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Abstract The way to find the optimum packing of qua-

sicrystal-constituting clusters is discussed based on the

projected-cell approach. We illustrate why the quasiperi-

odic arrangement of partially overlapping clusters with

decagonal or icosahedral symmetry is the most efficient

one, by relating it to the packing of unit cells in hypercubic

lattices.
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Introduction

Quite a few stable decagonal and icosahedral quasicrystals

(QC) have been identified so far in binary and ternary

intermetallic systems (see, e.g., [1, 2] and references

therein). Their structures, properties and stability have been

intensively studied during more than a quarter century as

testified by more than 10,000 publications to date. Never-

theless, it is still not fully understood why and how QC form,

particularly in view of the fact that the same kind of clusters

can constitute both QC and their periodic counterparts, the

approximants. Furthermore, for many not directly involved

in QC research, the powerful but arcane description of qua-

siperiodic structures as projections from hyperspace has still

an aura of mystery. In the following, we will try to demystify

the higher-dimensional approach by looking at the well-

known strip-projection method from a different angle,

demonstrating that its physical basis is in the cluster shape.

This unusual view should also help sketching the big picture

of QC formation.

We want to emphasize that the term ‘‘quasi’’ in con-

nection with ‘‘crystal’’ has nothing to do with lack of order,

it rather indicates the particular kind of order. The struc-

tural perfection of QC, as reflected in the width of X-ray

diffraction peaks, for instance, is comparable to that of

other complex intermetallic phases. This means that the

global, overall structural correlation length can reach tens

or hundreds of micrometers, despite the existence of some

intrinsic local structural disorder. The idealized structure of

QC is usually described in terms of a quasiperiodic tiling

decorated by particular atomic arrangements or, equiva-

lently, as quasiperiodic packings of multishell clusters.

Here, the term ‘‘clusters’’ denotes fundamental structural

units which may or may not be stabilized by chemical

bonding [3, 4].

While the symmetry of the outer cluster shells usually

reflects the overall symmetry of the QC, that of the inner

shell(s) is frequently lower giving rise to structural disorder.

We focus in this study only on the outer cluster shell(s),

which determine the way of packing via shared structural

subunits. We will explore how clusters with non-crystallo-

graphic symmetry can be packed in the topologically best

possible way, i.e., without gaps and ‘‘glue atoms’’ filling

them. One crucial boundary condition is that the local

composition has to be as close as possible to the overall one.

It is well known that some regular and semiregular

polyhedra, and even multi-shell clusters, can be described

as projections of higher-dimensional polytopes (see e.g., [5,

6]). Consequently, it is obvious to treat the problem of the

topologically best cluster packing from a higher dimen-

sional perspective. For instance, every three-dimensional

(3D) zonohedron with octahedral or icosahedral symmetry

can be described as orthogonal projection of an nD
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hypercube [5]. Thereby, the number of edge directions of

the respective zonohedron defines the dimension n; this

gives, for instance, n = 6 for the triacontahedron. The

assembly of such zonohedra with optimum density (fre-

quency in a given volume) for a given chemical compo-

sition is a non-trivial problem that can be tackled much

more easily in higher dimensions. Columnar clusters with,

in projection, octagonal, decagonal or dodecagonal shape

can be related to 2D projections of nD (n = 4, 5, 6)

hypercubes.

In order to introduce our basic concept, we will start the

discussion with a cluster leading to the simplest quasipe-

riodic structure, the 1D Fibonacci sequence (FS). Subse-

quently, we will move on to decagonal and triacontahedral

clusters whose packing results in the 2D Penrose (PT) and

3D Ammann tiling (AT), respectively.

(LS) Cluster and Fibonacci sequence

Let us assume that we have an energetically favorable 1D

cluster, (LS), consisting of atoms at the vertices of a vertex-

sharing assembly of a long interval L and a short interval S,

with length ratio L = sS and s = 2cos(p/5). In a structure

(sequence, tiling), this cluster can occur in both orientations,

(LS) and (SL). While …LL… and …LS… neighbours in a

structure should be energetically favorable, …SS… neigh-

bors should be strongly discouraged. Depending on the

overall stoichiometry, different structures result as illus-

trated with the three examples shown in Fig. 1.

