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Abstract Publications on shock-refraction problems typ-
ically predict wave patterns resulting from the interaction
from the acoustic-impedance ratio. In this note, an analysis
based on the shock-impedance ratio is used to derive condi-
tions under which the acoustic-impedance ratio predicts the
incorrect type of reflected wave. The range of density ratios
for which incorrect types of reflected waves are predicted is
found to be quite narrow.
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1 Motivation

The propagation of shock waves through inhomogeneous
gases is an interesting and important problem that has been
considered by many authors. In its simplest form, the prob-
lem consists of a planar shock wave propagating in a perfect
gas of uniform density ρ1 and pressure p1 toward a single
spherical inhomogeneity containing a perfect gas of density
ρ2 and pressure p2 = p1. The shock wave is refracted and
diffracted on interacting with the inhomogeneity, leading to
complicated wave patterns and large distortions of the inho-
mogeneity.
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Publications on shock-refraction problems typically use
the ratio Z2/Z1, where Zi = ρi ci is the acoustic impedance
and c is the speed of sound, to determine the wave pattern
(see Niederhaus et al. [1] and Ranjan et al. [2] for recent
examples). It is stated that the reflected wave is a shock wave
if Z2/Z1 > 1 and that the reflected wave is an expansion
wave if Z2/Z1 < 1.

However, the acoustic-impedance ratio is applicable only
in the limit of an infinitely weak shock wave. For a shock
wave of finite strength, the shock-wave impedance Zs

i j must
be used instead. Following Henderson [3], the shock-wave
impedance is defined as

Zs
i j = ρi ci

√
1 + γ + 1

2γ

(
p ji − 1

) = Zi Ms = ρi us, (1)

where the subscripts i and j denote the states ahead of and
behind the shock wave, γ is the ratio of specific heats, p ji =
p j/pi , Ms is the Mach number of the shock wave, and us is
the speed of the shock wave. In the limit of an infinitely weak
shock wave, Zs

i j → Zi .
The objective of this note is to derive the conditions under

which the use of the acoustic instead of the shock-wave
impedance leads to incorrect prediction of the type of
reflected wave. The analysis is based on the assumption of
one-dimensional flow, see Fig. 1, where it is noted that the
density inhomogeneity now occupies region 5. The results
thus apply only to the very early stages of the interaction
between the shock wave and the spherical inhomogeneity.
More elaborate theories can be derived, but these theories
are typically very complex. For example, Henderson [4] ana-
lyzed the interaction of a plane shock wave with a planar,
but non-aligned, inhomogeneity. At first sight, this problem
appears to be only marginally more complex, but it leads to
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Fig. 1 Schematic illustration shock-refraction problem in the x–t
plane to indicate notation used. Because this is only a schematic illus-
tration, the slopes of the lines should not be interpreted as implying
restrictions on the speeds of the incident and transmitted shock waves

a polynomial equation of degree 12 and exhibits regular and
irregular refraction patterns.

2 Analysis

It is useful to briefly review the standard theory developed by
Taub [5] and Paterson [6] because it serves as the foundation
for the subsequent analysis, see also Glass and Sislian [7].
The theory states that the reflected wave is a shock or expan-
sion wave depending on whether the ratio of impedances of
the transmitted and incident shock waves is greater or smaller
than unity,

Zs
54

Zs
12

= ρ5c5

ρ1c1

√√√√1 + γ5+1
2γ5

(p45 − 1)

1 + γ1+1
2γ1

(p21 − 1)
≷ 1. (2)

Equality of pressure across the contact discontinuity gives
p45 = p31 = p21 p32. Following [6], examining the problem
in the (p, u) plane indicates that the impedance ratio can be
evaluated for p32 = 1. Then (2) can be expressed as

D(p21 − 1) ≷ N , (3)

where

D = γ5 + 1

2γ5
− γ1 + 1

2γ1

γ1ρ1

γ5ρ5
, (4)

N = γ1ρ1

γ5ρ5
− 1. (5)

Four cases need to be considered.

