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Abstract The Medicago truncatula (Gaertn.) ecotypes
Jemalong A17 and R108-1 differ in Sinorhizobium
meliloti-induced chitinase gene expression. The patho-
gen-inducible class IV chitinase gene, Mtchit 4, was
strongly induced during nodule formation of the eco-
type Jemalong A17 with the S. meliloti wild-type strain
1021. In the ecotype R108-1, the S. meliloti wild types
Sm1021 and Sm41 did not induce Mtchit 4 expression.
On the other hand, expression of the putative class V
chitinase gene, Mitchit 5, was found in roots of
M. truncatula cv. R108-1 nodulated with either of the
rhizobial strains. Mtchit 5 expression was specific for
interactions with rhizobia. It was not induced in re-
sponse to fungal pathogen attack, and not induced in
roots colonized with arbuscular mycorrhizal (AM)
fungi. Elevated Michit 5 gene expression was first
detectable in roots forming nodule primordia. In con-
trast to Mtchit 4, expression of Mtchit 5 was stimu-
lated by purified Nod factors. Conversely, Michit
4 expression was strongly elevated in nodules formed
with the K-antigen-deficient mutant PP699. Expression
levels of Mtchit 5 were similarly increased in nodules
formed with PP699 and its parental wild-type strain
Sm41. Phylogenetic analysis of the deduced amino acid
sequences of Mtchit 5 (calculated molecular weight =
41,810 Da, isoelectric point pH 7.7) and Michit
4 (calculated molecular weight 30,527 Da, isoelectric
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point pH 4.9) revealed that the putative Mtchit
5 chitinase forms a separate clade within class V
chitinases of plants, whereas the Mtchit 4 chitinase
clusters with pathogen-induced class IV chitinases from
other plants. These findings demonstrate that: (i) Rhi-
zobium-induced chitinase gene expression in M. trun-
catula occurs in a plant ecotype-specific manner, (ii)
Mtchit 5 is a putative chitinase gene that is specifically
induced by rhizobia, and (iii) rhizobia-specific and de-
fence-related chitinase genes are differentially influ-
enced by rhizobial Nod factors and K antigens.

Keywords Class IV and V chitinase - K antigen -
Medicago truncatula ecotypes R108-1 and Jemalong
A17 - Nod factors * Sinorhizobium - Suppression of
plant defence

Abbreviations AM: Arbuscular mycorrhiza(l) -

BAC: Bacterial artificial chromosome - bp: Base pairs -
RT-PCR: Polymerase chain reaction after reverse
transcription

Introduction

Under conditions of nitrogen limitation, legumes
establish a symbiosis with nitrogen-fixing soil bacteria
belonging to the family of Rhizobiaceae. Once the
rhizobia have entered the root hairs, infection threads
are formed, and some cortical root cells become mer-
istematic resulting in the development of a highly
specialized symbiotic organ, the nodule. Formation of
nodules is the result of a molecular dialogue between
rhizobia and the host plant. The plants secrete flavo-
noids into the rhizosphere, where they stimulate the
rhizobia to synthesize Nod factors (lipo-chitooligosac-
charide signal molecules). The Nod factors induce
various responses in the host plant, including root hair
deformation and cortical cell division (Perret et al.
2000). In addition to Nod factors, specific rhizobial
surface  compounds, exopolysaccharides (EPS),



lipopolysaccharides (LPS), cyclic p-glucans and
K antigens (also named capsular polysaccharides) are
required for establishing a symbiosis. Increasing data
suggest that certain forms of surface polysaccharides
interact with components of the host plant at different
stages of the symbiosis (e.g. Pellock et al. 2000),
thereby avoiding or suppressing inducible plant de-
fence reactions (Niehaus et al. 1993; Albus et al. 2001;
Mithofer et al. 2002). Whether K antigens have an
effect on genes induced during nodulation has not been
studied yet. K antigens of Sinorhizobium meliloti are
analogous to the group II K antigens of Escherichia
coli. They adhere tightly to the cell surface of the
rhizobia and usually contain a high proportion of Kdo
(3-deoxy-p-manno-2-octulosonic acid; Petrovics et al.
1993; Reuhs et al. 1993; Kannenberg et al. 1998).

Nodulins are plant proteins that are specifically
induced during the life cycle of a nodule. According to
the timing of their synthesis during nodule develop-
ment, they are divided into early and late nodulins.
Early nodulins are synthesized during root hair
deformation, infection thread formation and nodule
morphogenesis. Late nodulins appear first in nodules
after bacterial endocytosis. Most early nodulins seem
to be involved in symbiosis-related alterations of the
plant cell wall. Some of them exhibit similarities to
pathogenesis-related proteins (Gamas et al. 1998;
Goormachtig et al. 1998). A number of nodulins are
also expressed in roots colonized by mycorrhizal fungi
(Wyss et al. 1990; Hirsch and Kapulnik 1998), indi-
cating a common role in arbuscular mycorrhizal (AM)
and rhizobial symbiosis. For instance, Medicago trun-
catula transformants constitutively expressing the
enod40 gene exhibited an accelerated development of
nodules (Charon et al. 1999) and also an increased
colonization with AM fungi (Staehelin et al. 2001).

Chitinases are frequently regarded as pathogenesis-
related proteins. They hydrolyse chitin (poly f-1,4-N-
acetylglucosamine), which is a major component of
most higher fungi and arthropods. Usually, plants
possess a set of different chitinases, which belong to
the glycosyl hydrolase families 18 or 19 and are sub-
divided into different classes (Melchers et al. 1994;
Neuhaus et al. 1996; Hamel et al. 1997). Synthesis of
chitinases is often induced in response to pathogen
attack. Chitinases have antifungal activity, particularly
in combination with f-1,3-glucanase (e.g. Mauch et al.
1988). When overexpressed in transgenic plants, certain
chitinases enhance resistance against fungal pathogen
attack (e.g. Broglie et al. 1991). Some chitinases also
display lysozyme activity and hydrolyse f-1,4-linkages
between N-acetylmuramic acid and N-acetylglucos-
amine in peptidoglycanes of bacterial cell walls (e.g.
Brunner et al. 1998).

