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Abstract. We study the evolution of a closed, convex hypersurface in R
n+1 in

direction of its normal vector, where the speed equals a positive power k of the
mean curvature. We show that the flow exists on a maximal, finite time interval,
and that, approaching the final time, the surfaces contract to a point.

1. Introduction

In this paper we investigate the following problem. Let Mn be a smooth, compact
manifold without boundary, and F0 : Mn → R

n+1 a smooth immersion which is
convex.We look for a smooth family of immersionsF(·, t) : Mn × [0, T ) → R

n+1,
which satisfies

(�)






F(·, 0) = F0(·)
dF

dt
(·, t) = −Hk(·, t)ν(·, t) ,

where k > 0, H is the mean curvature and ν is the outer unit normal, such that
−Hν = �H is the mean curvature vector. Throughout the paper we will call such a
flow an Hk-flow.

For k = 1 this flow coincides with the well-known mean curvature flow. In
[6], Huisken proved that for this flow the surfaces stay convex and contract to a
point in finite time. Furthermore, the surfaces become more and more spherical in
the process. This behavior has been shown to be true in many cases where convex
surfaces flow by speeds equal to a homogeneous degree one function of the prin-
cipal curvatures. The evolution by the nth root of the Gauss curvature was treated
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by Chow in [3] and the evolution by the square root of the scalar curvature in [4].
Andrews [1] showed that this behavior extends to a whole class of such speeds.

If one considers flows for which the speed has an arbitrary positive degree of
homogenicity, far less is known about the properties of the flow and the limiting
shape of the surface. For a speed equal to a positive power α of the Gauss curvature,
Tso [11] and Chow [3] have shown that the surfaces contract to points in finite time.
Andrews [2] was able to strengthen this result, showing that for α ∈ (1/(n+2), 1/n)

the ratio of the biggest to the smallest principal curvature remains bounded and the
surfaces converge after blow-up to a smooth limiting surface.

In [13], Urbas studied the expansion of convex hypersurfaces by symmetric
functions of the principal curvatures. This was extended independently by Ger-
hardt [5] and Urbas [12] to the case of star-shaped surfaces. In both cases the speed
was assumed to be homogeneous of degree −1 and the surfaces were shown to
converge, under appropriate rescaling, to a sphere.

Investigating our initial value problem (�), we will have to make a further
assumption to ensure short-time existence. We require that H(F0(p)) > 0,

∀ p ∈ Mn, otherwise we cannot guarantee uniform parabolicity. In the following,
”weakly convex”, and ”strictly convex”, resp., shall be defined as all the eigenvalues
of the second fundamental form of the surface being non-negative, and positive,
resp. We obtain the following result:

Theorem 1.1. Let F0 : Mn→R
n+1 be a smooth immersion, where H(F0(M

n))>0.
Then there exists a unique, smooth solution to the initial value problem (�) on a
maximal, finite time interval [0, T ). For k � 1 we have the bound T � C(k, n)−1

(maxp∈M |A|(p, 0))−(k+1). In the case that

i) F0(M
n) is strictly convex for 0 < k < 1 ,

ii) F0(M
n) is weakly convex for k � 1 ,

then the surfaces F(Mn, t) are strictly convex for all t > 0 and they contract for
t → T to a point in R

n+1.

The paper is organized as follows. In section 2 we compute the evolution equations
for several geometric quantities. Using these, we deduce some basic properties of
the flow in section 3, which don’t depend on the initial surface to be convex, and
show the lower bound on the maximal existence time. In section 4 we investigate
the case of convex surfaces and prove the second part of the above result.

The author would especially like to thank Professor G. Huisken under whose
advice this work was carried out.

2. Evolution equations

In this section we compute the evolutions of geometric quantities like the induced
metric gij , the second fundamental form hij or equivalently the Weingarten map
Wp = {hi

j } : TpMn → TpMn and the mean curvature H := hi
i = gijhij .