On top of Fig. 1, a part of the infinite sequence

…(LS)(LS)(LS)… = …LSLSLS… is depicted for an

overall composition LS. The clusters, with the same stoi-

chiometry as the whole sequence, are put together just by

sharing vertices. All alternative structures with the same

stoichiometry that contain …SS… neighbors are energeti-

cally less favorable. The most disadvantageous case would

be the sequence …(LS)(SL)(LS)(SL)… = …LSSLLS

SL… with 50% SS neighbors. In the middle of Fig. 1, a

sequence is drawn with overall composition L2S, which

differs from the cluster stoichiometry LS. The only way to

realize this composition is by allowing cluster overlaps of the

type (L(S)L) yielding the sequence …(L(S)L)(L(S)L)

… = …LSLLSL… Finally, at the bottom of Fig. 1, the

sequence with overall composition LsS is shown. It is part

of the Fibonacci sequence, a substitutional sequence

resulting from iterative substitution operations acting on an

alphabet (L, S): L ) LS, S ) L. For approaching locally

the overall composition as close as possible, an (LS) cluster

assembly with both vertex and S sharing is needed. How-

ever, it would be difficult, if not impossible, to piece

together the FS based on this information alone without

knowledge of the substitution rule. Fortunately, this prob-

lem can be easily solved in 2D space.

For this purpose, we describe the covering cluster (LS) as

projection (shadow) of a properly oriented square (shaded

in Fig. 2a). Of course, we could use any parallelogram

provided it had the same shadow. The topmost and the

lowermost vertices of the square project into the interval

defined by the left and right vertex and create so-called flip

positions. Accepting the interval S as the shortest possible

interatomic distance, the two flip positions, with a distance

S/s cannot be occupied at the same time. This is illustrated

in Fig. 2b by a double-well potential containing a black dot

for an occupied flip position and a grey dot for an unoc-

cupied one. If an atom is excited and jumps to the alterna-

tive position in the double well potential, then this

corresponds to a so-called simpleton flip (LS) , (SL).

SLSLS L L SL L

x = m n  S + L  with m, n ∈
x

LS

L2S

LτS

Fig. 1 Sequences with overall composition LS (top), L2S (middle)

and LsS, i.e. the Fibonacci sequence (bottom), with the decomposition

into covering clusters of the type (LS) in both orientations. The upper

two sequences are rational approximants of the Fibonacci sequence

SLSL L SL LL
x1

w

V ⊥

V II

1

2

L’S’L’ L’ L’
w

(a)

(c)
S’ S’

SL

x1
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Fig. 2 Fibonacci sequence in the 2D description. (a) Projection of a

sequence of vertex and edge connected shaded squares gives the FS

plus some additional vertices (grey) at flip positions in a double-well

potential (b). The size W of the strip defines the minimum distance

between projected lattice points as well as the unit tile sequence; in

our case, W is chosen so that the topmost vertex of the yellow square
is outside the strip. Decreasing the acceptance window by a factor s-1

leads to a scaling of the intervals L and S by a factor s yielding the

sequence L0S0L0S0L0L0S0, with L0 = L ? S and S0 = L (c) (Color

figure online)
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As illustrated in Fig. 2a, two-cluster sequences of the

type (SL)(LS) = SLLS can be obtained by projecting the

vertices of compounds of two vertex-sharing squares. The

cluster density amounts to dcluster = 2/2 = 1. Overlaps of

the type (L(S)L) = LSL result from two squares sharing an

S-generating edge. The resulting local cluster density is

higher in this case, dcluster = 2/3. The cluster-generating

squares can be seen as unit cells of a 2D lattice spanned by

the basis vectors d1 ¼ a cos p=5; �sin p=5ð ÞV and d2 ¼
a sin p=5; cos 2p=5ð ÞV (D-basis), defined on a Cartesian

coordinate system (V-basis); xV
1 is the V-basis coordinate in

physical or par(allel)-space V||, xV
2 refers to perp(endicu-

lar)-space V\. One obtains the cluster components L ¼
Pd1; S ¼ Pd2 with the projection matrix.

