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Abstract
Purpose: The folate receptor (FR) is a promising target for nuclear imaging due to its
overexpression in many different cancer types. A drawback of using folate radioconjugates is
the high accumulation of radioactivity in the kidneys. Therefore, the aim of this study was to
develop a 18F-labeled folate conjugate with an albumin-binding entity to enhance the blood
circulation time and hence improve the tumor-to-kidney ratio.
Procedures: The novel 18F-folate was prepared by conjugation of a 18F-labeled glucose azide to an
alkyne-functionalized folate precursor containing an albumin-binding entity via Cu(I)-catalyzed 1,3-
dipolar cycloaddition. The radioconjugate was tested in vitro on FR-positive KB tumor cells and by
biodistribution and positron emission tomography (PET) imaging studies usingKB tumor-bearingmice.
Results: The radiosynthesis of the albumin-binding [18F]fluorodeoxyglucose–folate ([18F]3) resulted
in a radiochemical yield of 1–2 % decay corrected (d.c.) and a radiochemical purity of ≥95 %. The
specific activity of [18F]3 ranged from 20 to 50 GBq/μmol. In vitro experiments revealed FR-specific
binding of [18F]3 to KB tumor cells. In vivo we found an increasing uptake of [18F]3 into tumor
xenografts over time reaching a value of ∼15 % injected dose (ID)/g at 4 h post-injection (p.i.).
Uptake in the kidneys (∼13 % ID/g; 1 h p.i.) was approximately fourfold reduced compared to
previously published 18F-labeled folic acid derivatives. An excellent visualization of tumor xenografts
with an unprecedentedly high tumor-to-kidney ratio (∼1) was obtained by PET imaging.
Conclusions: [18F]3 showed a favorable accumulation in tumor xenografts compared to the
same folate conjugate without albumin-binding properties. Moreover, the increased tumor-to-
kidney ratios improved the PET imaging quality significantly, in spite of a somewhat higher
background radioactivity which was a consequence of the slower blood clearance of [18F]3.
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Introduction

Overexpression of the folate receptor (FR) is found in
many different cancer types as well as on the surface of

activated macrophages, which are involved in inflammatory
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processes [1]. In healthy organs and tissues, the FR exists only
at a few sites in polarized epithelia, for instance in the kidneys
[2, 3]. In recent years, several folate-based radiotracers have
been developed for nuclear imaging techniques such as
positron emission tomography (PET) or single-photon emis-
sion computed tomography (SPECT) [4, 5]. However, a
drawback of folate radioconjugates is a generally low tumor-
to-kidney ratio as a result of significant accumulation of
radioactivity in the kidneys. Therefore, several attempts were
undertaken to reduce the kidneys uptake of folate radiophar-
maceuticals [6–9]. Recently, it was shown that modification of
antibody fragments with an albumin-binding entity resulted in
increased tumor-to-kidney ratios as a consequence of their
extended circulation time in the blood [10–12]. Encouraged by
these excellent results, we wanted to apply this concept to our
folate radioconjugates. Thus, a small molecular weight
albumin-binding entity [13] was attached to a 1,4,7,10-
tetraazacyclododecane-1,4,7,10-tetraacetic acid (DOTA) con-
jugate of folic acid with the aim to improve the tumor-to-
kidney ratio as a consequence of an enhanced circulation time
in the blood [14]. This novel DOTA–folate conjugate (cm09)
was labeled with 177Lu and tested in tumor-bearing mice. It
showed an unprecedentedly high tumor uptake (18.1±1.80 %
injected dose (ID)/g; 4 h post-injection (p.i.)) which was more
than twice as high as for previously developed DOTA–folate
conjugates without an albumin-binding entity [9, 15, 16].
Moreover, application of 177Lu-cm09 resulted in a reduction of
the renal uptake to 30 % of the value obtained with folate
conjugates without an albumin-binding entity and led to a
tumor-to-kidney ratio which was almost 1 [14].

In this study, we wanted to apply the strategy of increasing
the circulation time of radiofolates to an 18F-labeled folic acid
conjugate for investigation of its in vivo characteristics in FR-
positive KB tumor-bearingmice. For the design of such a novel
folate radiotracer, one of our most successful 18F-folate
conjugates, [18F]fluorodeoxyglucose (FDG)–folate [17], was
selected as a basis for modification. An azide-derivatized 18F-
labeled glucose entity [18] was used as a prosthetic group. It
was attached to a folate alkyne derivative with an albumin-
binding entity as an additional functionality via Cu(I)-catalyzed
1,3-dipolar cycloaddition (Fig. 1). We hypothesized that this
strategy would increase the tumor-to-kidney ratio and hence
result in an improved tumor visualization using PET.