Lemma 2.1. The evolution equations for gij , ν, hi
j and 〈x, ν〉, where x denotes the

position vector and 〈·, ·〉 the euclidian scalar product, are given by
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i) ∂
∂t

gij = −2Hkhij

ii) ∂
∂t

ν = kHk−1∇H

iii) ∂
∂t

hi
j = kHk−1�hi

j+k(k−1)Hk−2∇iH∇jH−(k−1)Hkhi
lh

l
j+kHk−1|A|2hi

j

iv) ∂
∂t

H = kHk−1�H + k(k − 1)Hk−2|∇H |2 + |A|2Hk

v) ∂
∂t

〈x, ν〉 = kHk−1�〈x, ν〉 − (k + 1)Hk + kHk−1|A|2〈x, ν〉
Proof. All of the above follows from a direct calculation as for example in [6] or
[1].

Apart from the mean curvature H it will be helpful to also study the elementary
symmetric polynomials

Sl(λ) =
∑

1�i1<...<il�n

λi1λi2 · ... · λil for λ = (λ1, ..., λn) ∈ R
n

of the principal curvatures, and their quotients

Ql(λ) = Sl(λ)

Sl−1(λ)
for λ ∈ �l−1

where S0 ≡ 1, and Sl ≡ 0 if l > n ; �l := {λ ∈ R
n | S1(λ) > 0, ... , Sl(λ) > 0}.

We list here some of their properties, and compute their evolution equations. We
denote with Sl;i (λ) the sum of all terms in Sl not containing the factor λi . 	

Lemma 2.2. For all l ∈ {0, ..., n}, i ∈ {1, ..., n} and λ ∈ R

n the following equali-
ties hold:

∂Sl+1

∂λi

(λ) = Sl;i (λ) ,

Sl+1(λ) = Sl+1;i (λ) + λiSl;i (λ) ,

n∑

i=1

Sl;i (λ) = (n − l)Sl(λ) ,

n∑

i=1

λiSl;i (λ) = (l + 1)Sl+1(λ) ,

n∑

i=1

λ2
i Sl;i (λ) = S1(λ)Sl+1(λ) − (l + 2)Sl+2(λ) .

Lemma 2.3.
i) Ql+1 is concave on �l for l ∈ {0, . . . , n − 1}.

ii) ∂
∂λi

Ql(λ) > 0 on �l for all i ∈ {1, . . . , n} and l ∈ {2, . . . , n}.
For proofs of the last two lemmas see for example [8]. The quotients Ql satisfy the
following evolution equation:

Lemma 2.4. For k � 1 let F : Mn × [0, T ) → R
n+1 be an Hk-flow with

Sl−1(p, t) > 0 for all (p, t) ∈ Mn × [0, T ) ,

such that Ql is well-defined. Then

∂

∂t
Ql � kHk−1�Ql + Hk−1(k|A|2 − l(k − 1)HQl)Ql. (1)
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Proof. Using

∂

∂t
Ql = ∂Ql

∂hi
j

( ∂

∂t
hi

j

)
and �Ql = ∂Ql

∂bi
j

�hi
j + ∂2Ql

∂h
p
q ∂hl

m

∇vh
p
q ∇vh

l
m

as well as the evolution equation for hi
j , we get

∂

∂t
Ql = kHk−1�Ql−kHk−1 ∂2Ql

∂h
p
q ∂hl

m

∇vh
p
q ∇vh

l
m+k(k−1)Hk−2 ∂Ql

∂hi
j

∇iH∇jH

−(k−1)Hk ∂Ql

∂hi
j

hi
lh

l
j + kHk−1|A|2 ∂Ql

∂hi
j

hi
j .

With the aid of Lemma 2.2 the last two terms can be simplified.

∂Ql

∂hi
j

hi
j =

∑

m

∂Ql

∂λm

λm = 1

S2
l−1

(
Sl−1

∑

i

Sl−1,i λi − Sl

∑

i

Sl−2,i λi

) = Ql

∂Ql

∂hi
j

hi
lh

l
j =

∑

m

∂Ql

∂λm

λ2
m = 1

S2
l−1

(
Sl−1

∑

i

Sl−1,i λ2
i − Sl

∑

i

Sl−2,i λ2
i

)

= −(l + 1)
Sl+1

Sl−1
+ lQ2

l .

The monotonicity and the concavity of the Ql’s give the desired inequality . 	

