mapping, we are able to calculate the
full counting statistics of a classical wire coupled to a two-
level fluctuator. Furthermore, we discuss the situation of
a second (independent) fluctuator and show that a non-
linear interaction with the wire can lead to correlations in
the noise even though the fluctuators evolve independent
of each other. Finally, we apply our method to the case
of a quantum wire which exhibits intrinsic partitioning
(shot) noise [20,21]. We derive a formula which incorpo-
rates both classical- (due to the two-level fluctuator) and
quantum- (due to the point contact) noise. Thereby, we
give an explicit expression for the full counting statistics
of a quantum point contact whose transmission probabil-
ities change with time. As two-level fluctuators seem to
be a major obstacle for achieving solid state implemen-
tations of qubits with long coherence times, being able
to characterize the influence of a two-level fluctuator on
transport through a point contact offers the possibility to
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Fig. 1. Sketch of the setup: a two-level system fluctuating
incoherently between states x1,2 with rates γ12 and γ21 is cou-
pled to a wire with a constriction. The conductance G of the
wire changes according to the state of the fluctuator, inducing
noise in the current flowing through the device.

learn about the fluctuating environment by measuring the
full counting statistics through a nearby quantum point
contact. The (partial) overlap of our results with previous
work [7,9,11] will be discussed below.

2 Single two-level fluctuator

Consider a classical particle which can be trapped in an
external potential at two positions denoted by x1 and x2,
cf. Figure 1. The potential is characterized by the energies
E1,2 associated with the two valleys, which are shifted by
the amount Δ = E2 − E1 with respect to each other, and
the height of the barrier U . We assume the dynamics to be
given by thermally activated hopping over the barrier [22].
The particle performs a random (Brownian) motion where
the probabilities P1,2 to be in either valley obey the rate
equations

Ṗ1(t) = −γ21P1(t) + γ12P2(t),

Ṗ2(t) = γ21P1(t) − γ12P2(t), (1)

where the rate to escape from x1 to x2 is given by
γ21 = γ1→2 ∝ e−U/ϑ and the reverse process from x2 to
x1 is governed by the rate γ12 = γ2→1 ∝ e(Δ−U)/ϑ, with
ϑ the temperature. In equilibrium, the probabilities P eq

1,2
are such as to obey the balance equation dN21 = dN12

which equates the number of particles dN21 = γ21P
eq
1 dt

going from x1 to x2 during the time dt, with the num-
ber of particles dN12 = γ12P

eq
2 dt going the opposite way.

The equilibrium probabilities therefore satisfy the Gibbs
weight

P eq
2 /P eq

1 = e−Δ/ϑ (2)

and together with the probability conservation P eq
1 +

P eq
2 = 1, we obtain

P eq
1 = γ12/Γ, P eq

2 = γ21/Γ, (3)

where we have introduced the total rate Γ = γ12 + γ21.
Introducing the vector P(t) with components P1,2(t),

the rate equation (1) can be written as Ṗ(t) = −hP(t),

with the Fokker-Planck Hamiltonian [23] given by

h =
(

γ21 −γ12

−γ21 γ12

)
. (4)

Note that the Hamiltonian h is not Hermitian (left and
right eigenvalues are not simply adjoint to each other).
Nevertheless, its eigenvalues are real (and even positive).
To make this point clear, we write the Hamiltonian h in
a new basis h′ = s−1hs using the transformation matrix
s = diag(

√
P eq

1 ,
√

P eq
2 ), such that

h′ =

(
γ21 −Γ

√
P eq

1 P eq
2

−Γ
√

P eq
1 P eq

2 γ12

)
. (5)

It is now visible that the matrix h′ (and therefore also the
matrix h) has real (the matrix is symmetric) and positive
(the determinant and the trace of the matrix are posi-
tive) eigenvalues. The evolution conserves the probability
as ∂t[P1(t) + P2(t)] = 0, as is evident from equation (1).
This relation implies that (1, 1) · Ṗ(t) = 0 and it follows
that 〈0| = (1, 1) is a left eigenvector of the Hamiltonian h
to the eigenvalue 0. To every left eigenvector there exists
a corresponding right eigenvector with the same eigen-
value which we will denote by |0〉. The right eigenvector
to the eigenvalue 0 is given by the equilibrium distribu-
tion |0〉 = Peq, h|0〉 = 0. The second eigenvalue is given
by Γ with the corresponding right [left] eigenvectors as-
suming the form |Γ 〉 = (1,−1)T [〈Γ | = (P eq