Material and Methods
Synthesis of Albumin-Binding
[19F]FDG-Folate (3)

The synthesis of 2-deoxy-2-fluoroglucopyranosyl azide (2) was
performed according to the procedure described by Maschauer et
al. [18]. Folate alkyne 1 was synthesized as described before [14].
To a solution of the folate alkyne (1, 20 mg, 21 μmol) in t-BuOH/
H2O (1:1, 1.2 ml), 2-deoxy-2-fluoroglucopyranosyl azide (2,
13.3 mg, 64 μmol), 0.1 M aqueous solution of Cu(OAc)2 (0.1 Eq,
21 μl), and 0.1 M aqueous solution of sodium ascorbate (0.2 Eq,

43 μl) were added. The reaction mixture was stirred at room
temperature for 1 h. The product was purified by semi-preparative
HPLC (Supplementary Material). The desired fraction was collect-
ed and lyophilized to provide product 3 as a yellow powder
(7.3 mg, 4.6 μmol, 21 %, purity according to HPLC of 992 %).
HR-MS (ES+) calculated for C46H56FIN13O13, 1,144.3144; found,
1,144.3139.

Radiosynthesis

The production of [18F]fluoride is reported in the Supplementary
Material. The synthesis of 2-deoxy-2-[18F]fluoroglucopyranosyl azide
([18F]2) was prepared according to a previously published procedure
[17, 18]. An aqueous solution of 2-deoxy-2-[18F]fluoroglucopyranosyl
azide ([18F]2) (0.5 ml) was added to the folate alkyne (1, 2 mg,
2.14 μmol) in DMF (0.4 ml) containing Cu(OAc)2 (20 μl, 0.05M) and
sodium ascorbate (40 μl, 0.05 M). The reaction mixture was stirred at
50 °C for 15 min. Purification was achieved by semi-preparative radio-
HPLC, followed by a reversed phase cartridge (Supplementary
Material). The final product [18F]3 was diluted with phosphate-
buffered saline (PBS, pH 7.4, 0.5 ml) for in vitro and in vivo
applications. Quality control was performed by analytical radio-HPLC
(Supplementary Material, Fig. S1). The specific activity of [18F]3
ranged from 20 to 50 GBq/μmol (Supplementary Material, Fig. S2).

Cell Culture and Cell Experiments

Culture of KB cells [19] (human cervical carcinoma cell line with a FR
expression level; German Collection of Microorganisms and Cell
Cultures, DSMZ, Braunschweig, Germany) and cell experiments are
reported in the Supplementary Material.

Biodistribution Studies

All animal experiments were approved by the local veterinary
department and complied with the Swiss and local laws on animal
protection. Animals had free excess to food and water. Female
CD-1 nude mice (Charles River, Germany) were fed with a folate-
deficient rodent diet (Harlan Laboratories, USA). After an
acclimatization period of 5–7 days, KB tumor cells (5×106 cells
in 0.1 ml sterile PBS) were inoculated subcutaneously on both
shoulders of each mouse. Twelve days later, the animals were
intravenous (iv) injected with [18F]3 (∼3 MBq, 0.3 nmol, 100 μl).
Blocking studies were performed with excess folic acid dissolved in
PBS (100 μg in 100 μl) iv injected 5 min prior to [18F]3. Animals
were sacrificed at the indicated time points, and selected organs and
tissues were collected, weighed, and measured in a γ-counter. The
incorporated radioactivity was expressed as percentage injected
dose [% ID] per gram of tissue. Statistical analyses were performed
by using the unpaired two-tailed Student's t test (GraphPad Prism
6.0 Software). A P value of ≤0.05 was considered statistically
significant.

PET/CT Imaging Studies

PET/CT experiments were performed with a dedicated small-
animal PET/CT scanner (eXplore Vista PET/CT, GE). Animals
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were iv injected with [18F]3 (∼35 MBq, ∼1.2 nmol, 100 μl). For
scanning, mice were anesthetized with isoflurane in an air/oxygen
mixture. The PET scans were acquired from 240 to 280 min p.i.
followed by a CT. After acquisition, PET data were reconstructed
in user-defined time frames, and the fused datasets of PET and CT
were analyzed with the PMOD Software (version 3.4).