If the surfaces Mt are strictly convex we can also study the inverse W−1

p = {bi
j } :

TpMn → TpMn of the Weingarten map W , i.e. bi
l h

l
j = δi

j . We obtain:

Lemma 2.5. Let k > 0 and Mt be a flow of strictly convex surfaces. Then

∂

∂t
bi

j = kHk−1�bi
j − 2kHk−1hl

m∇pbi
l∇pbm

j − k(k − 1)Hk−2(bi
l∇lH )(bm

j ∇mH)

+(k − 1)Hkδi
j − kHk−1bi

j |A|2
� kHk−1�bi

j + (k − 1)Hkδi
j − kHk−1bi

j |A|2

Proof. Using bi
l h

l
j = δi

j we get ∂
∂t

bi
j = −bi

pb
q
j

∂
∂t

h
p
q , and ∇lb

i
j = −bi

pb
q
j ∇lh

p
q ,

which leads to
�bi

j = −bi
l b

m
j �hl

m + 2hl
m∇pbi

l∇pbm
j .

Together with Lemma 2.1, this proves the first equality. For k � 1 the inequality
follows immediately. To show that also for 0 < k < 1 the gradient terms have
the desired sign, we have to work a bit more. We want to use the fact that we can
write Hk(λ) = (Qk

n(κ))−1, where the κi are the principle radii, i.e. κi = λ−1
i . For

general functions f, g satisfying f (hi
j ) = 1/g(bi

j ) one can now compute that

∂2f

∂hi
j ∂h

p
q

= 2

f

∂f

∂hi
j

∂f

∂h
p
q

− 1

g2

∂2g

∂bm
n ∂bk

l

bmq bnp bjk bil − ∂f

∂hip
bjq − ∂f

∂hjq

bip .
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Applying this we obtain

k(k − 1)Hk−2δm
l δ

q
p = ∂2(Hk(λ))

∂hm
l ∂h

q
p

= 2k2Hk−2δm
l δ

q
p − H 2k ∂2(Qk

n)

∂bn
o∂br

s

bnqbopbrmbsl

−kHk−1δlpbmq − kHk−1δmqblp,

and by multiplication with ∇vhm
l ∇wh

q
p and summation

k(k − 1)Hk−2∇vH∇wH = 2k2Hk−2∇vH∇wH

−H 2k ∂2(Qk
n)

∂bn
o∂br

s

(bnqbop∇wh
p
q )(brmbls∇vhl

m)

−2kHk−1bmq∇wh
p
q ∇vhpm.

Using the Codazzi-equations and the concavity of Qk
n(κ) for 0 < k � 1, this leads

to
−k(k + 1)Hk−2∇vH∇wH � −2kHk−1bmq∇phv

m∇phqw ,

which finally gives

−k(k − 1)Hk−1(bi
v∇vH)(bw

j ∇wH) � 2kHk−1hl
m∇pbi

l∇pbm
j .

	


3. Basic properties

We now want to show short-time existence for the initial value problem
(�Hk ), k > 0, and study the question of longtime existence. In order to obtain
these results, it suffices to demand that the initial surface be only strictly mean
convex rather than convex. Hence we require only that F0 : Mn → R

n+1 is a
smooth, orientable and closed hypersurface with a choice of a normal vector field,
such that the initial mean curvature satisfies H0(p) > δ > 0 for all p ∈ Mn, for
some fixed δ. This implies that

∂

∂λi

Hk
0 (λ(p)) > 0 for all 1 � i � n, p ∈ Mn,

which gives with the aid of [7]:

Lemma 3.1. If the mean curvature of M0 is strictly positive, then (�Hk ) has a
unique solution F : Mn × [0, T ) → R

n+1, at least for a small T > 0.

Example 3.2. For the evolution of a sphere with radius R0 we obtain that

R(t) = (
Rk+1

0 − (1 + k)nk · t
) 1

k+1 ,

which implies a maximal existence time T = Rk+1
0

nk(1+k)
.

The evolution equation for H and the maximum principle guarantee that the mini-
mum of H is increasing, i.e. we don’t loose the uniform parabolicity of our equation.
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Proposition 3.3.

Hmin(t) � Hmin(0) · (
1 − k + 1

n
Hk+1

min (0) · t
)− 1

k+1 ,

which gives an upper bound on the maximal existence time:

Tmax � n

k + 1
H

−(k+1)
min (0) .