2 ,−P eq
1 )]; note

that the eigenvectors are normalized such that 〈a|b〉 = δab

and
∑

a |a〉〈a| = �2 with a, b ∈ {0, Γ}. Using the eigenba-
sis of h, it is possible to compute the evolution operator
P(t > 0) = exp(−ht) =

∑
a e−at|a〉〈a|. The matrix ele-

ment Pmn(t) denotes the conditional probability for the
particle to be transferred from state n to m in the time
t. The evolution only depends on the time difference as
the Hamiltonian h is time-independent. An explicit calcu-
lation yields the expression

P(t) =
(

P eq
1 + P eq

2 e−Γt P eq
1 (1 − e−Γt)

P eq
2 (1 − e−Γt) P eq

2 + P eq
1 e−Γt

)
(6)

for the propagator during the time t. As the stochastic
process is Markovian, the propagator (6) incorporates all
the information needed in order to calculate general cor-
relation functions of the stochastic process [24], see also
below.

3 Classical wire

We consider a classical wire coupled to the two-level fluc-
tuator. We assume the two-level system to be a charge
impurity which interacts with the wire, e.g., via Coulomb
forces. The net effect of the charge impurity is to change
the conductance of the wire G1,2 depending on the posi-
tion x(t) = x1,2 of the two-level system. The wire is biased
by a constant voltage V such that the current is deter-
mined by I1,2 = V G1,2. The current in the wire jumps
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between I1 and I2 in a random way given by the dynam-
ics of the two-level fluctuator which we assume to be in
thermal equilibrium, i.e., in the state |0〉. The fluctuations
of the two-level system induce current noise. In our discus-
sion, any kind of back-action of the wire on the two-level
fluctuator is neglected.

3.1 Correlation functions – mapping on matrices

With our focus on the full counting statistics, we are in-
terested in obtaining the moments of the charge Q =∫ t

0
dt1 I(t1) transmitted through the point contact dur-

ing the time t; here, I(t1) denotes I1,2 depending on the
state x(t1) = x1,2 of the two-level fluctuator at time t1. As
I(t1) = V G(t1), we first concentrate on correlation func-
tions of G(t), where statistical averages over the stochas-
tic process (1) will be denoted by 〈·〉. In quantum me-
chanics, it is well-known that correlation functions can be
evaluated either in the operator or in the path-integral
formalism [25]. Likewise, we have the choice to apply a
stochastic path-integral approach [7,26] or to use the oper-
ator formalism. Here, we stay with the operator formalism
introduced in the previous section. Note that the propaga-
tor Pmn(t2 − t1), cf. equation (6), denotes the conditional
probability (the transfer matrix) to find the system in
state xm at time t2, given that it resided in xn at time t1,
Pmn(t2 − t1) = 〈x(t2) = xm|x(t1) = xn〉; i.e., within a
path-integral formulation, P(t) involves already an inte-
gration over all possible paths between t1 and t2.

The average conductance 〈G(t1)〉 is readily calculated.
For a system residing in a stationary state given by
〈x(t1) = xn〉 = P eq

n , we obtain

G(t1) =
∑

n =1,2

Gn 〈x(t1) = xn〉 = G1P
eq
1 + G2P

eq
2 . (7)

The calculation of the conductance correlator
〈G(t2)G(t1)〉 is more involved. We proceed slowly in
order to motivate our general mapping between the
calculation of correlation functions and the evaluation of
matrix products of specific matrices. In order to calculate
〈G(t2)G(t1)〉, we assume first that t2 > t1; classical
correlators are symmetric so that the opposite ordering
of times reduces to the same quantity. Using the fact
that the stochastic process is Markovian, we expand the
correlation function 〈G(t2)G(t1)〉 =

∑
m,n Gm〈x(t2) =

xm|x(t1) = xn〉Gn〈x(t1) = xn〉 [24]; this expansion can
be seen as a transfer-matrix expansion of the correlation
function. We obtain the mapping for the correlator
(t2 > t1)