Results

Chemistry and Radiochemistry

The syntheses of the folate alkyne (1) and the 2-deoxy-2-
fluoroglucopyranosyl azide (2) were previously reported
in the literature [14, 18]. The Cu(I)-catalyzed cyclo-
addition of compounds 1 and 2 was performed in an
aqueous solution. After semi-preparative HPLC purifica-
tion, the nonradioactive reference compound 3 was
obtained in a purity of 992 % and a yield of 21 %. The
radiosynthesis of the albumin-binding [18F]FDG-folate
([18F]3) was performed in analogy to the previously
published [18F]fluorodeoxyglucose–folate [17]. [18F]2
was obtained in 15–22 % radiochemical yield and was
directly used for the “click reaction” with compound 1 to
afford [18F]3 in 15 % conversion. After HPLC purifica-
tion and formulation for in vivo studies, [18F]3 was
obtained in an overall decay-corrected (d.c.) radiochemi-
cal yield of 1–2 % (n=7). The total synthesis time was 3 h,
and [18F]3 was obtained in a radiochemical purity of ≥95 %.
Specific activity at the end of synthesis (EOS) ranged from 20
to 50 GBq/μmol. [18F]3 was confirmed by co-injection of its
nonradioactive reference compound 3 using analytical radio-
HPLC. The log D7.4 of [

18F]3 revealed a value of −3.2±0.4.

In Vitro Cell Experiments

The relative binding affinity of the nonradioactive reference
compound 3 to FR-positive KB tumor cells revealed a value of
0.59±0.14 compared to folic acid which was set to 1. A value
equal to that of folic acid indicates an equal affinity for the FR, a
value lower than 1.0 reflects weaker affinity, and a value higher
than 1.0 reflects stronger affinity [20, 21]. The folate derivative
without albumin-binding entity, fluorodeoxyglucose–folate,
showed a comparable value of 0.63±0.05 [17]. The displace-
ment curve of one representative experiment for the albumin-
binding compound 3 in comparison to the curve obtained for
folic acid is shown in Fig. 2.

In addition, the cellular uptake of the radioactive folate
conjugate [18F]3 was investigated (Fig. 3). After incubation
of [18F]3 with KB tumor cells for 2 h at 37 °C, the uptake
was about 65 % of the total added radioactivity, whereas the
internalized fraction recorded for 29 % calculated per 0.3 mg
protein. Co-incubation with excess folic acid resulted in a

Fig. 1. Schematic radiosynthesis of the folate alkyne derivative 1 containing an albumin-binding entity (blue) with 18F-labeled
glucose azide (red ([18F]2)) as a prosthetic group to obtain the albumin-binding [18F]FDG-folate conjugate ([18F]3).

Fig. 2. Displacement curves of albumin-binding FDG-folate
3, fluorodeoxyglucose–folate, and folic acid using 3H-folic
acid and human FR-positive KB tumor cells.
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significant decline of radiotracer uptake to less than 1 %
(Fig. 3).

Biodistribution Studies

The results of the biodistribution of [18F]3 in KB tumor-
bearing mice are shown in Table 1, including previously
reported data of the radiotracer [18F]fluorodeoxyglucose–
folate that lacks the albumin-binding entity [17]. At 4 h p.i.,
the amount of radioactivity in the blood pool was still 2.21±
0.15 % ID/g. Tumor uptake of [18F]3 steadily increased over
the measured time period (11.5±2.12 % ID/g, 1 h p.i.; 12.8±
0.45 % ID/g, 2 h p.i.; 15.2±0.53 % ID/g, 4 h p.i.). After
mice were co-injected with an excess folic acid, the uptake
of [18F]3 in FR-positive tumor xenografts was reduced by
975 % (4.16±0.43 % ID/g, 2 h p.i.). Specific uptake was
also found in FR-positive tissues and organs such as the

kidneys (17.4±1.14 % ID/g; 2 h p.i.) and salivary glands
(7.76±1.26 % ID/g; 2 h p.i.) where the uptake was reduced
by 83 % and 76 %, respectively, in mice which received
excess folic acid. The tumor-to-kidney ratios were largely
constant at a level of ∼0.8 over the whole time of
investigation. FR-unspecific accumulation of radioactivity
was found in the liver (8.60±1.09 % ID/g; 2 h p.i.),
gallbladder, and feces.