Proof. We apply the inequality |A|2 � 1
n
H 2 to the evolution equation of H . The

estimate then follows immediately by comparison with the ODE

d

dt
ϕ = 1

n
ϕk+2; ϕ(0) = Hmin(0) .

	

Remark 3.4. (i) The fact that the inequality H � δ is maintained under the evo-
lution implies by the strict elliptic maximum principle that an initially embedded
hypersurface stays embedded.

(ii) By the strict parabolic maximum principle, as for the mean curvature flow,
we have an avoidance principle. If two closed initial hypersurfaces M1 and M2
are disjoint, then they remain so under the flow. Applying this principle to a big
enclosing sphere, we have another upper bound on the maximal existence time.

Proposition 3.5. Let [0, T ) be the maximal existence interval of the Hk-flow Mt ,
and T < ∞, as well as H(·, 0)�δ0 > 0. Then lim supt→T maxMt |A|2 =+∞ . 	

Proof. We want to show that under the assumption maxMt |A|2 � C, the surfaces
Mt converge to a smooth limiting surface MT . Since Hmin(t) is increasing, we
have Hmin(T ) > 0, and by the shortime existence we get a contradiction to the
maximality of T .

Assume that maxMt |A| � C for 0 � t < T . Using the evolution equation, and
the upper bound for H , we can show by integration that

|F(p, t1) − F(p, t2)| � C|t1 − t2|,
which implies the convergence of F(·, t) to a continuous limiting surface F(·, T ).
By the bound on |A| the convergence is in C1.

For k � 1 the speed Hk is concave in hi
j . Together with the uniform C2-

bounds, the estimates of Krylov [9], Theorem 2, Chapter 5.5, are applicable and
render uniform C2,α-bounds. For k > 1 we study the flow locally, i.e. given by a
height function u which satisfies the parabolic PDE

∂

∂t
u =

√
1 + |Du|21−k

((
δij − DiuDju

1 + |Du|2
)
Diju

)k

. (2)

This operator is not concave in the second derivatives of u. With the bound on |A|
we can nevertheless check that the conditions for Theorem 2, chapter 5.3 in [9]
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are satisfied, which leads to uniform Hölder-estimates in space and time for ∂
∂t

u.
Theorem 4 in chapter 5.2 then gives similar Hölder-estimates for Du. Because of
H(·, t) � δ and equation (2) this implies that

v :=
√

1 + |Du|21−k
and w :=

((
δij − DiuDju

1 + |Du|2
)
Diju

)k−1

are also uniformly Hölder-continuous in space and time. Using this, we can write
(2) as a linear, strictly parabolic PDE

∂

∂t
u − aijDiju = 0

with coefficients aij in Cβ in space and time. The interior Schauder estimates, see
for example [10], lead to C2,β -bounds. In both cases, i.e. k � 1 and k > 1, using
again parabolic Schauder estimates, we get a bound on all the higher Cl-norms. 	

Remark 3.6. C2,α-bounds up to the initial Hypersurface M0 also follow from the
results of [9]. They depend only on the bound on |A| and the C2,α-norm of M0.

To show the lower bound on the maximal existence time, i.e. to control the second
fundamental form, we will have to study the evolution of λmin(t) := minMt λi . To
do this, we define a smooth approximation ũ to max(x1, . . . , xn) as follows. For
δ > 0 let

ũ2 (x1, x2) = x1 + x2

2
+

√
(

x1 − x2

2

)2

+ δ2

ũn+1(x1, . . . , xn+1) = 1

n + 1

n+1∑

i=1

ũ2
(
xi, ũn

(
x1, . . . , x̂i , . . . , xn+1

))
, n � 2 .

This approximation has the following properties.

Lemma 3.7. For δ > 0 and n � 2,

(i) ũn (x1, . . . , xn) is smooth, symmetric, monotonically increasing and convex .
(ii) ∂ũn(x1,... ,xn)

∂xi
� 1

(iii) max (x1, . . . , xn) � ũn (x1, . . . , xn) � max (x1, . . . , xn) + (n − 1)δ

(iv) ũn(x1, . . . , xn) − (n − 1)δ �
∑n

i=1
∂ũn(x1,... ,xn)

∂xi
· xi � ũn (x1, . . . , xn)

(v)
∑

i
∂ũn

∂xi
= 1 .