P ¼ 1 0

0 0

� �
: ð1Þ

The projection of one unit cell onto the perp-space gives

the acceptance window W and, therewith, the width of the

strip defining the subset of lattice nodes of the tiling.

Consequently, its size also determines the minimum distance

between the projected lattice nodes. In order to eliminate flip

positions, W has to be chosen so that either the topmost (as in

our example) or the lowermost vertex of the yellow square

comes to lie outside the strip. Then the FS can be obtained as

projection of the vertices of an infinite vertex- and edge-

connected, respectively, sequence of squares out of a 2D

lattice lying within a strip of width W (Fig. 2a).

Generally, the vertices of quasiperiodic tilings correspond

to a subset of a Z-module (vector module with integer

coefficients) of rank n, depending on the number n of basis

vectors needed to index the vertices with integers. Any Z-

module can be seen as proper projection of an nD lattice onto

the dD par-space. The minimum distance between the tiling

vertices defines the width W of the strip that selects the lattice

nodes to be projected. The acceptance window W is defined

in the (n-d)D perp-space. A change in the strip width W

always entails a change in the unit cell shape without

changing the unit cell volume. This results in a scaling of the

quasiperiodic structure as shown in Fig. 2c.

Fig. 4 Visualization of 5D space showing 2D par-space and 3D perp-

space projections, i.e. a decorated PT (dark blue spheres) and its

acceptance window (an elongated rhombic icosahedron), connected

via the common origin. The nodes of the 5D hyperlattice, with par-

space values in the range of the PT shown, form in their perp-space

projection the four pentagons inside the acceptance window (light-
blue spheres) (Color figure online)
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Fig. 3 5D hypercubic unit cell projected along its body diagonal

[11111] onto 2D par-space. The vertices are indexed based on the

5-star of basis vectors, with each basis vector in a different color. The

thick outlined polygon in (a) corresponds to the projection of the 4D

face (subcube) with the last index equal to zero. Applying the

minimum distance criterion by adjusting the acceptance window, we

obtain a vertex distribution related to a decorated rhomb PT, for

instance (b). The blue- and yellow-colored regions in (b) mark the

overlap regions of the Gummelt decagon, a covering cluster of the PT

(Color figure online)
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A strip, meandering with a limited amplitude around the

ideal par-space direction, not only leads to local changes in

the structure (disorder) but also in the local L/S ratio.

However, if the global stoichiometry is kept constant, the

disordered structure will remain quasiperiodic on average.

Decagon cluster and 2D penrose tiling

Decagonal QC can be described as packing of partially

overlapping decaprismatic columnar clusters. For the study

of the different ways to pack these clusters in the quasi-

periodic directions, it is sufficient to consider their 2D

projections along the tenfold axis, i.e., the periodic direc-

tion. The resulting 2D cluster of decagonal shape can be

described as projection of a 5D hypercube along one of its

fivefold axes. 22 of its 32 vertices project into the interior

of the resulting decagon (Fig. 3).

As before, we take this hypercube as unit cell of

a 5D hyperlattice with basis vectors di ¼ a cos 2pi=5;ð
sin 2pi=5; cos 4pi

�
5; sin 4pi=5; 1

� ffiffiffi
2
p
ÞV; 1� i� 5 (D-

basis); xV
i with 1 B i B 3 are Cartesian coordinates in par-

space, those with i = 4, 5 in perp-space. The projection of

the 5D hypercubic unit cell onto 3D perp-space yields the

acceptance window W for the generation of the 2D PT, an

elongated rhombic icosahedron (Fig. 4). All hyperlattice

points, which fall into this acceptance window if projected

onto perp-space, are located inside the strip and generate

the PT by par-space projection. The rhombic icosahedron is

elongated along its fivefold axis compared to the zonohe-

dron with the same name. Furthermore, its faces with a

vertex on the fivefold axis are not congruent to the other

ones.