Apart from their role in pathogen defence, chitin-
ases also have a role in symbiotic interactions. How-
ever, their function in symbioses is less well
understood. Certain chitinase isoenzymes are specifi-
cally induced in soybean nodules (Stachelin et al. 1992;
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Xie et al. 1999) and near aborted infection threads in
the interaction between alfalfa and Sinorhizobium me-
liloti (Vasse et al. 1993). In Sesbania rostrata plants, a
chitinase (Goormachtig et al. 1998) and a chitinase-
related gene (Goormachtig et al. 2001) are strongly
induced during the early stages of stem nodule devel-
opment. Chitinases of legumes have received particular
attention because certain rhizobial Nod factors are
substrates for chitinases (reviewed by Perret et al.
2000). The degradation products formed are only
weakly active on their respective host plants (Heidstra
et al. 1994; Stachelin et al. 1994). Thus, it has been
proposed that cleavage of Nod factors is necessary to
limit the amount of active Nod factors after their
perception by the host plant (Stachelin et al. 1995;
Goormachtig et al. 1998). Chitinases can also be di-
rectly involved in processes related to plant develop-
ment by modifying extracellular N-acetylglucosamine-
containing arabinogalactan proteins (De Jong et al.
1992; van Hengel et al. 2001). In addition to these
enzymatically active chitinases, a putative receptor ki-
nase with a C-terminal class V chitinase domain (Kim
et al. 2000) and chitinase homologs without catalytic
activity have been identified (Perlick et al. 1996;
Goormachtig et al. 2001).

Medicago truncatula (= barrel medic) is widely used
as a model plant that allows studies on symbiotic
plant-microbe interactions (Cook et al. 1997).
M. truncatula exists in many ecotypes. The ecotype
Jemalong was selected for the ongoing American and
European M. truncatula genome sequencing and gene
expression projects (van den Bosch and Stacey 2003).
The ecotype R108-1 is known for its superior in vitro
regeneration and transformation properties (Hoffmann
et al. 1997). In our previous work we isolated partial
chitinase DNA sequences from an M. truncatula bac-
terial artificial chromosome (BAC) library and deter-
mined transcript levels by semi-quantitative reverse
transcription—polymerase chain reaction (RT-PCR) in
various pathogenic and symbiotic interactions (Salzer
et al. 2000). Transcripts of the class IV chitinase gene,
Mtchit 4, continuously accumulated in the interaction
of M. truncatula Jemalong A17 with S. meliloti 1021.
In our previous work (Salzer et al. 2000), however, we
were not able to identify a chitinase gene that is spe-
cifically induced during interactions with S. meliloti. In
order to learn more about chitinase gene expression
during nodule formation and about the effects of rhi-
zobial signal molecules, we extended our studies on the
M. truncatula ecotype R108-1. The comparison of
chitinase gene expression patterns between the ecotypes
Jemalong A17 and R108-1 drew our attention to the
class IV chitinase gene, Mzichit 4, and the class
V chitinase gene, Mtchit 5. In this work we present a
comparative, real-time RT-PCR-based investigation of
Mtchit 4 and Mtchit 5 gene expression and introduce
Mtchit 5 as a new rhizobia-specific induced gene that
is inversely influenced by Nod factors and K antigen
compared to the defence-related Mrchit 4 gene.
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Materials and methods
Treatments and culture of plants, bacteria, and fungi

Medicago truncatula (Gaertn.) ecotype RI108-1 was
kindly provided by E. Kondorosi (CNRS, Gif-sur-
Yvette, France), ecotype Jemalong A17 by T. Huguet
(CNRS-INRA Castanet-Tolosan, France). Seeds were
freshly released from seed pods, treated with concen-
trated sulphuric acid for 4 min, rinsed 8 to 10 times
with autoclaved water and germinated in Petri dishes
containing 1% water agar. Germination and growth
occurred in a Sanyo Versatile Environmental Test
Chamber (Sanyo Electric, Japan) with 18-h day
(140 pmol photons m™2s™!, 22°C), 6-h (18°C) night
cycles. When used for spraying experiments, seeds were
germinated in vertical orientation with roots shaded by
aluminium foil. For all other experiments, seeds were
germinated in horizontal orientation and planted into
Magenta jars containing Terra Green (Oil Dri type 111
R; Lobbe Umwelttechnik, Iserlohn, Germany) after
the primary leaves had started to expand. B&D nu-
trient solution (Broughton and John 1979) with 2 mM
KNO; and 0.25 mM KH,PO, was continuously sup-
plied from a reservoir, which was connected by a wick
with the Terra Green.

The following Sinorhizobium meliloti strains and mu-
tants were used in this work: S. meliloti 1021 wild type;
S. meliloti Sm41 wild type and its K-antigen-deficient
derivative PP699, which is mutated in the rkp-1 (formerly
fix-23) region (Putnoky et al. 1990; Petrovics et al. 1993;
Kiss et al. 1997); AK631/psZ::TnS with a mutated /psZ
gene (Reuhs et al. 1995); and PP666h, which is AK631
mutated in the rkp-1 (formerly fix-23) region (Putnoky
et al. 1990). The bacteria were grown in GTS medium
(Kiss et al. 1979) on a rotatory shaker (150 rpm) at 27°C.
For inoculation, 1 ml of the bacterial solution (ODgqq
about 1.0) was either sprayed directly on the roots or
pipetted to the rhizosphere. In control experiments, 1 ml
GTS medium was applied. The plant material was har-
vested after the indicated times, frozen in liquid nitrogen
and stored at —80°C until extraction of RNA.

Nod factors were purified from S. meliloti strain
1021(pEK327) (Schultze et al. 1992). Supernatants of
bacterial cultures were extracted with n-butanol and
fractionated by reverse-phase HPLC (Waters C18 col-
umn), using 35% acetonitrile/water, 40 mM ammonium
acetate as the mobile phase. The fractions containing
NodSm-IV(Cj¢.5, S) were collected and desalted as de-
scribed by Staehelin et al. (2000). For treatment of roots,
1 ml of 0.5 mM NodSm-IV(Cys.5, S), was sprayed on
vertically grown roots of young plants, which had
reached the stage of expanded cotyledons. In control
experiments, 1 ml water was sprayed.

Culture and inoculation with the AM fungus Glo-
mus intraradices was performed as previously described
(Salzer et al. 2000) with about 400 spores, which had
been isolated from Daucus carota/Glomus intraradices

in vitro cultures (Bécard and Fortin 1988). In control
experiments, an equivalent amount of water was ad-
ded. The degree of mycorrhization was determined by
the gridline intersection method (Giovanetti and Mosse
1980).