〈G(t2)G(t1)〉 =
∑
mn

GmPmn(t2 − t1)GnP eq
n

=
∑
klmn

GkδkmPml(t2 − t1)GlδlnP eq
n

= 〈0|Ge−h(t2−t1)G|0〉 (8)

with the diagonal matrix Gmn = Gnδmn. Introducing the
“interaction representation”

GI(t) = ehtGe−ht (9)

of the matrix G, the correlation function equation (8) can
be further simplified to

〈G(t2)G(t1)〉 = T 〈0|GI(t2)GI(t1)|0〉, (10)

where the time-ordering operator T has been included in
order to relieve the restriction t2 > t1. It is easy to see
that the above derivation is not restricted to the second
order correlation function, but can be applied in the same
way to higher order correlation functions. We thus arrive
at the mapping

〈G(tN ) · · ·G(t1)〉 = T 〈0|GI(tN ) · · ·GI(t1)|0〉, (11)

where the left hand side is a correlation function for the
classical stochastic process involving the two-level fluctu-
ator and the right hand side is a matrix element involv-
ing the matrices GI(tn) and the vectors |0〉 = Peq and
〈0| = (1, 1).

3.2 Full counting statistics

We are now in the position to calculate the generating
function

χ(λ) = 〈eiλ
∫ t
0 dt′I(t′)〉 (12)

for the zero-frequency current-correlation functions (mo-
ments) of a classical point contact coupled to a two-level
fluctuator. The moments are obtained as the Taylor coef-
ficients 〈Qn〉 = (−i∂λ)nχ|λ=0. Alternatively, the stochas-
tic process can be characterized by irreducible cumulants
which are given by the expansion coefficient of the loga-
rithm of the characteristic function

〈〈Qn〉〉 =
( d

idλ

)n

log χ(λ)
∣∣∣
λ=0

. (13)

The characteristic function χ(λ) can be recast in the form

χ(λ) = T 〈0|eiλV
∫

t
0 dt′GI(t

′)|0〉 (14)

using the mapping equation (11). This equation can be
rewritten using the well-known mapping between the
“Schrödinger” and the “interaction” representation [23],
e−(h+v)t = e−ht T exp[−

∫ t

0
dt′vI(t′)] with vI(t) = ehtve−ht.

Here, we apply the relation in the opposite direction to ar-
rive at an expression without the awkward time-ordering,

χ(λ) = 〈0|e(−h+iλV G)t|0〉. (15)

This formula was derived before by Bagrets and Nazarov
using a stochastic path integral formulation of the problem
(the Fokker-Planck Hamiltonian h and the counting field
λ are denoted by L̂ and λ in their paper [7]). We believe
that the present approach using transfer matrices and the
mapping of the interaction picture onto the Schrödinger
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picture is more transparent. Note though, that the count-
ing field λ enters differently in their work compared to
ours. Here, λ couples to the classical current I whereas
Bagrets and Nazarov discuss the transport of individual
(quantum) particles such that λ may only enter in the
combination exp(iλ) due to the quantization of charge.

For further convenience, we subtract the average
charge 〈Q〉 = V 〈G〉t in order to obtain the reduced full
counting statistics

χ̂(λ) = χ(λ)e−iλ〈Q〉 = 〈0|e−ĥt|0〉, (16)

with the matrix ĥ = h − iλV (G − 〈G〉). Apart from the
average charge (which is zero for χ̂), both log χ and log χ̂
generate the same cumulants. The explicit calculation of
the characteristic function of the full counting statistics χ̂
involves the eigenvalues

ĥ± =
Γ

2

[
1 + iλΔgΔP eq ±

√
1 + 2iλΔgΔP eq − λ2(Δg)2

]

of the matrix ĥ, where we have introduced the differ-
ence in the equilibrium population ΔP eq = P eq

2 − P eq
1

and the difference in the (dimensionless) conductance
Δg = V (G2 − G1)/Γ .