PET Imaging Studies

Figure 4 shows PET images as 3D projections of KB tumor-
bearing mice injected with [18F]3 (Fig. 4a) and the previously
evaluated [18F]fluorodeoxyglucose–folate (Fig. 4b). Both radio-
tracers were found to accumulate in FR-positive tumor
xenografts, but the tumor uptake of [18F]3 was increased, and
the retention in the kidneys was clearly reduced compared to that
of [18F]fluorodeoxyglucose–folate. Hence, the tumor-to-kidney
ratio of ∼1 which was obtained with [18F]3 was clearly higher
than those for [18F]fluorodeoxyglucose–folate. Excellent visu-
alization of the tumor xenografts on both shoulders of the mouse
injected with [18F]3 was obtained in spite of the slower blood
clearance of [18F]3 compared to [18F]fluorodeoxyglucose–
folate. The uptake of [18F]3 in nontargeted regions such as the
intestinal tract and gallbladder was slightly more pronounced
than in the case of [18F]fluorodeoxyglucose–folate.

Discussion
Herein, we studied the implications of a chemical modifica-
tion of a recently evaluated 18F-based folate conjugate [17]

Fig. 3. In vitro study: uptake, internalization, and blockade
of [18F]3 in FR-positive KB cells, incubated at 37 °C for 2 h.

Table 1. Biodistribution data of albumin-binding [18F]FDG-folate ([18F]3) in nude mice bearing KB tumor xenografts in comparison to
[18F]fluorodeoxyglucose–folate [17]

[18F]FDG-folate ([18F]3)a [18F]fluorodeoxyglucose–folate [17]

1 h p.i. (n=3) 2 h p.i. (n=3) 4 h p.i. (n=3) 2 h p.i. blockadeb (n=3) 1 h p.i. (n=4) 1 h p.i. blockadeb (n=3)

% ID/g
Blood 8.20±1.73* 4.13±0.34 2.21±0.15 9.75±1.62 0.44±0.09* 1.37±1.80
Heart 4.60±1.02 3.37±0.10 2.54±0.19 3.46±0.38 1.15±0.13 1.66±2.05
Lungs 4.67±1.28 2.70±0.14 1.98±0.20 4.36±0.30 0.92±0.07 0.46±0.06
Spleen 1.48±0.21 1.10±0.12 0.75±0.06 1.32±0.20 0.73±0.21 0.23±0.05
Liver 9.34±0.61n.s. 8.60±1.09 5.64±0.62 2.33±0.44 9.49±1.13n.s. 10.0±3.53
Gallbladder 133.1±60.5 55.0±50.8 75.6±18.8 148.8±68.4 17.6±7.22 22.5±12.3
Kidneys 13.4±3.62* 17.4±1.14 18.1±0.41 3.02±0.16 42.9±2.04* 3.48±0.14
Stomach 2.26±0.41 1.72±0.12 1.48±0.03 1.20±0.15 1.42±0.53 0.33±0.08
Intestine 4.71±1.46 4.16±2.67 2.66±0.64 4.22±1.61 3.45±1.61 4.56±2.05
Feces 22.7±15.1 27.9±20.2 16.8±13.0 33.9±24.9 11.0±4.33 20.5±0.21
Salivary glands 6.72±0.96n.s. 7.76±1.26 6.37±0.33 1.89±0.41 5.93±0.77n.s. 0.30±0.01
Bone 1.62±0.14 1.42±0.23 1.13±0.05 1.15±0.23 0.87±0.05 0.29±0.01
Muscle 1.51±0.12 1.53±0.42 1.28±0.14 0.85±0.13 0.69±0.05 0.26±0.04
Tumor 11.5±2.12n.s. 12.8±0.45 15.2±0.53 4.16±0.43 10.0±1.12n.s. 1.19±1.04

Ratios
Tumor/liver 1.25±0.30n.s. 1.50±0.15 2.70±0.21 1.06±0.02n.s.

Tumor/kidneys 0.88±0.12* 0.73±0.03 0.84±0.04 0.23±0.04*
Tumor/blood 1.42±0.18* 3.10±0.23 6.88±0.46 24.1±7.44*