Culture and inoculation with Fusarium solani f. sp.
phaseoli strain W-8 (kindly provided by the Novartis
fungal pathogen collection) was performed as previously
described (Salzer et al. 2000). For mock inoculation, V8
agar plugs were placed on the root surface.

Cloning, sequencing and sequence analysis

Cloning and sequencing of Mtchit 5 An adapter-li-
gated library was constructed with the Universal
Genome Walker kit (Clontech, Palo Alto, CA, USA)
and the Expand Long Template PCR System (Roche
Diagnostics, Mannheim, Germany). To this purpose,
genomic DNA was isolated from roots of axenically
grown M. truncatula R108-1 plants using the Nucleon
Phyto Pure DNA extraction kit (Amersham Bio-
sciences) followed by three extractions with phenol:
chloroform (1:1). Aliquots of the purified DNA were
digested with Dral, EcoRV, Pyull or Stul and adapt-
ers were ligated to both blunt cut ends of the obtained
DNA fragments according to the protocol of the
Genome Walker kit. First PCR was performed with an
aliquot of the adapter-ligated DNA fragments with the
adapter-specific primers, Adaptor 1 (Genome Walker
kit) and Mtchit 5-specific primers GSP1 or GSP3
(Table 1) followed by a second, nested PCR with
1:1,000-diluted aliquots of the first PCR using the
nested adapter-specific primers, Adaptor 2 (Genome
Walker kit) and nested Mtchit 5S-specific primers
GSP2 and GSP4 (Table 1). PCR was performed with
the Long Template PCR System according to the
manufacturer’s recommendations (Roche Diagnostics)
using buffer 3. Thermal cycling was performed with a
Techne Progene cycler (Techne, Duxford, Cambridge,
UK). The cycling program for both PCRs was 1 cycle:
2 min at 92°C, 10 cycles: 10 s at 92°C, 30 s at 60°C
and 90 s at 68°C, 20 cycles: 10 s at 92°C, 30 s at 60°C,
and 90 s at 68°C with an increased extension per cycle
of 20 s at 68°C. PCR products obtained after the
second PCR were purified with the High Pure PCR
purification kit (Roche Diagnostics) and cloned into
pGEMTeasy using the pGEMTeasy Vector System
(Promega, Madison, WI, USA). DNA sequencing was
performed with the ABI Prism Big Dye Terminator
Sequencing Reaction kit and an ABI 310 sequencer
following the manufacturer’s recommendations (Ap-
plied Biosystems, Foster City, CA, USA). The se-
quences obtained from the adapter-ligated library were
assembled and primers were designed (Mtchit5 start-f,
Mtchit5 stop-b) that covered the 5" and 3’ ends of the
assembled sequences. The primers used for cloning and
sequencing reactions in forward and backward direc-
tion are listed in Table 1.



Table 1 Primers used for construction of the adaptor-ligated li-
brary, cloning and sequencing of Mtchit 5 and Mtchit 4, and
primers used for real-time PCR. The following primers have al-
ready been described elsewhere: Adaptor primer 1, and nested
adaptor primer 2 (Universal Genome Walker kit user manual,
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Clontech, http://www.clontech.com), sequencing primers M13
forward and M13 backward (pGEM-T and pGEM-Teasy Vector
Systems, http://www.promega.com), Mtchit 3-3f, Mtchit 3-3b,
Mtubi-f, Mtubi-b (Salzer et al. 2000). Tm Annealing temperature

Name Tm (°C) Sequence Comment
Cloning primers
GSP1 67.1 CCGATCCGGTCTCCTTGTCATACACC Gene-specific Mtchit
5 forward, first PCR
GSP2 67.2 CCCGATTCCATGCACATTCGGATCCTG Gene-specific Mtchit
5 forward, nested PCR
GSP3 67.1 CAGGATCCGAATGTGCATGGAATCGGG Gene-specific Mtchit
5 backward, first PCR
GSP4 67.1 GGTGTATGACAAGGAGACCGGATCGG Gene-specific Mtchit 5 backward,
nested PCR
Mtchit 5 63.1 GTGACATGCCACTTAAGAATGTTGAACAC 5" end of Mtchit 5, full-length
start-f clone forward
Mtchit5 63.8 GTCACAAATTATCACACACTTGGTTTGTAAACC 3" end of Mtchit 5, full-length
stop-b clone backward
Mtchit4 67.7 ATGACTATGATGGGAAACAAATCACT 5" end of Mtchit 4, full-length
start-f AAGCATATGTATG clone forward
Mtchit4 66.2 TAAGCAAGTAAGGTTATCACCAGGAGCAACAC 3" end of Mtchit 4, full-length
stop-b clone backward
Sequencing primers
Dra I-specific 1 64.4 GTGATGTATCTATGGAAGCTGGAGGG For internal regions of Dra I
fragment, forward
Dra I-specific 2 65.3 GCCTTTCACACGTGTAGTTGATGATGGTG For internal regions of Dra I fragment,
backward
Mtchit4 seql 64.4 GCTAATGTGGCTGACATCCTTACACAAG For internal regions Mtchit 4, forward
Mtchit4 seqlb 64.4 CTTGTGTAAGGATGTCAGCCACATTAGC For internal regions Mtchit 4, backward
Mtchit4 seq2 64.2 GAACTACAACTATGGACCAGCTGGAAG For internal regions Mtchit 4, forward
Mtchit4 seq2b 64.2 CTTCCAGCTGGTCCATAGTTGTAGTTC For internal regions Mtchit 4, backward
Primers for real-time PCR
Chit5 rt-f 59.0 GGGTTGATGGTGGAATGGCG Gene-specific Mtchit 5, forward
Chit5 rt-b 60.5 GATCCGGTCTCCTTGTCATAC Gene-specific Mtchit 5, backward
Chit4 rt-f 66.6 GGTGATGCATATTGTGGCACAGGG Gene-specific Mtchit 4, forward
Chit4 rt-b 67.4 GCAGCAGCAACCTCACGTTTGGAG Gene-specific Mtchit 4, backward

Cloning and sequencing of Mtchit 4 A database com-
parison in TIGR (http://www.tigr.org/tdb/tgi/mtgi/)
with the partial Mrchit 4 sequence (accession number
AF167328) obtained from the M. truncatula Jemalong
A17 BAC clone 46B22 (Salzer et al. 2000) resulted in a
100% match with the tentative class IV chitinase con-
sensus sequence TC60709. Primers Mtchit4 start-f and
Mtchit4 stop-b comprising the start and the stop codon
of TC60709 were designed (Table 1). Using the Expand
PCR System, Mtchit 4 was synthesized using genomic
DNA from M. truncatula cv. R108-1 as template, cloned
into pGEMTeasy, and sequenced.