3.3 Asymptotic long-time limit

For long times Γt � 1, the matrix exponential (16) is
dominated by the eigenvalue ĥ− of ĥ with the smallest
real part [7,27,28]. We obtain an explicit expression for
the generating function

log χ̂�(λ) = −ĥ− t. (17)

All cumulants become linear in t, due to the fact that the
autocorrelation time in the system is given by Γ−1 and
every state decays to the equilibrium state after this time.
The fluctuations for Γt � 1 can be seen as a sum of inde-
pendent stochastic processes and the cumulant generating
function log χ̂ becomes extensive in t. Interestingly, it is
possible to obtain an explicit relation for the cumulants
(n ≥ 2)

〈〈Qn〉〉� = n! V n(G1 − G2)nΓ 1−nt (18)

×
n−1∑
k=1

Nn−1,k(−1)k+1(P eq
1 )k(P eq

2 )n−k,

with the Narayana numbers Nn,m =
(

n
m

)(
n

m−1

)
/n [29].

The cumulants in (18) grow factorially in magnitude with
n and oscillate as a function of ΔP eq which are generic
features of high-order cumulants [30]. The first couple of
cumulants assume the form

〈〈Q2〉〉� = 2P eq
1 P eq

2

V 2(G1 − G2)2t
Γ

, (19)

〈〈Q3〉〉� = 6P eq
1 P eq

2 (P eq
2 − P eq

1 )
V 3(G1 − G2)3t

Γ 2
.

Note that all the odd cumulants vanish if the process is
symmetric γ12 = γ21, cf. equation (3). The cumulants
in (18) and (19) agree with the result in reference [5].
However, starting with the 4-th cumulant a discrepancy
arises; e.g., for the 4-th cumulant we obtain

〈〈Q4〉〉� =

24P eq
1 P eq

2 [(P eq
2 − P eq

1 )2 − P eq
1 P eq

2 ]
V 4(G1 − G2)4t

Γ 3
,

which is different from the result [5]

〈〈Q4〉〉� = 24P eq
1 P eq

2 (P eq
2 − P eq

1 )2
V 4(G1 − G2)4t

Γ 3
.

The latter result is incorrect as it misses terms due to the
implicit assumption in reference [5] that the reduced con-
ductance correlators 〈〈G(tn) · · ·G(t1)〉〉 may only depend
on the largest time difference tn − t1. Even though this
hypothesis is correct for correlators up to n = 3, it fails
for higher-order correlators.

3.4 Short times

For short times, t � Γ−1 there is no evolution of the
two-level system and we can set ht = 0. The full counting
statistics reads

χ̂�(λ) = 〈0|eiλV (G−〈G〉)t|0〉
= P eq

2 eiλV (G2−G1)P
eq
1 t + P eq

1 eiλV (G1−G2)P
eq
2 t,

(20)

with the cumulants (n ≥ 2) given by

〈〈Qn〉〉� = V n(G1 − G2)ntn

×
n−1∑
k=1

En−1,k−1(−1)k+1(P eq
1 )k(P eq

2 )n−k,

(21)

where the Eulerian numbers En,m are defined through
En,m =

∑m
k=0(−1)k

(
n+1

k

)
(m + 1 − k)n [29]. In the short

time limit, the cumulants grow like 〈〈Qn〉〉 ∝ tn, i.e.,
higher order cumulants are suppressed at short times. The
first couple of cumulants are explicitly given by

〈〈Q2〉〉� = P eq
1 P eq

2 V 2(G1 − G2)2t2,

〈〈Q3〉〉� = P eq
1 P eq

2 (P eq
2 − P eq

1 )V 3(G1 − G2)3t3. (22)

3.5 Arbitrary times

Expanding the matrix exponential in equation (16) in its
eigenbasis, the generator for the full counting statistics
reads

χ̂ =
ĥ+e−ĥ−t − ĥ−e−ĥ+t

ĥ+ − ĥ−
(23)

for arbitrary times. This result has been first derived in
reference [11] in the context of dephasing of a qubit due to
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the interaction with a classical two-level fluctuator, where
λ denotes the interaction of the qubit with the fluctuator.
Here, we are interested in the transport properties of a
point contact characterized by cumulants which are given
by the Taylor expansion of log χ around λ = 0; the relation
between these two problems is a consequence of the generic
equivalence between full counting statistics and fidelity,
see reference [19]. The first couple of cumulants are given
by

〈〈Q2〉〉 = 2P eq
1 P eq

2

V 2(G1 − G2)2[(Γt − 1) + e−Γt]
Γ 2

,

〈〈Q3〉〉 = 6P eq
1 P eq

2 (P eq
2 − P eq

1 )

× V 3(G1 − G2)3[(Γt − 2) + (Γt + 2)e−Γt]
Γ 3

.