n.s. no statistical significance
*P≤0.05, statistically significant
aApproximately 3 MBq (0.3 nmol)
bFolic acid (100 μg) in PBS injected 5 min prior to [18F]3
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with the aim to improve the generally low tumor-to-kidney
ratios of folate-based radiotracers. The radiosynthesis of a
novel albumin-binding [18F]FDG-folate [18F]3 was
performed in a similar manner to our previously published
[18F]fluorodeoxyglucose–folate [17]. The 1,3-dipolar cyclo-
addition to synthesize [18F]3 was less efficient. Even after
extension of the reaction time up to 30 min and increase of
reaction temperature to 80 °C, the radiosynthesis of [18F]3
proceeded in an overall radiochemical yield of 1–2 % (d.c.).
Starting from 60 to 65 GBq of radioactivity, typical activities
of 0.2–0.4 GBq of [18F]3 were obtained. The lower yield
obtained for [18F]3 compared to [18F]fluorodeoxyglucose–
folate might be attributed to the steric hindrance by the
albumin-binding entity of the folate alkyne derivative (1)
with 2-deoxy-2-[18F]fluoroglucopyranosyl azide ([18F]2).
Hence, the overall radiochemical yield could potentially be
improved by introduction of a linker entity (e.g., PEG spacer
or short peptide chain) between the folate molecule and the
albumin-binding entity. As expected, the introduction of the
albumin-binding moiety resulted in a higher log D7.4 value
of −3.2±0.4 compared with [18F]fluorodeoxyglucose–folate
(log D7.4, −4.2±0.1 [17]), indicating a slightly increased
lipophilicity of [18F]3 (Supplementary Material). In vitro cell
experiments demonstrated FR-specific binding of [18F]3 and

retained high FR affinity of 3 comparable to that of native folic
acid and fluorodeoxyglucose–folate. Biodistribution and PET
imaging experiments performed with [18F]3 confirmed the
anticipated in vivo behavior of [18F]3. Accumulation of [18F]3
in the tumor tissue at 1 h p.i. did not significantly differ from the
value found for the [18F]fluorodeoxyglucose–folate without
albumin-binding entity (Table 1 [17]). However, we found an
increased tumor uptake of [18F]3 at later time points after
injection, reaching a high tumor accumulation of ∼15% ID/g at
4 h p.i. These findings were in contrast to the results obtained
with fluorodeoxyglucose–folate which reached a maximum
tumor uptake (∼10% ID/g) at 1 h after injection [17].Moreover,
retention of [18F]3 in the kidneys was clearly reduced compared
to the previously published [18F]fluorodeoxyglucose–folate
[17]. These circumstances resulted in tumor-to-kidney ratios
which were unprecedentedly high for an 18F-labeled folate
conjugate. Due to the slow clearance of [18F]3 from the blood,
the retention of radioactivity was still about fourfold higher at
4 h p.i. (2.21±0.15 % ID/g) compared to the value found after
injection of the 18F-folate radiotracer without albumin-binding
properties 1 h p.i. (0.44±0.09 % ID/g [17]). The relatively
higher level of radioactivity in the blood due to the prolonged
serum half-life of [18F]3 resulted also in higher accumulation of
radioactivity in nontargeted organs and tissues, such as the
heart, lung, spleen, muscle, and gallbladder. Importantly,
the FR-specific uptake in the kidneys (∼13 % ID/g; 1 h p.i.;
P≤0.05) was approximately fourfold reduced compared with
previously published 18F-labeled folic acid derivatives [17, 22,
23]. These findings are largely in agreement with the results
found for 177Lu-cm09 where the tissue distribution also showed
a high uptake in the tumor and a reduced retention in the
kidneys [14]. As expected, blocking experiments with an excess
of folic acid resulted in a marked decrease of radioactivity
accumulation in the tumors, kidneys, and salivary glands which
proved the FR-specific uptake of [18F]3 in these organs and
tissues. The ex vivo biodistribution data obtained with [18F]3
were confirmed by PET imaging studies whereby an increased
target-to-nontarget contrast could be achieved compared to
the previously reported [18F]fluorodeoxyglucose–folate. A
slightly more lipophilic character of [18F]3 in comparison to
[18F]fluorodeoxyglucose–folate as a consequence of the albu-
min-binding entity favored hepatobiliary elimination, resulting
in a higher accumulation of radioactivity in the gallbladder and
abdominal region.

Conclusion
Our novel 18F-labeled folic acid derivative [18F]3 consists of
a hydrophilic glucose entity as a radiolabeled prosthetic
group and a small molecular weight albumin-binding entity.
As a consequence of the albumin-binding properties, [18F]3
showed an increased uptake in FR-positive tumors and an
unprecedentedly high tumor-to-kidney ratio of almost 1.
Enhancement of the blood circulation time is a valuable
strategy not only for therapeutic application of folate

Fig. 4. Three-dimensional PET/CT images of KB tumor-
bearing mice (back and side views): amouse scanned 4 h after
injection of [18F]3 (∼35 MBq, ∼1.2 nmol); b mouse scanned
75 min after injection of [18F]fluorodeoxyglucose–folate
(∼14 MBq, ∼0.2 nmol). Tu tumor, Ki kidneys, GB gallbladder,
Bl urinary bladder, Int intestines/feces, Li liver.
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radiometal conjugates but also for diagnostic application
using 18F-based radiotracers.
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