In order to find the most efficient way of packing

decagon clusters, we have to analyze the different con-

nectivities of the unit cells in the strip cut out of the 5D

hypercubic lattice by the acceptance window W. In 3D,

neighboring unit cells can share 2D faces, 1D edges or 0D

vertices. In a 5D hyperlattice, they can additionally share

4D or 3D faces with 16 or 8 joint vertices, respectively.

The overlap rules of the 2D decagons result from the ways

the projected hypercubic unit cells can overlap. In case of

the Gummelt decagon [7], the assemblies with allowed

overlaps, as defined by the the rocket decoration (blue

areas in the overlapping decagons shown in Fig. 5), all

result from the projection of 5D hypercubic unit cells

sharing 3D faces (8 lattice nodes). A higher decagon cluster

density would result from the projection of hypercubic unit

cells sharing 4D faces (16 lattice nodes), which are shifted

against each other by one lattice translation of the type

(10000)D. Such a shared area is shown in Fig. 3a. It is not

allowed in the ideal PT, but it can be observed as defect in

decagonal quasicrystals.

In Fig. 5 (top), a combination is shown of the par- and

perp-space projections of two 3D-face-sharing 5D unit cells,

separated by the vector 10100
� �

D
: the elongated rhombic

icosahedra result from the projection onto the subspace

spanned by vectors (10000)V, (01000)V, and (00001)V and

the decagons from the projection onto the (11000)V plane.

The vertices that are projected onto equidistant hyperplanes

inside the elongated rhombic icosahedra stem from 4D hy-

perlattice planes with indices (m1 m2 m3 m4 m5)D with

m5 = 0, 1, 2,…

A
B

A

B

C

21101

21011

11111

Fig. 5 Top 5D hypercubic unit cells, separated by the vector

10100
� �

D
, in combined par-/perp-space projections giving elongated

rhombic icosahedra and overlapping decagons A and B in the

subspaces spanned by vectors (10000)V, (01000)V, and (00001)V and

by vectors (10000)V, (01000)V, respectively. Bottom Three Gummelt

decagons A, B, and C, with two different types of permitted overlaps.

The centers of the decagons are separated by the vectors a–b:

10010
� �

D
, a–c: 10100

� �
D

and the s-1 times smaller one for b–c:

00110
� �

D
. The corresponding 5D hypercubes share 3D faces

containing 8 lattice points each. Green dots mark the shared vertices

of the hypercubes related to the decagons a and b, black circles those

of b and c (Color figure online)
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Let us have a look at an example of a real decagonal QC

in the system Al–Ni–Rh and see how the cluster concept

applies to it. As shown in Fig. 6, the projected electron

density distribution function can be covered by copies of a

decagonal cluster with &20 Å diameter (red). The centers

of the decagons form the vertices of a DT5/VT13 Masáková

tiling [8], created from one decagonal acceptance window

in the 5D description. The Rh atoms are located on s-1-

times smaller decagons (green) centered at the same posi-

tions as the larger ones (red). The shapes of the overlap

areas of the large (red) covering decagon clusters are the

same as those of the Gummelt decagons, however, their

locations on the decagons and combinations are different.

The smaller (green) decagons overlap less frequently and

only with hexagon overlap areas; mostly they just share

edges. The different cases of overlapping decagons can be

related to neighboring unit cells of the 5D hypercubic lat-

tice. For one vertex configuration the respective lattice

translations are listed in Fig. 6 (bottom right).