(24)

3.6 Symmetric fluctuator

A special situation is given when the two-level fluctuator
is symmetric, Δ = 0, i.e., P eq

1 = P eq
2 = 1/2. Then the

characteristic function assumes the simple form

log χ�(λ) =
Γt

2

[√
1 − λ2V 2(G1 − G2)2/Γ 2 − 1

]
(25)

for long times. In the short time limit, the generating func-
tion

χ�(λ) = cos[λV (G1 − G2) t/2] (26)

becomes periodic. In both cases, due to the symmetry of
the states x1 and x2, only the even cumulants are nonva-
nishing.

4 A pair of two-level fluctuators

Needless to say, the mapping of Section 3.1 is not re-
stricted to a single two-level fluctuator. It can be gen-
eralized to an arbitrary number of states whose dynam-
ics is governed by classical rate equations described by a
Fokker-Planck Hamiltonian h. To illustrate this concept,
the example of two classical, uncorrelated two-level fluc-
tuators coupled to a wire is discussed in the following. We
restrict ourselves to the case where the dynamics of the
two-level systems is completely independent of each other
such that h = hα+hβ; here and in the following, we denote
quantities involving only the first (second) fluctuator with
a superscript α(β), e.g., hα = hα ⊗ �

β . Written explicitly
in the basis {|1〉α⊗|1〉β, |2〉α⊗|1〉β, |1〉α⊗|2〉β, |2〉α⊗|2〉β},
the Fokker-Planck Hamiltonian reads

h =

⎛
⎜⎜⎜⎜⎝

γα
21 + γβ

21 −γα
12 −γβ

12 0

−γα
21 γα

12 + γβ
21 0 −γβ

12

−γβ
21 0 γα

21 + γβ
12 −γα

12

0 −γβ
21 −γα

21 γα
12 + γβ

12

⎞
⎟⎟⎟⎟⎠ . (27)

One is tempted to think that the independent dynamics of
the two subsystems would lead to independent statistics,
such that the characteristic function of the full counting
statistics is given by the product of the individual charac-
teristic functions. Indeed, this is the generic case for two-
level fluctuators coupling to a qubit, where the combined
effect leads to 1/f noise [11,13,15–17]. However, here, this
argument is only valid when the interaction with the wire
is “linear” such that the effects of the individual subsys-
tems simply add up, in formula G = Gα + Gβ . Having
the model of Figure 1 in mind, this assumption is incor-
rect as a (quantum) point contact does not react linearly
on changes in the gate potential and, therefore, the noise
of individual fluctuators does not simply add up. In the
following, we first treat the (simple) case of linear inter-
action and then comment on the correlation which arises
in the general case by applying perturbation theory in the
nonlinearity.

Introducing the reference conductance G0 = Gα
0 + Gβ

0
as well as the induced changes ΔGx = Gx

1 − Gx
0 due to

the fluctuator x = α, β, the conductance matrix for linear
interaction is given by

G = G0�4 + diag(0, ΔGα, ΔGβ , ΔGα + ΔGβ); (28)

the increase of conductance in the case when both fluctu-
ators are in state x2 is the sum of the respective increases
when only one of the fluctuators is in state x2, that is
to say, the effects of the two fluctuators simply add up.
In this case, the characteristic function assumes the form
χ(λ) = χα(λ)χβ(λ) and the cumulants 〈〈Qn〉〉 become a
sum of cumulants generated by the two individual subsys-
tems.