1. D > 0 and N > 0, so (γ1 + 1)/(γ5 + 1) < ρ5/ρ1 <

γ1/γ5. The inequalities can be satisfied only if γ5 < γ1.
The reflected wave can be a shock wave or an expansion

(a)

(b)

Fig. 2 Schematic illustration of types of reflected waves as determined
by shock-impedance ratio as a function of ρ5/ρ1, γ1, γ5, and p21 for a
γ1 < γ5 and b γ1 > γ5. The shaded regions indicate that the reflected
wave is a shock wave. The lack of shading indicates that the reflected
wave is an expansion wave. The dashed lines are given by (6) and (7)

wave depending on

p21 − 1 ≷
(

γ1ρ1

γ5ρ5
− 1

)/(
γ5 + 1

2γ5
− γ1 + 1

2γ1

γ1ρ1

γ5ρ5

)
.

(6)

2. D > 0 and N < 0, so ρ5/ρ1 > (γ1 + 1)/(γ5 + 1) if
γ5 > γ1 and ρ5/ρ1 > γ1/γ5 if γ5 < γ1. The reflected
wave is a shock wave.

3. D < 0 and N > 0, so ρ5/ρ1 < γ1/γ5 if γ5 > γ1 and
ρ5/ρ1 < (γ1 + 1)/(γ5 + 1) if γ5 < γ1. The reflected
wave is an expansion wave.

4. D < 0 and N < 0, so γ1/γ5 < ρ5/ρ1 < (γ1 + 1)/(γ5 +
1). The inequalities can be satisfied only if γ5 > γ1. The
reflected wave can be a shock wave or expansion wave
depending on

p21 − 1 ≶
(

γ1ρ1

γ5ρ5
− 1

)/(
γ5 + 1

2γ5
− γ1 + 1

2γ1

γ1ρ1

γ5ρ5

)
.

(7)

The results of this analysis are depicted schematically in
Fig. 2.

We now turn our attention to determine when the type of
reflected wave is different when determined from the acous-
tic-impedance ratio compared to the shock-impedance ratio.
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To this end, we write (1) as

Zs
54

Zs
12

= Z5

Z1

Ms,t

Ms,i
≷ 1, (8)

where Ms,t and Ms,i are the Mach numbers of the transmitted
and incident shock waves, respectively. We need to consider
two main cases.

1. Z5/Z1 < 1 and Ms,t/Ms,i > Z1/Z5 (the acoustic-imped-
ance ratio incorrectly predicts a reflected expansion wave).
Then

γ1
[
(γ5 + 1)p21 + (γ5 − 1)

]
γ5

[
(γ1 + 1)p21 + (γ1 − 1)

] >
γ1ρ1

γ5ρ5
> 1. (9)

From the left inequality we obtain D(p21 − 1) > N ,
where D and N are given by (4) and (5). The right
inequality implies that N > 0 or

ρ5

ρ1
<

γ1

γ5
. (10)

We need to consider two subcases. If we assume that
D > 0, then

ρ5

ρ1
>

γ1 + 1

γ5 + 1
. (11)

The bounds on ρ5/ρ1 are related through

γ1 + 1

γ5 + 1
<

γ1

γ5
if γ1 > γ5, (12)

γ1

γ5
<

γ1 + 1

γ5 + 1
if γ1 < γ5. (13)

It is impossible to satisfy simultaneously (10), (11), and
(13). We are left with

γ1 + 1

γ5 + 1
<

ρ5

ρ1
<

γ1

γ5
if

γ1

γ5
> 1, (14)

and

p21 − 1 >

(
γ1ρ1

γ5ρ5
− 1

)/(
γ5 + 1

2γ5
− γ1 + 1

2γ1

γ1ρ1

γ5ρ5

)
.

(15)

On the other hand, if we assume that D < 0, then p21 −
1 < N/D < 0, which cannot be satisfied by any p21 > 1.