Sequence analysis Sequences were analysed using
EditView 1.0 (Perkin Elmer). Sequence alignments
(BestFit, PileUp), translation of the nucleotide acid
sequences (Translate), database searches (BLASTP,
BLASTN), determination of the molecular weight
(Map) and isoelectric point (Isoelectric), analysis of
known protein motives (HmmerPfam), and analysis of
signal peptide (SPScan) were performed with the Ac-
celrys SeqWeb Version 2.1 Web-based Sequence
Analysis. In an alternative approach, analysis of signal
peptides was also performed with PSORT (old version

for bacterial/plant sequences, http://psort.nibb.ac.jp/
form.html). For phylogenetic analysis, deduced amino
acid sequences were aligned with Clustal W and dis-
tance matrices were calculated (http://www.mbio.nc-
su.edu/Bioedit/bioedit.html). Unrooted phylogenetic
trees were constructed with Phylip version 3.6 (http://
evolution.genetics.washington.edu/phylip.html) apply-
ing the Neighbor-Joining method 3.6a3. All other
molecular techniques were performed according to
Sambrook et al. (1989).

Semi quantitative and quantitative RT-PCR

Semi quantitative RT-PCR was performed entirely as
previously described (Salzer et al. 2000), except that 31
PCR cycles were performed.

For real-time RT-PCR, RNA was isolated from
roots, leaves and flowers of M. truncatula R108-1,
treated with DNAse I and reverse-transcribed as previ-
ously described (Salzer et al. 2000), except that 10 units
RNase-free DNase I and reaction buffer from MBI
Fermentas (Vilnius, Lithunia) were used.
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Real-time PCR was performed with a Gene Amp
5700 Sequence Detection System (Applied Biosystems)
with the default thermal cycling program for Sybr
Green analysis. The thermal profile was, 1 cycle: 50°C,
2 min, 1 cycle: 95°C, 10 min, 40 cycles: 95°C, 15s,
60°C, 1 min. A 25-pl reaction volume consisted of 1 pl
of cDNA, 12.5 ul Sybr Green PCR 2x reaction mix,
55ul water, 3 ul of 2uM gene-specific forward
primers, and 3 pul of 2 uM gene-specific backward
primers (Table 1). Gene-specific primers for Mtchit 3,
and Mztchit 4 were designed based on sequence
information of the full-length coding region. Gene
specificity of the primers was controlled by comparison
in pairs (BestFit) with partial chitinase sequences of
Mtchit 1, Mtchit 2, and Mtchit 3-2 (Salzer et al.
2000), and full-length sequences of Mtchit 3-3
(AY238969), Mtchit 3-4 (AY238970), and Mtchit 3-1
(AY294484). Calibration was performed with a dilu-
tion series of 6.4 ng, 3.2 ng, 1.6 ng, 0.8 ng and 0.4 ng
genomic DNA from M. truncatula cv. R108-1 corre-
sponding to 22,122, 13,061, 6,530, 3,265, and 1,632
copies of Mtchit 5, Mtchit 4 and ubiquitin. Copy
numbers were calculated based on a haploid genome
weight of 0.49 pg (Blondon et al. 1994) under the
assumption of Mtchit 5 and Mtchit 4 being single-
copy genes (Salzer et al. 2000). DNA was isolated
from axenically grown seedlings with DNeasy (Qiagen)
and subsequently treated with RNase following the
manufacturer’s instructions. Ubiquitin (ubi) was mea-
sured as internal standard using an M. truncatula-
specific primer combination (Salzer et al. 2000). For
calculation of copy numbers from amplification plots,
a threshold of 0.1 was used. All samples were mea-
sured in triplicate. Standardized expression levels are
given as Mtchit/ubi ratios. They were calculated from
the average copy numbers of the chitinase and the M.
truncatula-specific ubiquitin transcripts.

Fig. 1 Differential expression of chitinase genes in various Medi-
cago truncatula ecotypes. The plants were inoculated with the
Sinorhizobium meliloti wild-type strains 1021 or Sm4l, or were
mock-inoculated with GTS medium (no rhizobia). RNA was
isolated from nodulated roots 5 weeks post inoculation. cDNA
obtained by reverse transcription has been diluted 1:1, 1:4, 1:16,
and 1:64 and was subsequently subjected to 31 PCR cycles. The
picture shows the ethidium bromide-stained PCR products. Strong
expression of Mtchit 4 is apparent in the ecotype Jemalong A17.
Expression of Mtchit 5 is obvious in the ecotype R108-1 but hardly
detectable in the ecotype Jemalong Al17. M. truncatula-specific
ubiquitin (Mrubi) served as cDNA loading control. The picture
shows the result, as it was obtained in two independent experiments

M. truncatula ecotype: Jemalong A17

S. meliloti strain: No rhizobia Sm1021

Mtchit 4 A e
Mtchit 5
Mtubi —— _—

Dilution of cDNA:

1 41664 1 416 64

Results

Differential expression of chitinase genes in the
M. truncatula ecotypes Jemalong A17 and R108-1

To extend our knowledge about chitinase gene expres-
sion in the model legume M. truncatula, we compared
the expression patterns of Mtchit 1, Mtchit 2, Mtchit
3-1, Mtchit 3-2, Mtchit 3-3, Mtchit 3-4, Mtchit 4, and
Mtchit 5 (Salzer et al. 2000) between the ecotypes
Jemalong Al7 and R108-1. Applying conventional
semi-quantitative RT-PCR for these eight genes, we
found two remarkable differences between chitinase gene
expression in nodulated roots of the two M. truncatula
ecotypes. () Mtchit 4 transcripts, which continuously
accumulated during nodule formation of S. meliloti 1021
on the ecotype Jemalong A17 (Salzer et al. 2000), was
not elevated above its basic expression level in nodules
formed with the S. meliloti wild-type strains 1021 and
Sm41 in the ecotype R108-1 (Fig. 1). (i) Mtchit 5
expression, which was previously not detected in roots
of M. truncatula cv. Jemalong Al7 nodulated with
S. meliloti Sm1021 (Salzer et al. 2000), could be detected
in roots of the ecotype R108-1 that were nodulated with
1021 or Sm41 (Fig. 1). By performing a higher number
of PCR cycles, 31 instead of 28 (Salzer et al. 2000),
Mtchit 5 expression could also be observed in nodulated
roots of M. truncatula Jemalong Al17. However, the
signal was so weak, that it could hardly be seen (Fig. 1).