In the case of a general (diagonal) matrix G, the so-
lution of the problem involves the determination of the
roots of a polynomial of fourth degree and the charac-
teristic function does not separate, even though the time
evolution of the two fluctuators is completely indepen-
dent of each other. To be more explicit, we want to show
how a small perturbation ΔG � ΔGα + ΔGβ in G44

destroying the linearity (additivity) leads to correlations
which can be arbitrary large for long times. We define
χcorr(λ) = χ(λ)/χα(λ)χβ(λ) as the part of the character-
istic function which describes the correlation between the
action of the individual subsystems. In the long-time limit,
to first order in ΔG, we can apply standard perturbation
theory to find the correction to the lowest eigenvalue of
equation (27). The cumulant generating function for the
correlation is given by

log χcorr
� (λ) =

iλV ΔGt
∏

x=α,β

(Γ x + iλV ΔGx)P eq,x
2 − ĥx−

ĥx
+ − ĥx−

. (29)

The average transmitted charge changes according to

Δ〈Q〉 = P eq,α
2 P eq,β

2 V ΔGt, (30)
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with P eq,α
2 P eq,β

2 the probability to be in the state |2〉α ⊗
|2〉β and V ΔG the change in the current. Less trivial, the
correlation contribution to the noise

Δ〈〈Q2〉〉 = 4V Δ〈Q〉
[

P eq,α
1

Γ α
ΔGα +

P eq,β
1

Γ β
ΔGβ

]
(31)

depends both on ΔGα and ΔGβ .

5 Quantum wire

Considering a quantum rather than a classical wire, addi-
tional noise appears due to the probabilistic nature of the
charge transport (due to partitioning) even in the absence
of a fluctuating environment. Given a quantum wire with
N channels characterized by their transmission eigenval-
ues T γ , γ = 1, . . . , N , and biased by a voltage potential V ,
the characteristic function of the full counting statistics is
given by [3]

log χq(λ) =
qV t

2π�

∑
γ

log[1 +
(
eiqλ − 1

)
T γ ], (32)

with q the charge of the electron; this result is valid in
the asymptotic limit qV t/� � 1, for low-temperatures
ϑ � qV , and with the proviso that the energy-dependence
of the transmission eigenvalues is negligible in the energy
interval set by the voltage. The quantum nature of the
fermions leads to the noise

〈〈Q2〉〉q = q〈Q〉q
∑

γ T γ(1 − T γ)∑
γ T γ

(33)

which disappears provided that all the channels are either
closed T γ = 0 or completely open T γ = 1. Note that
the noise in equation (33) is sub-Poissonian, i.e., the Fano
factor F = 〈〈Q2〉〉q/q〈Q〉q is less than 1.

Here, we are interested in the case where the quan-
tum wire is capacitively coupled to a two-level fluctua-
tor such that the transmission eigenvalues Tγ change over
time; note that we neglect a possible energy dependence
of the transmission eigenvalues, which corresponds to the
fact that we assume that the scattering center does not
produce any time delay due to the scattering event. The
characteristic function log χq(λ) = det Q is given by the
determinant of the matrix [31]

Qkγ,k′γ′ = 〈φkγ(t)|eiλqQt |φk′γ′(t)〉 (34)

with the counting operator Qt =
∫

I
dx |x〉〈x| integrated

over the interval I = [0, vFt] and

φkγ(x, t) =

{
eik(x−vFt) + rγ(t + x/vF)e−ik(x+vFt) x < 0

τγ(t − x/vF)eik(x−vFt) x > 0
(35)

the single-particle solution of the time-dependent
Schrödinger equation involving a scattering center at x =
0 with time-dependent transmission [reflection] amplitude

τγ(t) [rγ(t)]; note that we have suppressed the transverse
part of the wave function belonging to the channel index
γ. Equation (35) is valid in the linear-spectrum approxi-
mation, where vF is the Fermi velocity and 0 ≤ k ≤ kF

1.
As the matrix Q is block-diagonal in γ and constitutes
a Toeplitz matrix with respect to the index k, its deter-
minant can be shown (using the technique discussed in
Ref. [31]) to have the form

log χq(λ) =
qV

2π�

∫ t

0

dt′
∑

γ

log[1 + (eiqλ − 1)Tγ(t′)] (36)

for long times qV t/� � 1; the expression equation (36)
reduces to equation (32) when the transmission probabil-
ity does not change in time. We now add the classical
two-level fluctuator to the system: depending on the state
x = x1,2 of the nearby two-level fluctuator, the quantum
wire is described by one of the two sets of transmission
eigenvalues T γ

1,2. The total generating function χqtl(λ) is
an average over the individual contributions

χqtl(λ) = 〈χq(λ)〉

=
〈
e(qV/2π�)

∫
t
0 dt′

∑
γ log[1+(eiqλ−1)T γ(t′)]

〉
, (37)

where the average 〈·〉 is over the stochastic process of
the two-level fluctuator. Equation (37) can be calculated
explicitly with the method outlined in Section 3.1. In-
deed, equation (12) goes over to equation (37) via re-
placing iλI(t) with (qV/2π�)

∑
γ log[1 + (eiqλ − 1)T γ(t)].