The packing of the decagonal clusters can be explained

by competing interactions. On one hand, the large decagons

have very large overlap regions, on the other hand small

Fig. 6 Projected electron

density distribution function of

decagonal Al–Ni–Rh (courtesy

of D. Logvinovich, LFK,

ETHZ) with &20 and &12 Å

decagon clusters marked red

and green, respectively. The

decagon centers are located on

the vertices of a DT5/VT13

Masakova tiling [8]. At upper
right, the Delone and Voronoi

tiles are shown (numbering

according to [8]), shaded blue
and grey, respectively, and

below, the different vertex

configurations and decagon

cluster overlaps. For one vertex

configuration the lattice

translations are given between

neighboring 5D unit cells

corresponding to the respective

overlapping decagons (Color

figure online)

(b) (c) (d)(a)

Fig. 7 a 6D hypercube projected onto 3D par-space. Its 64 vertices

project onto the 32 vertices of a triacontahedron (yellow), to the 12

vertices of the second shell, a dodecahedron (green), and to the 20

vertices of the innermost shell, an icosahedron (blue). b–d Shared

regions of triacontahedra overlapping along the fivefold, threefold and

twofold axes, respectively, b rhombic icosahedron, c oblate rhombo-

hedron, and d rhombic dodecahedron (Color figure online)
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decagons just share edges occupied with Rh atoms. The

edges of the Voronoi cells can be seen as local reflection

lines that relate overlapping decagons by mirror symmetry.

Triacontahedron cluster and 3D Penrose (Ammann)

tiling

The triacontahedron, an Archimedean solid dual to the i-

cosidodecahedron, can be described as projection of a 6D

hypercube along its fivefold axes onto 3D space (Fig. 7a).

It is bounded by 12 5D faces, i.e. 5D hypercubes, which

give in 3D projection rombic icosahedra. The lower-

dimensional hyperfaces project into the respective dimin-

ished zonohedra: the 60 4D faces into rhombic dodecahe-

dra and the 160 3D cells into cubes.

The possible overlap regions of two triacontahedra in

each case are shown in Fig. 7b–d. The overlap along the

fivefold axis results in a shared rhombic icosahedron. It

corresponds to the projection of a compound of two 6D

hypercubes, separated by a vector of the type (100000)D

and sharing a 5D face with 32 vertices. The overlaps along

the three- and twofold directions lead to an oblate rhom-

bohedron and a rhombic dodecahedron, respectively, as

shared volumes. The vectors between the 6D hypercubes

are of the type 001101
� �

D
and 001010

� �
D

, corresponding

to shared 3D faces with 8 vertices and 4D faces with 16

vertices, respectively. Consequently, taking the 6D hyper-

cubes as unit cells of a hypercubic lattice and a strip

analogously as defined before, then we obtain the densest

possible packing of triacontahedral clusters, such as the

Bergmann clusters, for instance.

If we remove one zone from the triacontahedron, we

obtain a rhombic icosahedron. In projection along the

fivefold axis onto 2D, a decagon cluster results as discussed

before (see top of Fig. 5). The 6D embedding of decagonal

phases allows to reveal structural relationships between

decagonal and icosahedral phases in a straightforward way

[9].

Conclusions

It is remarkable that the structures of decagonal and ico-

sahedral QC are all closely related to the 2D PT and 3D

AT, respectively, although they differ considerably in their

chemical composition. However, this is not so surprising if

we consider the structural similarities of their fundamental

building clusters and, in particular, the way they can pack

and overlap for particular stoichiometries. Obviously, a

necessary but not sufficient condition for the formation of

decagonal and icosahedral QC is the existence of clusters

that can be described as proper projections of nD hyper-

cubes, unit cells of nD hyperlattices. The optimum

arrangement of the respective clusters in physical space

corresponds to nD strips containing vertices of interlinked

nD unit cells of the hyperlattice. Since the projection of

such a strip gives a quasiperiodic structure, the densest

arrangement of these particular clusters results to be qua-

siperiodic. However, if optimum cluster packing means the

best packing of complete clusters then the strip cannot be

straight but has to follow the boundaries of the nD unit

cells. Of course, the average slope of this zigzag course has

to be the same as that of the straight strip. In this case, the

true structure could only be derived from electron micro-

scopic images, which reflect the local structure properly.

Higher-dimensional structure analysis is already based on

the assumption of a straight strip. Therefore, it can give

averaged structure information only.
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