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Role of PET in the evaluation and understanding
of coronary physiology
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INTRODUCTION

Positron emission tomography (PET) combined with
tracer kinetic modeling1-5 affords the assessment of
regional myocardial blood flow (MBF) in milliliters per
gram per minute, thus extending the scope of conven-
tional scintigraphic imaging in the noninvasive iden-
tification and characterization of coronary circulatory
function or dysfunction in early subclinical stages of
coronary artery disease (CAD).2,6 Experimental and
clinical investigations indicate the importance of the
functional integrity of coronary circulatory function to
mediate antiatherosclerotic and antithrombotic effects.7,8

Vice versa, an impairment of coronary circulatory func-
tion reflects a proatherosclerotic state with substantial
diagnostic and prognostic implications.9-14 The noninva-
sive identification and characterization of coronary cir-
culatory function or dysfunction by means of PET offer
important insight into the complex nature of the mecha-
nisms underlying functional alterations of the coronary
circulation and, thus, may contribute to unraveling the
pathophysiology of the early development of the coro-
nary atherosclerotic process. For example, by evaluating
MBF responses to sympathetic stimulation with cold
pressor testing (CPT) or hyperemic MBF increases
during pharmacologic vasodilation, as well as their
responses to pharmaceutical intervention15,16 or their
relation to markers of systemic inflammation, insulin
resistance, or adipocytokines,17-21 PET measurements of
MBF may contribute to a better understanding of the
development of the early stages of the CAD process.
Conceptually, the results of such investigations with PET

quantification of MBF could also provide substantial
information to develop specific medical therapy strate-
gies to prevent the initiation or development of CAD in
coronary risk patients.

INVASIVE ASSESSMENT OF CORONARY
VASOMOTOR FUNCTION

The investigation of coronary vasomotor (circula-
tory) function is usually confined to patients with chest
pain syndromes undergoing coronary angiography. The
determination of alterations in epicardial diameter in
response to intracoronary infusion of acetylcholine, bra-
dykinin, or substance P is obtained by computer-based
measurements of the coronary diameter (quantitative coro-
nary angiography [QCA]).22,23 Endothelium-dependent va-
sodilators such as acetylcholine specifically stimulate the
receptor-mediated release of endothelium-derived nitric
oxide (NO) that induces the epicardial artery to dilate
through relaxation of the vascular smooth muscle cells.
Epicardial vasodilation in response to specific acetylcho-
line stimulation therefore defines normal endothelial
function. In the presence of dysfunctional endothelium of
the epicardial artery, however, the concurrent smooth
muscle cell constrictor effects of acetylcholine overcome
the endothelium-mediated vasodilation,23 and a lack of
vasodilation or, more commonly, paradoxical vasocon-
striction ensues.23,24 Another attractive and more phys-
iologic approach to the assessment of epicardial en-
dothelial function is to determine flow-mediated and,
thus, also endothelium-related epicardial vasodilation
by QCA during hyperemic flow increases resulting
from pharmacologic vasodilation with adenosine or
papaverine.23,25,26 Whereas flow-mediated epicardial
vasodilation defines normal endothelial function, an
impairment or absence of flow-mediated epicardial va-
sodilation is indicative of a dysfunctional vascular endo-
thelium. In addition, substances such as nitroglycerin or
sodium nitroprusside supply NO directly to the vascular
smooth muscle cell layer that induces epicardial vasodi-
lation, independent of the functional state of the vascular
endothelium.

The assessment of coronary blood flow to evaluate the
responses of the coronary microcirculatory system requires
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an intracoronary Doppler catheter and the placement of a
flow wire.23 Notably, endothelium-dependent vasodilators
such as acetylcholine also increase coronary blood flow,
mirroring their concomitant vasodilator effects on the cor-
onary arteriolar resistance vessels. Increases in coronary
flows to acetylcholine stimulation as measured with the
Doppler flow wire therefore reflect normal endothelium-
dependent coronary arteriolar vasomotor function, whereas
an impairment or absence of coronary flow is appreciated as
endothelial dysfunction of the arteriolar vessels. Con-
versely, substances such as papaverine or adenosine exert a
vascular smooth muscle cell–relaxing effect at the site of
the coronary resistance (arteriolar) vessels and, conse-
quently, induce predominantly endothelium-independent
coronary flow increases.2,22,23