Cloning and sequencing of Michit 4

A database search in the TIGR M. truncatula database
(http://www.tigr.org/tdb/tgi/mtgi/) resulted in a 100%
match between the partial Mirchit 4 sequence
(AF167328, Salzer et al. 2000) and the tentative con-
sensus sequence TC60709 of M. truncatula cv. Jem-
along Al7. Primers “Mtchit4 start-f’ beginning with
the start codon and “Mtchit4 stop-b”’ beginning with the
stop codon of TC60709 were designed (Table 1) and
used for PCR with genomic DNA of M. truncatula cv.
R108-1. A single 1,245-bp PCR product was obtained
comprising the full-length coding region of Mtchit 4.
The coding region was interrupted by a 396-bp intron
located at the conserved position of introns of class IV
chitinase genes in angiosperms (Wiweger et al. 2003).
Sequence data of Mtchit 4 are deposited at GenBank
and are accessible under AY490790. Sequence compar-
ison between putative Mitchit 4 and TC60709 gene
products revealed >98% identity. The putative gene

R108-1
No rhizobia Sm1021 Smd1
i - —

1 41664 1 41664 1 4 16 64



product of Mtchit 4 has a calculated molecular weight
of 30,447 Da, an isoelectric point at pH 4.86, and pos-
sesses a secretion signal peptide for apoplastic targeting.

Cloning and sequencing of Mtchit 5

From an adapter-ligated library, constructed on the
basis of genomic DNA from M. truncatula R108-1, a
993-bp Dral, a 356-bp Pvul, and a 321-bp EcoRV
fragment were amplified by PCR. Sequencing of the
cloned fragments showed that they could be assembled
to a full-length gene sequence. With the primers Mtchit5
start-f and Mtchit5 stop-b (Table 1), we directly ob-
tained a 1,345-bp PCR product, which contained the
full-length Mtchit 5 coding region. Sequence analysis
revealed an open reading frame of 1,149 bp without
introns. The ATG start codon was positioned 51 bp
downstream of the putative TATA box, CTATATACA,
and 24 bp downstream of a TAA stop codon. No
polyadenylation signal was found within the 56 bp of
the cloned 3’ untranslated region. The Mtchit 5 se-
quence data are deposited at the EMBL Nucleotide
Sequence Database and are accessible under AJ515476.
The putative Mtchit 5 gene product is comprised of 383
amino acids, has a calculated molecular weight of
41,810 Da, and an isoelectric point at pH 7.66.

Sinorhizobium-specific induction of Mtchit 5 gene
expression

To quantify Mtchit 5 and Mtchit 4 gene expression,
primers were designed that met the requirements of real-
time PCR (Table 1). Transcript expression levels of
Mtchit 5 and Mtchit 4 were related to the expression
levels of the M. truncatula-specific ubiquitin gene (ubi)
that served as an internal standard for plant-derived
mRNA (Salzer et al. 2000). We therefore expressed the
standardized transcript expression levels as Mtchit 5/ubi
and Mtchit 4/ubi ratios.

In non-inoculated roots and leaves of M. truncatula
R108-1, Mtchit 5/ubi ratios were very low, amounting
to ca. 0.002. In flowers, Mtchit 5/ubi ratios were above
the basal expression levels in roots but still in a range
below 0.05 (Fig. 2a). In roots of M. truncatula R108-1
nodulated with S. meliloti wild-type Sm41, the Mtchit 5/
ubi ratios were more than 100-fold elevated above the
basic expression levels in non-nodulated roots (Fig. 2a).
Specificity of Mtchit 5 induction for interactions with
rhizobia became apparent by measuring its expression in
other types of plant-microbe interactions. In roots col-
onized by the arbuscular mycorrhizal fungus Glomus
intraradices, the Mtchit 5/ubi ratios remained low
(Fig. 2a). In highly mycorrhized roots (58% of the root
length contained fungal structures, i.e. intraradical hy-
phae, arbuscules or vesicles), the Mztchit 5/ubi ratio
reached a value of only 0.021 compared to 0.276 in
nodulated roots. The Mitchit 5/ubi ratio remained low
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Fig. 2a, b Specific induction of Mtchit 5 in nodulated roots of
M. truncatula R108-1. Expression values of Michit 5 (a) and
Mtchit 4 (b) were determined with real-time RT-PCR. RNA was
analysed from leaves (leaf), and flowers (flower), and roots (root) of
7-week-old plants, from nodulated roots inoculated with S. meliloti
wild type strain Sm41 (Sm41), and from roots colonized with the
AM fungus Glomus intraradices. The percentage of the root length
containing AM fungal structures (colonization) is given for the
individual plants 5 weeks post inoculation. From pathogen-
challenged roots, RNA was analysed 8 days post inoculation
(F.s.ph. = Fusarium solani f. sp. phaseoli; agar = mock
inoculation). The gene expression values of Mtchit 5 and Mtchit
4 were related to the expression values of M. truncatula-specific
ubiquitin and are given as Mtchit 5/ubi or Mtchit 4/ubi ratios. The
columns represent the mean values (£ SE) of three independent
experiments, except for mycorrhizal roots, where single values of
plants with a specific degree of colonization are shown. All copy
numbers were measured in triplicate

also in roots challenged with the pathogenic fungus
Fusarium solani f. sp. phaseoli (Fig. 2a) that caused vis-
ible browning around the sites of inoculation.