Proof. Direct computation and induction. 	

Lemma 3.8. Let F : Mn × [0, τ ) → R

n+1 be an Hk-flow, k � 1, and 0 < H � C

on Mn × [0, τ ). For λmin(t) := minMt λi(p), we have that

|λmin(t)| �
(
(max{−λmin(0), C})−2 − kC′(n)Ck−1t

)− 1
2 ,

with C′(n) = 8n((n − 1)2 + 1), as long as the right hand side is finite.
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Proof. For βi
j := −hi

j we obtain from Lemma 2.1:

∂

∂t
βi

j � kHk−1�βi
j + (k − 1)Hkβi

l β
l
j + kHk−1|A|2βi

j .

Let u(βi
j ) be a smooth approximation to − min(λ1, . . . , λn) for a δ > 0, as defined

above. Using

∂

∂t
u = ∂u

∂βi
j

(
∂

∂t
βi

j

)

and �u = ∂2u

∂β
p
q ∂βl

m

∇vβ
p
q ∇vβ

l
m + ∂u

∂βi
j

�βi
j ,

as well as the monotonicity of u, it follows that, using Lemma 3.7,

∂

∂t
u � kHk−1�u − kHk−1 ∂2u

∂β
p
q ∂βl

m

∇vβ
p
q ∇vβ

l
m

+(k − 1)Hk ∂u

∂βi
j

βi
l β

l
j + kHk−1|A|2 ∂u

∂βi
j

βi
j

� kHk−1�u + (k − 1)Hk|A|2 + kHk−1|A|2u .

Since H > 0, we know that λmax(p) > 0 and using

λmax(p) � H − (n − 1)λmin(p) � H + (n − 1)u

we can estimate

|A|2 � 2n(H 2 + (n − 1)2u2) � 2n(C2 + (n − 1)2u2). (3)

If we assume that u � C, we obtain:

∂

∂t
u � kHk−1�u + 4n((n − 1)2 + 1)kCk−1u3 .

The estimate then follows by comparing with the ODE and taking the limit δ→0.
	


Proposition 3.9. Let F(·, t) : Mn × [0, T ) → R
n+1 be a smooth Hk-flow with

k � 1, where T is assumed to be maximal. Then we have the lower bound

T � C(k, n)−1(max
p∈M

|A|(p, 0))−(k+1) ,

where C(k, n) = 8(3k + 1)(1 + (n − 1)2)n(k+3)/2.

Proof. Defineκ(t) := max{−λmin(0), supMn×[0,t] H(p, τ)}. Using the bound from
the preceeding Lemma and (3), we obtain for p ∈ Mn:

|A|2(p, t) � 2n(κ2(t) + (n − 1)2λ 2
min(t))

� 2nκ2(t) + 2n(n − 1)2(κ(t)−2 − kC′(n)κ(t)k−1t
)−1

.

We will now assume that

t � κ(t)−(k+1)

2kC′(n)
, (�)
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which is true on a maximal time interval t ∈ [0, ε], with ε > 0. Thus on this interval
the estimate

|A|2(p, t) � 2n(1 + 2(n − 1)2)κ(t)2 � C′(n)κ(t)2

holds. Since κ(t) is Lipschitz-continuous in time, we can deduce from the evolution
equation for H that for a.e. t ∈ [0, ε]

∂

∂t
κ(t) � max

Mt

|A|2(p) κ(t)k � C′(n)κ(t)k+2 ,

which leads to

κ(t) �
(
κ(0)−(k+1) − (k + 1)C′(n)t

)− 1
k+1 . (4)

We will now show that

ε � 1

(3k + 1)C′(n)κ(0)(k+1)
. (5)

Assume the contrary. Using this assumption together with (4), we see that

ε <
1

(3k + 1)C′(n)κ(0)(k+1)
� κ(ε)−(k+1)

2kC′(n)
,

which is a contradiction to the maximality of ε. Thus (5) holds, which gives with
(4):

max
Mt

H(p, t) � κ(t) �
(3k + 1

2k

)1/(k+1)

κ(0),

max
Mt

|A|2(p, t) � C′(n)
(3k + 1

2k

)2/(k+1)

κ(0)2

for t � ((3k + 1)C′(n)κ(0)(k+1))−1. Together with Theorem 3.5 we have thus
proven the desired lower bound on the maximal existence time:

Tmax � 1

(3k + 1)C′(n)
(κ(0))−(k+1) � C(k, n)−1(max

p∈M
|A|(p, 0))−(k+1),

where C(k, n) = 8(3k + 1)(1 + (n − 1)2)n(k+3)/2. 	