PET MEASUREMENTS OF MBF

Approaches that apply PET to determine regional
MBF in milliliters per gram per minute entail intrave-
nous administration of positron-emitting tracers of
MBF such as nitrogen 13 ammonia, oxygen 15–
labeled water, and more recently, rubidium 82 and
imaging of the radiotracer’s transit time through the
central circulatory system and its extraction and reten-
tion in the myocardium.1,3-5,27-29 The final static 15-
minute frame of the serially acquired image data sets is
reoriented into short- and long-axis myocardial slices
and, as in our approach, assembled into polar maps.18,19

Regions of interest (ROIs) are assigned automatically by
the analysis software program to the territories of the 3
major coronary arteries, and a 25-mm2 ROI is assigned
to the left ventricular blood pool. The ROIs are then
copied to all serially acquired image data sets after they
have been resliced and assembled into polar maps via the
same reorientation parameters, as applied to the final
15-minute static image. Thereafter the arterial tracer
input function and the tracer uptake into the myocardium
are determined.1,3 The resulting time-activity curves
from these ROIs are then fitted with tracer compartment
models, which describe the exchange of radiotracer
between tissue compartments and the volume of tracer
distribution in each compartment, and regional MBFs are
calculated in milliliters per gram per minute.1-4,6,30

Tracer kinetic models correct for the physical decay of
the radioisotope, for spillover of activity between the left
ventricular blood pool and the myocardium,31 and for
partial-volume effect, assuming a uniform myocardial
wall thickness of 1 cm.32 N-13 ammonia and O-15–
labeled water have been widely validated against inde-
pendent microsphere blood flow measurements in ani-
mals and yield reproducible values of MBF.1,4 Similarly,
measurements of MBF with N-13 ammonia and O-15–
labeled water in humans yield comparable estimates of

MBF.27,33 More recently, Rb-82 has emerged as a
promising and reliable flow tracer30 but still needs to be
validated further. The short physical half-lives of these
positron-emitting tracers (9.8 minutes for N-13 ammonia
and 2.4 minutes for O-15–labeled water compared with
only 78 seconds for Rb-82) allow serial evaluations of
MBF in one study session.

DETERMINANTS OF MBF AND FLOW RESERVE

The concept of the coronary flow reserve that
describes the vasodilatory capacity of the coronary
circulation to increase coronary flows to 3 to 5 times
from baseline in response to increased metabolic
demand was first described by Coffman and Gregg.34

Subsequently, Mosher et al35 added the concept of
coronary autoregulation that provided a more physio-
logic framework for the coronary flow reserve. There
are a number of determinants of resting MBF, whereas
the oxygen demand, as a function of heart rate, blood
pressures, myocardial contractility, and ventricular
preload, is the prevalent factor in the modulation of
resting MBF. When the metabolic myocardial oxygen
demand is constant, MBF within the range of its
autoregulation is widely independent of the coronary
perfusion pressure. It follows, therefore, that within
this range of coronary autoregulation—so-called
plateau—coronary flow changes little despite alter-
ations in perfusion pressures.36 Conversely, during max-
imal or submaximal vasodilation of the coronary arteriolar
resistance vessels during pharmacologic vasodilation, the
coronary flow does not underlie any more the autoregula-
tion and changes linearly with the intracoronary perfusion
pressure. In this concept, the ratio of hyperemic to resting
coronary flow defines the coronary flow reserve.

With regard to coronary flow reserve, it is worthy to
note that it does not necessarily reflect the true vasodi-
lator capacity of the coronary circulation. Coronary flow
reserve can decline as a result of an increase in resting
flow, a decrease in maximum hyperemic flow, or both.
Factors that increase myocardial oxygen demand, such as
arterial hypertension, increased myocardial contractility,
increased left ventricular wall stress, and tachycardia,
induce an increase in resting flow. On the other side,
maximum hyperemic coronary flow may decline in the
presence of a focal flow-limiting epicardial lesion, in the
presence of microvascular disease in patients with hy-
pertension or diabetes, or as a consequence of increases
in extravascular resistive forces paralleled by increases
in left ventricular pressures in patients with congestive
heart failure or hypertension. Despite these limitations of
the concept of the coronary flow reserve, it is a useful
index by which to determine the functional significance
or downstream effects of focal epicardial artery lesions
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and the functional improvement after coronary revascu-
larization and for the evaluation of coronary circulatory
function in individuals with subclinical or clinically
manifest CAD.2,37,38