Mtchit 4 expression levels remained low in roots of
M. truncatula R108-1 plants nodulated with S. meliloti
Sm41 (Figs. 2b, 3b), whereas inoculation of R108-1
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Fig. 3a, b Time-dependent increase of Mrchit 5 expression during
nodule formation. Time courses of Mtchit 5 (a) and Mtchit 4 (b)
expression values are depicted after inoculation with S. meliloti
wild-type strain Sm41. M. truncatula R108-1 plants were grown on
agar for 7 days, then sprayed with bacteria (Sm47) or GTS medium
(mock) and harvested 0, 1, 2, and 3 days later. To measure later
stages of the symbiosis (8, 14, and 35 days post inoculation), 7-day-
old seedlings were planted into Magenta jars and were inoculated
with a bacterial suspension or GTS medium as a control. The
Mtchit 5/ubi and Mtchit 4/ubi ratios were determined by real-time
RT-PCR. The data shown are the means (+SE) of two
independent experiments with copy numbers determined in
triplicate per experiment

plantlets with Fusarium solani f. sp. phaseoli resulted in
elevated expression of Mitchit 4, 8 days post inoculation
(Fig. 2b). Mycorrhiza formation with Glomus intrara-
dices did not raise Mtchit 4 expression levels (Fig. 2b).
Responsiveness of the M. truncatula cv. R108-1 roots to
AM fungal colonization was demonstrated by induction
of the mycorrhiza-inducible class III chitinase gene,
Mtchit 3-3 (Salzer et al. 2000). At 58% root coloniza-
tion, an Mtchit 3-3/ubi ratio of 0.2 was attained.

Mtchit 5 expression correlates with nodule development

Time-course experiments were performed to learn at
which stage of nodule formation the expression of
Mtchit 5 becomes elevated (Fig. 3a). Early time points
(up to 3 days post inoculation) were analysed on
M. truncatula cv. R108-1 seedlings that had been grown
on agar plates for 7 days, and then directly sprayed with
a suspension of S. meliloti wild-type strain Sm4l. At
these early time points, which corresponded to the stage
of root hair deformation and bacterial invasion, no in-
creased expression of Mitchit 5 was measured in roots.
Later time points (8, 14 and 35 days post inoculation)
were measured in plants that had been transferred to
Magenta jars and were subsequently inoculated with a
rhizobial suspension. In roots of these plants (harvested
8 days post inoculation), levels of Mtchit 5 transcripts
were about 4-fold higher compared to mock-inoculated
control plants. At this stage of the symbiosis, the first
nodule primordia started breaking through the root

cortex. During the further ontogeny of the nodules,
expression levels of Mitchit 5 steadily increased and
reached more than 100-fold-elevated Mtchit 5/ubi ratios
5 weeks post inoculation (Fig. 3a). For comparison,
Mtchit 4 expression levels were measured in the same
M. truncatula plants. As shown in Fig. 3b, Mtchit 4/ubi
ratios decreased over the time of the experiment, both in
roots inoculated with S. meliloti Sm41 and in the mock-
inoculated roots.

In an additional experiment, M. truncatula R108-1
plants were inoculated with mutants that are unable to
establish an effective symbiosis. The S. meliloti strain
AK631lpsZ::Tn5 did not form nodules (Fig. 4a),
whereas PP666h induced a number of small white nod-
ule primordia (Fig. 4b). Plants inoculated with these
strains remained small and produced purple leaves un-
der nitrogen-limiting conditions (Fig. 4f). While Mtchit
5 expression remained at its very low basic level in roots
inoculated with AK631/psZ::Tn5, considerable increases
in Mtchit 5/ubi ratios were found in roots infected with
PP666h (Fig. 5a). This indicates that Mtchit 5 expres-
sion correlates with development of nodule primordia.
For comparison, the expression levels were also deter-
mined for Mtchit 4. The tested strains did not induce
significant differences in expression of this gene
(Fig. 5b).

Differential influence of Nod factors on expression
of Mtchit 5 and Mtchit 4

To study whether application of purified Nod factors
elicited expression of Mtchit 5 and Mtchit 4, 1 ml of
the tetrameric Nod factor, NodSm-IV(Ci4.,, S), was
sprayed on roots at a concentration of 0.5 uM. Control
plants were mock-treated with water. Within 48 h,
Mtchit 5/ubi ratios were significantly elevated in the
Nod factor-treated compared to water-treated roots
(Fig. 6a). Mtchit 4 expression, in contrast, steadily de-
creased, both in Nod factor-treated and water-treated
control roots (Fig. 6b).

Differential influence of K antigen on expression
of Mtchit 5 and Mtchit 4

A possible effect of K antigen on chitinase gene
expression was investigated by a mutant-based ap-
proach. R108-1 plants were inoculated either with
S. meliloti Sm41 or its mutant PP699 (Putnoky et al.
1990). PP699 is mutated in the rkp-I region and thus
deficient in K antigen synthesis (Petrovics et al. 1993;
Kiss et al. 1997). Plants inoculated with PP699 formed
pink nitrogen-fixing (fix”) nodules (Fig. 4d) that pro-
moted plant growth under nitrogen-limiting conditions
(Fig. 4f). Roots infected with the parent S. meliloti strain
Sm41 (Fig. 4c) developed nodules slightly faster than
PP699, suggesting a symbiosis-promoting effect of
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Fig. 4a—f Symbiotic interactions between M. truncatula R108-1
and different S. meliloti mutants (5 weeks post inoculation).
a Roots inoculated with AK631/psZ::Tn5. b Roots inoculated with
PP666h. White arrowheads indicate nodule primordia that did not
develop to nodules. ¢ Roots nodulated with Sm41. d Nodules
induced by PP699 (Sm41 mutated in the rkp-1 region). e Non-
inoculated roots of plants germinated at the same time as the
inoculated ones (no Sm). f Phenotype of plants at the time of
harvest. A plant growth-promoting effect is seen for the effective
symbioses with PP699 and Sm41. Bars = 1 cm (a—e), 5 cm (f)