In this mapping, the conductances Gn are changed to
(q/2πi�λ)

∑
γ log[1 + (eiqλ − 1)T γ

n ] with T γ
n the trans-

parency of the channel γ when the two-level fluctuator
is in the state n. Inserting

iλΔg → μ =
qV

2π�Γ

∑
γ

log

[
1 + (eiqλ − 1)T γ

2

1 + (eiqλ − 1)T γ
1

]
(38)

into equation (17) and using equation (16), we obtain

log χqtl
� (λ) =

∑
n,γ

P eq
n log χq

n(λ)

− Γt

2

[
1 + μ ΔP eq −

√
1 + 2μ ΔP eq + μ2

]
; (39)

here, log χq
n(λ) = (qV t/2π�)

∑
γ log[1+(eiqλ−1)T γ

n ] is the
characteristic function for the FCS, equation (32), depen-
dent on the system’s state (n = 1, 2) and γ runs over the
channel index. The expression (39) coincides with the re-
sult obtained by Jordan and Sukhorukov who considered
the case of rare transitions (�Γ � qV ), see reference [9].
In their work, Jordan and Sukhorukov describe the trans-
port of a conserved charge in a classical bistable system

1 Note that the time-dependence of the scattering matrix
promotes the incoming state to higher energies. In order that
the linear spectrum approximation is still valid the time de-
pendence of T (t) should not be too abrupt.
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where large charge fluctuations drive transitions between
stable states with different transport characteristics. The
generic fluctuations present in the system’s stable states
then combine with the fluctuations of the bistable charge
to generate the transport statistics of the bistable sys-
tem. While describing a very general situation, the specific
analysis in reference [9] is limited to those cases where the
charge-switching events are rare on the time scale of the
underlying fluctuations in the stable states. The trans-
lation to our model may not be obvious from the start
and is done by choosing the process of charge partitioning
for generating the underlying fluctuations (with different
transmission rates T γ

n , n = 1, 2 for the two stable states),
i.e., the generators log χq

n(λ) correspond to the long time
generators Hnt in reference [9]. The non-linearity leading
to switching between stable states generates the transi-
tion probabilities Γ1,2; the latter are determined by an
instanton trajectory and have to be small in the case of
reference [9]. In our model these rates are given as the
basic input parameters γij defining our two-level fluctua-
tor. The condition of rare charge switching events corre-
sponds to the requirement that �Γ � qV . In this limit
equation (39) reduces to the result of the classical point
contact, equation (17), with the conductances given by

G1,2 =
q2

2π�

∑
γ

T γ
1,2. (40)

We observe that the statistics is dominated by the fluc-
tuations of the impurity and the results derived in the
previous sections remain valid in the case of a quantum
wire when the classical conductance is replaced by the
Landauer formula (40).

However, our result equation (39) is also valid in the
opposite regime �Γ � qV , i.e., when the two-level fluc-
tuator noise acts on a timescale which is fast compared
to the partitioning noise. Then only the first term in (39)
contributes and the cumulant generating function is the
average of the expressions (32) for the quantum point con-
tact, to be taken over the positions x1,2 with weights given
by the probabilities P eq

1,2. Having access to both regimes, it
is possible to study the crossover from classical noise (due
to the two-level fluctuator) to quantum-partitioning noise
(due to the quantum point contact). To this end, we cal-
culate the long-time asymptotics of the first two moments
of (37),

〈Q〉qtl
� = V (P eq

1 G1 + P eq
2 G2) t (41)

for the average charge and

〈〈Q2〉〉qtl
� = qV t

q2

2π�

∑
n,γ

P eq
n T γ

n (1 − T γ
n )