RESTING MBF

PET-measured MBF at rest in healthy volunteers
has been reported to range between 0.4 and 1.2
mL · g�1 · min�1.36,39-43 The variability in these individ-
ual resting MBFs was most likely related to differences
in left ventricular myocardial workload at the time of
assessment, whereas methodologic factors may have
contributed to this.44 There is a close linear correlation
between resting MBF and the rate-pressure product
(defined as the product of systolic blood pressure and
heart rate) as an index of cardiac work and, thus, also
metabolic oxygen demand.36,40,45 The continuous age-
related increase in resting MBF has also been attributed
to increases in cardiac work as a result of alterations
predominantly in systolic blood pressure.36 More contro-
versial are theMBF values at rest betweenmen and women.
Some investigations observed higher values of restingMBF
in women than in men,40,43,46 which was suggested to be
most likely related to sex-related differences in the lipid
profile, whereas others did not find such a difference.36

PET IN NONINVASIVE ASSESSMENT OF
CORONARY CIRCULATORY DYSFUNCTION

Approaches to assess coronary circulatory function
implicate measurements of MBF with PET at rest and its
responses to physiologically or pharmacologically in-
duced coronary flow increases, including bicycle exer-
cise, dobutamine stress, sympathetic stimulation with
CPT, vascular smooth muscle cell relaxation at the site of
the coronary arteriolar vessels,2,5,29,47-50 or heteroge-
neous responses of MBF in more apical and more basal
regions of the left ventricle as a possible noninvasive
index of epicardial vasomotion.51,52

SYMPATHETIC STIMULATION WITH CPT

Noninvasive measurements of MBF with PET at
rest and its response to sympathetic stimulation by
CPT have been appreciated to entail specific informa-
tion on endothelium-related coronary vasomotor
function.15,49,53-56 Immersion of the left hand into ice
water causes a sympathetically mediated increase in
heart rate and blood pressures and, thus, an increase in
myocardial workload. This increase in myocardial oxy-
gen demand, as reflected by the elevation in myocardial
workload, is associated with vasodilation of the coro-
nary arteriolar resistance vessels through the release of

presumably adenosine as a metabolic vasodilator.57 As
a decrease in coronary vascular resistance ensues, an
increase in coronary inflow is observed, which in turn
leads to a flow-mediated and, thus, endothelium-
dependent dilation of the upstream coronary vessel
segment. Consequently, an increase in cardiac work is
normally paralleled by commensurate flow-mediated
coronary vasodilation (Figure 1) and an increase in
MBF as measured with PET.15,17,43,49 In the presence of
a functional abnormality of endothelium-related coro-
nary vasomotion, however, the coronary flow increases
during sympathetic stimulation do not mediate a flow-
related vasodilation. As a consequence, the vasocon-
strictor effects of the sympathetically mediated stim-
ulation of the vascular smooth muscle cells prevail and
are not overcome by a normal flow-related coronary
vasodilation (Figure 2).6,23,49 The MBFs during CPT
are then attenuated, absent, or even paradoxical, which
denotes an impairment of endothelium-dependent cor-
onary vasomotor function.7,15,17,49,56,58