4. Convex surfaces

In this last section we will investigate the Hk-flow of convex surfaces. We will
show that convex surfaces stay convex and that in the case k � 1 they immediately
become strictly convex. We will complete the proof of the main theorem by show-
ing that the surfaces contract to a point.
To show that convexity is preserved we again study the evolution of

λmin(t) := min
Mt

λi .
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Lemma 4.1. Let F0(M
n) be strictly convex and let F : Mn × [0, τ ) → R

n+1

be a Hk-flow, k > 0. Then all Mt, t ∈ [0, τ ) are strictly convex and λmin(t) is
monotonically increasing.

Proof. Heuristically one can see the monotonicity of λmin(t) for k � 1 as follows.
Assume in the evolution equation of the Weingarten map, Lemma 2.1 iii), that we
could diagonalize hi

j and could study the evolution of λmin(p, t) separately. We
would obtain

∂

∂t
λmin(p, t) � kHk−1�λmin(p, t)−(k−1)Hkλ2

min(p, t)+kHk−1|A|2λmin(p, t) .

If we estimate |A|2 � Hλmin(p, t) we see that the lowest order terms are nonneg-
ative, and the maximum principle would give the desired result. Since the minimal
principal curvature is not a smooth function and for 0 < k < 1 the gradient terms
have the wrong sign, we have to work a little bit more.

For a fixed δ > 0 we choose a smooth approximation u(bi
j ) := ũn(κ1, . . . , κn)

to max(κ1, . . . , κn), as defined in Lemma 3.7, where the κi are the eigenvalues of
bi
j , i.e. κi = 1/λi . Using

∂

∂t
u = ∂u

∂bi
j

( ∂

∂t
bi
j

)
and �u = ∂u

∂bi
j

�bi
j + ∂2u

∂b
p
q ∂bl

m

∇vb
p
q ∇vb

l
m

as well as the monotonicity of u and Lemma 2.5 we obtain

∂

∂t
u � kHk−1�u − kHk−1 ∂2u

∂b
p
q ∂bl

m

∇vb
p
q ∇vb

l
m

+ (k − 1)Hktr(
∂u

∂bi
j

) − kHk−1|A|2 ∂u

∂bi
j

bi
j .

Applying the properties of ũn listed above this leads to

∂

∂t
u � kHk−1�u + (k − 1)Hk − kHk−1|A|2(u − (n − 1)δ) .

At a point (p, t) with u > (n − 1) k δ we see that

∂

∂t
u(p, t) < kHk−1�u(p, t) + (k − 1)Hk−1(H

u
− |A|2)u(p, t) � kHk−1�u ,

since
H

u
(p) � H(p)

κmax(p)
= H(p)λmin(p) � |A|2(p) .

This gives a contradiction if u attains a first new maximum bigger than (n − 1) k δ.
The limit δ → 0 then proves the claim. 	


For convex surfaces, i.e. hij � 0, the full second fundamental form is controlled
by its trace: |A| � H . Applying this to the evolution equation for H , and comparing
with the ODE yields:
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Lemma 4.2. Let F : Mn×[0, T ) → R
n+1 be an Hk-flow of convex hypersurfaces.

Then
|A|(p, t) � H(p, t) �

(
Hmax(0)−(k+1) − (k + 1)t

)− 1
k+1 .

Corollary 4.3. Let F : Mn × [0, T ) → R
n+1 be an Hk-flow and F0(M

n) be
weakly convex. Then F(Mn, t) is weakly convex for all t ∈ [0, T ) and Tmax �

1
k+1 (Hmax(0))−(k+1).