+ 2P eq
1 P eq

2

V 2(G1 − G2)2t
Γ

(42)

for the noise. The noise is simply given by the sum of
the quantum partitioning noise (first term) and the noise
due to the dynamics of the impurity (second term). Note

F

T2 = 0.1
T2 = 0.25

T2 = 0.5

qV/�

T2 = 0

0.1

100.1 1

10

1

Fig. 2. Plot of the Fano factor F as a function of the bias
voltage V for a single mode wire with P eq

1 = P eq
2 = 1/2, T1 =

1, and T2 = 0, 0.1, 0.3, and 0.5. The Fano factor starts of at
a value T2(1 − T2)/(1 + T2) < 1 for small voltages. In the
opposite regime, it is given by [(1 − T2)

2/(1 + T2)]qV/2π�Γ
which becomes superpoissonian for V large enough.

the crossover of the noise (42) from sub-Poissonian F ≤ 1
for a fast fluctuator with �Γ � qV (the first term in (42)
dominates) to super-Poissonian F ≥ 1 when the fluctuator
is slow �Γ � qV (the second term in (42) dominates),
provided that G1 �= G2, see Figure 2.

6 Experimental test

It is difficult to experimentally confirm the crossover from
sub- to super-Poissonian noise as described in the previ-
ous section as the quantum-partitioning noise is typically
small and thus the noise of the classical two-level fluc-
tuator will dominate. As a promising setup, we envision
coupling a quantum point contact in GaAs/AlGaAs to
a double dot, e.g., in an InAs nanowire, which serves as
tunable two-level fluctuator. Such a system was studied
recently, see reference [32].

To observe the crossover, both the noise Stl(0)
from the classical two-level fluctuator and the quantum-
partitioning noise Sqp(0) (at zero frequency) have to dom-
inate over the thermal Nyquist-Johnson noise which is
given by

SNJ(0) ≈ 2q2kBT

π�
� 10−28 A2 s (43)

at 50 mK. The quantum-partitioning noise [first term in
Eq. (42)] can be estimated as

Sqp(0) ≈ q3V

8π�
� V [mV]10−27 A2 s (44)

when the system is tuned in the middle of a conductance
step with T ≈ 1/2. Note that for bias voltages V ≥ 0.1 mV
the quantum-partitioning noise is larger than the thermal
noise floor.

Tunneling of an electron between the two quantum
dots with a rate Γ leads to a change in the conductance.
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In reference [32], this change was of the order of 0.1 q2/�.
However, in order to being able to observe the crossover
the capacitive coupling of the double dot to the quantum
point contact should be reduced to a level such that G1 −
G2 ≈ 0.001 q2/�. This provides us with the estimate (using
P eq

1 = P eq
2 = 1/2)

Stl(0) =
V 2(G1 − G2)2

Γ
�

V 2
[
mV2

]
Γ [MHz]

10−26 A2 s (45)

for the zero-frequency noise due to the two-level fluctuator
(second term in Eq. (42)). At a bias voltage V � 1 mV
with a rate Γ � 100 MHz, the noise due to the fluctuator is
given by Stl(0) � 10−28 A2 s dominated by the quantum-
partitioning noise with Stl(0) � 10−27 A2 s. Note that in
experiments rates of the order of 10–100 kHz have been
observed [32,33]. We expect that rates in the 100 MHz
regime to be realistic due to the exponential dependence
of the tunneling rate on the potential barrier. Increasing
the bias voltage V to values of a few mV the noise due to
the classical two-level fluctuator starts to dominate and
the crossover as depicted in Figure 2 can be observed.

7 Conclusion

We have determined the influence of a thermally driven
two-level fluctuator on a point contact through the calcu-
lation of the full counting statistics of transported charge.
Both, classical and quantum point contacts have been con-
sidered and extensions to multiple fluctuators have been
discussed. In our analysis, we have made use of a mapping
between correlation functions of classical stochastic pro-
cesses and simple time-ordered matrix products. For the
case of a quantum point contact, we have shown that the
partitioning noise and the noise due the two-level fluc-
tuator add up and the noise crosses over from sub- to
super-Poissonian depending on the applied voltage bias.
To extend the present formalism to the case of current
correlators at finite frequencies, which provides additional
insights into the dynamics of the two-level fluctuator, is
an interesting problem for future studies.
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