2. Z5/Z1 > 1 and Ms,t/Ms,i < Z1/Z5 (the acoustic-
impedance ratio incorrectly predicts a reflected shock

wave). Then

γ1
[
(γ5 + 1)p21 + (γ5 − 1)

]
γ5

[
(γ1 + 1)p21 + (γ1 − 1)

] <
γ1ρ1

γ5ρ5
< 1. (16)

From the left inequality we obtain D(p21 − 1) < N ,
where D and N are defined in (4) and (5). The right
inequality implies that N < 0 or

ρ5

ρ1
>

γ1

γ5
. (17)

Again we need to consider two subcases. If we assume
that D > 0, then p21 − 1 < N/D < 0, which cannot
be satisfied by any p21 > 1. On the other hand, if we
assume that D < 0, then

ρ5

ρ1
<

γ1 + 1

γ5 + 1
. (18)

The lower bound given by (17) and the upper bound
given by (18) are related through (12) and (13). No value
of ρ5/ρ1 that satisfies (17) and (18) can satisfy (12). Thus
we are left with

γ1

γ5
<

ρ5

ρ1
<

γ1 + 1

γ5 + 1
if

γ1

γ5
< 1, (19)

and p21 is again given by (15).

These results are summarized in Fig. 3. By comparing with
Fig. 2, we see that the use of the acoustic-impedance ratio
leads to incorrect predictions for cases (a) and (d) of the
standard theory in which the shock-impedance ratio predicts
either a reflected shock wave or expansion wave depending
on the pressure ratio of the incident shock wave.

3 Discussion

Having derived the conditions under which the acoustic-
impedance ratio predicts the incorrect type of reflected wave
in shock-refraction problems, it remains to be established
how restrictive the conditions are. Defining

� = γ5

γ1
, (20)

the conditions relate γ1, �, ρ5/ρ1, and p21. Because 1 < γ ≤
5/3, we have 3/5 < � ≤ 5/3. For γ1 = 1.4, the restrictions
can be represented by Fig. 4. The plot is to be interpreted in
the following manner. The acoustic-impedance ratio predicts
the incorrect type of reflected wave if the point (�, ρ5/ρ1) lies
within the regions bounded by the (dashed) lines ρ5/ρ1 = 1/�
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(a)

(b)

Fig. 3 Schematic illustration of types of reflected waves as determined
by acoustic-impedance ratio as a function of ρ5/ρ1, γ1, and γ5 for a
γ1 < γ5 and b γ1 > γ5. The shaded regions indicate that the reflected
wave is a shock wave. The lack of shading indicates that the reflected
wave is an expansion wave

Fig. 4 Values of p21 above which the acoustic-impedance ratio pre-
dicts the incorrect type of reflected wave as a function of � and ρ5/ρ1
for γ1 = 1.4

and ρ5/ρ1 = (γ1+1)/(�γ1 +1) and if p21 exceeds the values
shown in the figure.

It is seen that the range of ρ5/ρ1 over which incorrect types
of reflected waves are predicted is O(1) and quite narrow. For
obvious reasons, shock-refraction experiments usually con-
sider density ratios that are significantly different from unity.

As a result, none of the articles published on shock-refrac-
tion problems appears to include an experiment in which
the acoustic-impedance ratio predicts the incorrect type of
reflected wave. This may explain why the applicability of
the acoustic-impedance ratio to shock-refraction problems
has not been investigated before. Nevertheless, the condi-
tions derived here may be of use for future studies.

It should be noted that along the line ρ5/ρ1 = (γ1 +
1)/(�γ1 + 1), we have D = 0 and hence p21 = ∞ (unless
� = 1, a case that is of no interest). At high values of p21,
i.e., for strong shock waves, of course, the assumption of
perfect-gas behavior becomes questionable. Data presented
by Owczarek [8, section 5.4] indicate that real-gas effects on
the pressure ratio across a shock wave in air are negligible
provided that Ms � 8(p21 � 75) if the state ahead of the
shock wave is at standard conditions. As may be seen from
Fig. 4, curves corresponding to such large values of p21 are
essentially indistinguishable from the curve for p21 = ∞.
For this reason, and because shock-refraction experiments
are usually carried out at conditions that ensure perfect-gas
behavior, Fig. 4 should be useful for a wide range of condi-
tions.
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