K antigen in this interaction. Compared to mock-inoc-
ulated roots, Mtchit 5/ubi ratios (5 weeks post inocu-
lation) were more than 100-fold increased in roots
nodulated with either Sm41 or PP699. The degree of
Mtchit 5 induction did not show any significant differ-
ence between the two strains (Fig. 7a). The Michit
4 gene, in contrast, showed a different induction profile
between Sm41 and PP699. Compared to S. meliloti wild
type strain Sm4l, roots infected with the K-antigen-
deficient mutant PP699 exhibited on average 4.5-fold
higher Mtchit 4/ubi ratios (Fig. 7b).
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Fig. Sa, b Expression of chitinases in M. truncatula R108-1 roots
during ineffective symbioses. Plants were inoculated with S. meliloti
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Five weeks later, Mtchit 5 (a) and Mtchit 4 (b) expression levels
were determined by real-time RT-PCR. Chitinase gene expression
levels are shown as Mtchit 5/ubi or Mtchit 4/ubi ratios. Elevated
Mtchit 5/ubi ratios were found in roots with ineffective nodule
primordia induced by PP666h as well as in plants forming effective
nodules with Sm4l. Data indicate means (+SE) of three
independent experimental series
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Fig. 6a, b Effect of Nod factors on gene expression of Michit
5 and Mtchit 4. Roots of 1-week-old M. truncatula R108-1
plantlets were sprayed with 1 ml 0.5 pM NodSm-1V(C¢.5, S) or
water. Mtchit 5 (a) and Mtchit 4 (b) expression levels were
measured after indicated time points by real-time RT-PCR. The
chitinase expression levels are given as Mtchit/ubi ratios. Data
shown are means (+SE) of two independent experimental series
with expression values determined in triplicate

Putative properties of the deduced Mtchit 5 polypeptide

The HmmerPfam analysis of the deduced amino acid
sequence revealed that the putative Michit 5 gene
product belongs to glycosyl hydrolase family 18. The
two consensus motifs of class V chitinases, box 1 within
the substrate-binding cleft, and box 2 within the cata-
lytic centre contained the enzymatically active Asp (D)
and Glu (E), respectively (Watanabe et al. 1993; Kim
et al. 2002; Fig. 8). This suggests that the putative
Mtchit 5 protein is an enzymatically active class V
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Fig. 7a, b Expression of Mtchit 5 and Mtchit 4 in the interaction
between M. truncatula R108-1 and S. meliloti PP699, a K-antigen-
deficient mutant of Sm41. Plants were inoculated with Sm41 and
PP699, which is mutated in the rkp-1 region. Control plants were
inoculated with GTS medium (rno Sm). Five weeks later, nodulated
roots were harvested and Mtchit 5 (a) and Mtchit 4 (b) expression
levels were measured with real-time RT-PCR. Columns show mean
values (£SE) of Mtchit 5/ubi and Mtchit 4/ubi ratios from three
independent experiments with copy numbers measured in triplicate
per experiment

chitinase. The localization of the mature protein could
not be clearly predicted. PSORT predicted cleavage of a
signal peptide at position 26, while SPScan revealed no
presence of a secretory signal peptide.

Phylogenetic analysis of class V and IV chitinases

For phylogenetic analysis, BLASTP searches in the
EMBL, PIR and SwissProt databases against the puta-
tive Mtchit 5 and Mtchit 4 gene products were per-
formed. In the case of Mtchit 5, the 24 top-scored
matches of class V chitinases, in the case of Mtchit 4 the
19 top-scored matches with class IV chitinases were se-
lected. The entire amino acid sequences were used for
the construction of unrooted phylogenetic trees. As ex-
pected, there was a large phylogenetic distance between
the class IV and the class V chitinases. Within the
class V chitinases, the putative Mtchit 5 gene product
formed an individual clade that was distant from other
class V chitinases of plants, animals and Homo sapiens
(Fig. 9a). Within the phylogenetic tree, class V chitin-
ases from Nicotiana tabacum grouped together with
chitinases and further members of the glycosyl hydrolase
family 18 of Arabidopsis thaliana. The deduced Mtchit 5
gene product had the highest similarities to the A. tha-
liana chitinase homolog T16H5.170 (53% similarity,
36% identity), to the tobacco pz chitinase (52% simi-
larity, 33% identity; Heitz et al. 1994) and to the tobacco
Chi-V (52% similarity, 33% identity; Melchers et al.
1994).

The putative Mtchit 4 gene product was closely re-
lated to other class IV chitinases from legumes. The
chitinases most related to Mtchit 4 were either pathogen
induced or expressed in nodulated roots. As with the
class V chitinases, the class IV chitinases exhibited a
strict species-related grouping (Fig. 9b). The Mtchit
4 gene product has the highest similarities to the
endochitinase PR4 precursor of Phaseolus vulgaris (82%
similarity, 75% identity; Lange et al. 1996; accession
number: P27054), the class IV chitinase of Galega ori-
entalis (81% similarity, 73% identity; accession number:
AAP03085) and the class IV chitinase of Vigna ungui-
culata (79% similarity, 71% identity; accession number:
CAA61281).

Discussion

Ecotype-specific variation in nodule formation is known
from natural M. truncatula populations. For example,
the Algerian M. truncatula cultivar DZA315.16 is able to
form nitrogen-fixing nodules with the S. meliloti strain
A145, whereas the Australian cultivar Jemalong
6 formed only small ineffective nodules with this strain
(Tirichine et al. 2000). In our studies, comparison of
chitinase gene expression in nodulated roots revealed a
qualitative difference between the M. truncatula ecotypes
R108-1 and Jemalong A17. Nodule formation with S.
meliloti 1021 resulted in transcript accumulation of
Mtchit 4 in Jemalong A17, whereas expression of this
chitinase gene was not elevated above its basic expres-
sion level in R108-1 (Fig. 1). In contrast to Mtchit 4,
expression of Mtchit 5 was induced in both ecotypes.
Compared to R108-1, expression in Jemalong A17 was
rather low, however (Fig. 1). A quantitative difference in
chitinase gene expression was also found for Mzchit 3-3,
a chitinase gene of M. truncatula that is specifically in-
duced in response to AM formation (Salzer et al. 2000).
AM-induced transcript levels of Mtchit 3-3 were about
5-fold lower in R108-1 than in Jemalong Al7 (our
unpublished data).