Proof. We approximate the initial surface M0 smoothly by strictly convex sur-
faces Mi

0, for example using the mean curvature flow. From these surfaces we start
Hk-flows, which by Lemma 4.1 stay convex. By Lemma 4.2 and Proposition 3.5
we have a uniform lower bound T i

max � 1
k+1 (Hmax(0))−(k+1). Using the uniform

C2,α-estimates from proposition 3.5, we can extract a convergent subsequence of
convex flows, which proves that the original flow also had to be convex.
For k � 1 we could have also applied Hamilton’s weak maximum principle for
2-Tensors to the evolution equation of hij to see that hij � 0 is conserved. 	

We now use the quotients Ql to show that for k � 1 weakly convex surfaces
immediately become strictly convex.

Proposition 4.4. Let F0 : Mn → R
n+1 be a weakly convex hypersurface with

H(F0) � δ > 0, and F : Mn × [0, T ) → R
n+1 the corresponding Hk-flow with

k � 1. Then Mt is strictly convex for all t ∈ (0, T ).

Proof. Since H(p, t) > 0 for all t ∈ (0, T ), Q2 is well-defined and non-negative.
Because of the bounds on |A|2 for t ∈ [0, ε],

|Hk−1(k|A|2 − 2(k − 1)HQ2)| � C

on this interval. Lemma 2.4 now says that for v := eCtQ2, we have

∂

∂t
v � kHk−1�v .

If we assume that there exists (p0, t0) ∈ Mn×(0, ε) with Q2(p0, t0) = 0, then also
v(p0, t0) = 0. Using the Harnack-inequality in the parabolic case (see i.e. [10])
and the equation above we see that v ≡ 0 for all t ∈ (0, t0) which gives Q2 ≡ 0
for all t ∈ (0, t0). This is in contradiction to the existence of strictly convex points
on Mt , and so Q2 > 0 on Mn × (0, T ). We can iterate this to obtain Qn > 0 on
Mn × (0, T ). 	

The last step towards the proof of Theorem 1.1 is that the flow exists as long as it
bounds a non-vanishing volume. Similar estimates, using a lower bound on the sup-
port function, were obtained by Tso [11] for the Gauss curvature flow and Andrews
[1] for a general class of speeds.

Lemma 4.5. Let F : Mn × [0, τ ) be an Hk-flow of convex surfaces and for
δ > 0, x0 ∈ R

n+1, let Bδ(x0) ⊂ Vt for all t ∈ [0, τ ), where Vt is the volume
bounded by Mt . Then

H(p, t) � C(F0(M
n), δ, k, n) for all (p, t) ∈ Mn × [0, τ ) .
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Proof. Let X := x − x0 be the position vector field with origin in x0. Since all the
Mt are convex, there is an α > 0, α = α(δ), such that

〈X, ν〉 − α � α

2
> 0 for all (p, t) ∈ Mn × [0, τ ) .

So v := Hk/(〈X, ν〉 − α) is well defined, and satisfies the evolution equation

∂

∂t
v = kHk−1�v + 2k

H
v∇i〈X, ν〉∇iv + (k + 1)v2 − αk

|A|2
H

v2

� kHk−1�v + 2k

H
v∇i〈X, ν〉∇iv + (

(k + 1) − αk

n
H

)
v2 .

Assume that in (p0, t0), v attains a big maximum C >> 0 for the first time. Then

Hk(p0, t0) � C(〈X, ν〉 − α)(p0, t0) � αC

2
,

which gives a contradiction if

C � max

{

max
p∈M

v(p, 0),
2

α

(
n(k + 1)

αk

)k
}

.

	

Proof of Theorem 1.1. The preceeding Lemma and Proposition 3.5 guarantee that
the flow exists as long as it bounds a non-vanishing volume. Because of Lemma
4.1 and Proposition 4.4 all the surfaces are strictly convex for t > 0. What’s more,
limt→T λmin(t) � δ > 0.
Let us assume that there exist two distinct points x, y ∈ R

n+1 with x, y ∈ Vt for
all t ∈ [0, T ), Vt denoting the volume bounded by Mt . Then every 2-dimensional
plane Z through x and y intersects Mt transversally in regular curves cZ

t . Since
λmin(t)>

δ
2 there also exists a lower bound ε0>0 on the curvature of the curves cZ

t .
Let It := Z ∩ Vt . Since Hn(Vt ) → 0, there exists a Z with H2(It ) → 0. But
this contradicts that x, y ∈ It and that the curvature of the curves cZ

t is uniformly
bounded from below. 	
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