We consider Mtchit 4 to be a chitinase gene that is
related to a general plant defence response for the fol-
lowing reasons: (i) The gene was induced upon infection
with the pathogenic fungus Fusarium solani f. sp.
phaseoli in M. truncatula R108-1 (Fig. 2) and Jemalong
A17 (Salzer et al. 2000). (i1) Mtchit 4 is closely related to
pathogen- and elicitor-induced class IV chitinases of
legumes, wine, and the non-symbiotic Arabidopsis
(Fig. 9). (iii) Mtchit 4 was not induced by rhizobial Nod
factors (Fig. 6b) or by symbiotic AM fungi (Fig. 2b).
Considering Mtchit 4 induction as a part of a general
defence response, low transcript levels in the interaction
between M. truncatula R108-1 and S. meliloti Smé41
would indicate an optimal compatibility between the
two symbiotic partners. In this view, enhanced accu-
mulation of Mtchit 4 transcripts induced by the
K-antigen-deficient mutant PP699 is remarkable. We
suggest therefore that K antigens are involved in
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suppression of plant defence reactions directed against
the invading bacteria. This is reminiscent of the pro-
posed function of other surface polysaccharides
(Mithofer 2002). Future work is required to demonstrate
a direct link between K antigen and suppression of
inducible plant defence reactions.

Real-time RT-PCR enabled us to quantitatively
analyze Mtchit 5 expression, even though transcripts
accumulated only at low abundance. Using this ap-
proach, we found that transcription of Mtchit 5 is
specifically induced in the symbiosis with S. meliloti.
Fungal pathogens and mycorrhizal fungi did not induce
Mtchit 5 in roots of R108-1 (Fig. 2a). Thus, Mtchit 5
can be considered as a putative chitinase gene that is
specific for nodules in M. truncatula ecotype R108-1.
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Mtchit 5 belongs to the class V chitinases and forms a
separate clade within the phylogenetic tree of class V
chitinases of plants and animals (Fig. 9). Mtchit 3-3,
which is specifically expressed in mycorrhizal roots of
both M. truncatula ecotypes (Salzer et al. 2000; Bona-
nomi et al. 2001; this work), belongs to the class III
chitinases and is structurally different from class V
chitinases. This indicates that M. truncatula evolved two
types of chitinase, which are independently activated in
response to nodule formation and mycorrhiza forma-
tion. In the tripartite symbiosis with S. meliloti and AM
fungi, expression of both genes is induced (data not
shown).

Mtchit 5 expression had already occurred early
during nodule development. Although this gene is also
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Fig. 9a, b Unrooted phylogenetic trees of class V (a) and class IV
(b) chitinases. A BLASTP search was performed with the full-
length amino acid sequences of the putative Mtchit 5 and Mtchit
4 gene products. Twenty-four class V amino acid sequences
were obtained with a bit score > 125, and were used to construct
a phylogenetic tree. These sequences originate from plants
(M. truncatula, Arabidopsis thaliana, Nicotiana tabacum, Oryza
sativa, Momordica charantia), insects (Drosophila melanogaster,
Anopheles gambiae), mammals (Bos taurus, Homo sapiens), the tick
Haemaphysalis longicornis, and the protist Entamoeba invadens. In
the case of class IV chitinases, 20 amino acid sequences with a bit
score >300 were obtained. The sequences stem from rice (Oryza
sativa), wine (Vitis vinifera), sugar beet (Beta vulgaris), pigweed
(Chenopodium amaranticolor), carrot (Daucus carota), thale cress
(Arabidopsis thaliana), cowpea (Vigna unguiculata), common bean
(Phaseolus vulgaris), and goat’s rue (Galega orientalis). Black stars
indicate chitinases that are pathogen induced; white stars indicate
chitinases that are Sinorhizobium induced. No information was
available about induction of chitinases without labelling. The bars
give 0.1 amino acid exchanges per residue. Note the different scales
applied for class V and class IV chitinases

expressed in flowers, we consider Mtchit 5 as an early
nodulin-like gene. This is reminiscent of the Srchil3
chitinase gene from Sesbania rostrata, whose transcripts
transiently accumulated during nodule formation
(Goormachtig et al. 1998). Mtchit 5 and Srchil3 are
members of the glycosyl hydrolase family 18 (Henrissat
et al. 1991), but they do not belong to the same class
of chitinases. The Srchil3 gene codes for a class III
chitinase, whereas Mtchit 5 codes for a putative class V
chitinase.

In contrast to Mtchit 4, Mtchit 5 seems not to be
part of a plant defence reaction. There are several
arguments in favour of this assumption: (i) The Mtchit
5 gene is activated during nodulation, but not when
roots are challenged with a fungal pathogen. (i1) Mchit
5 is expressed in low abundance. This is not typical of
defence-related genes, which are usually strongly in-
duced. (iii) In response to Nod factors, transcripts of
Mtchit 5 accumulated to levels that are far above those
induced after inoculation with S. meliloti Sm41 at the
same time (compare Figs. 3a and 6a). (iv) Expression
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patterns of Mtchit 5 differed from those of the defence-
related Mtchit 4 (e.g. see Fig. 7).

In fact, we can only speculate about the function of
Mtchit 5. Its symbiosis-specific induction and its
responsiveness to Nod factors suggest a function during
establishment of the nodule symbiosis. A role of
chitinases in developmental processes is known from
somatic embryo formation of carrot cells (de Jong et al.
1992). Recent findings indicate that N-acetylglucos-
amine-containing arabinogalactan proteins of carrot
cells are sensitive to chitinase cleavage and that the
chitinase-modified proteins reinitiate cell division of
non-dividing protoplasts (van Hengel et al. 2001). Al-
though functionality and subcellular localization of the
putative Mtchit 5 chitinase have not been studied
experimentally, it is tempting to speculate that Mtchit
5 could modify arabinogalactan proteins in the dividing
cells of the nodule meristem. Targets of Mtchit
5 enzymatic activity might be early nodulins, such as
PsENODS5 (Scheres et al. 1990), MtENODI16 and
MtENOD20 (Greene et al. 1998), which are predicted to
be possibly O-glycosylated with arabinogalactans.

In conclusion, this comparative study on expression of
two M. truncatula chitinases opens a first insight into the
differences between regulation of symbiosis-specific and
pathogen-related chitinase genes during nodule forma-
tion and in response to rhizobial signal molecules. The
identification of Mtchit 5 as an early nodulin-like gene,
suggests a function that is different from plant defence.
Future in situ mRNA hybridization and antibody-based
localization studies as well as the analysis of the enzy-
matic properties of the purified Mzchit 5 proteins are
required to better understand the role of this chitinase
during nodulation.
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