Several studies assessing coronary vasomotor func-
tion support the validity and value of noninvasive PET
measurements of changes in MBF during CPT from rest
as an index of endothelium-dependent coronary vasomo-
tion. For example, coronary flow increases during CPT,
as assessed invasively with Doppler wire during coro-
nary angiography, have been shown to closely correlate
with the flow response to acetylcholine stimulation
(Figure 3).23,53 Coronary flows during sympathetic stim-
ulation with CPT, therefore, may indeed probe endothelium-
related vasomotor function and, thereby, the functional
integrity of the vascular wall.23,49 Notably, a similar
association was also observed between the epicardial
vasomotor response to CPT and acetylcholine stimula-
tion, suggesting that the epicardial vasomotor response to
CPT is intimately related to the integrity of endothelial
function.23,58 Further CPT-induced changes in epicardial
luminal diameter, as determined by QCA, and PET-
measured responses of MBF to CPT were closely corre-
lated.15,17,49 More direct evidence for the involvement of
the endothelium in the CPT-mediated MBF responses
has been provided by Campisi et al.56 In chronic smokers
presenting with impairment of MBF responses to CPT,
intravenous infusion of L-arginine as a substrate of nitric
oxide synthase (NOS) restored the MBF increase to CPT,
most likely as a result of increases in the bioavailability
of endothelium-derived NO.

There are also investigations with PET determining
MBF and, at the same time, regional adrenergic neuronal
function by use of 11-labeled hydroxyephedrine. These
comparative investigations by PET could demonstrate
the involvement of adrenergic neurons in the modulation
of MBF responses to CPT. For example, the uptake of
11-labeled hydroxyephedrine in cardiac adrenergic nerve
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terminals is diminished in patients with cardiac allografts
with a neuronal state of denervation or in diabetic
patients with neuropathy and, thus, neuronal dysfunc-
tion.59-63 In these populations studied, reductions in
myocardial carbon-11-labeled hydroxyephedrine reten-
tion were paralleled by a reduced MBF response to CPT.
In particular, in diabetic patients MBF responses to
sympathetic activation with CPT were somehow still
preserved in myocardial regions with normal C-11-
labeled hydroxyephedrine.62 These findings indeed sug-
gest that both sympathetic activation and flow-mediated
vasomotor function modulate the MBF increases during
stimulation with CPT.

HYPEREMIC MBFS DURING PHARMACOLOGIC
VASODILATION

Another interesting and more clinically used ap-
proach is the assessment of coronary circulatory function
by pharmacologically induced hyperemic MBF increas-
es.2,5,44,64,65 Vascular smooth muscle–relaxing sub-
stances such as dipyridamole, adenosine, or more re-
cently, adenosine triphosphate or adenosine receptor
agonists66 decrease the resistance to flow at the site of the
coronary arteriolar resistance vessels and, thereby, in-
duce a maximal or submaximal hyperemic flow increase.
Because these substances induce hyperemic flow in-

Figure 1. A, Normal coronary angiogram of left coronary tree in right anterior oblique view of a
healthy individual without coronary risk factors. B, Corresponding angiogram during sympathetic
stimulation with CPT. C and D, Quantitative angiographic assessment of proximal-mid left anterior
descending artery segment at rest (mean diameter, 2.0 mm) (C) and during CPT (mean diameter, 2.5
mm) (D). (Reprinted with permission from reference.49)
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creases through vascular smooth muscle cell relaxation,
the resulting hyperemic coronary flow increase is
deemed to be a measure of a predominantly endothelium-
independent flow response. Inhibition of the endothelial
nitric oxide synthase (eNOS) by intravenous infusion of
NGNN -monomethyl-L-arginine significantly reduces adeno-
sine-induced MBF increases by 20% to 25% as measured
with PET (Figure 4).67,68 Thus shear-sensitive compo-
nents of the coronary endothelium contribute in part
through flow-mediated coronary vasodilation to the over-
all hyperemic MBF increases during pharmacologic

vasodilation,23,67,68 which may also be seen as total
integrated coronary circulatory function.

HETEROGENEITY IN LONGITUDINAL,
BASE-TO-APEX MBF

A heterogeneity in longitudinal myocardial perfu-
sion or MBFs has been described first during hyperemic
coronary flow increases owing to pharmacologic vasodi-
lation in patients with diffuse CAD69 and, subsequently,
with quantitative MBF measurements in individuals with

Figure 2. A, Normal coronary angiogram of left coronary artery tree in left anterior oblique view
in a chronic smoker at rest. B, Corresponding coronary angiogram during CPT. C and D,
Quantitative angiographic assessment of proximal-mid left anterior descending artery segment at
rest (mean diameter, 1.89 mm) (C) and during CPT (mean diameter, 1.57 mm) (D). (Reprinted with
permission from reference.49)
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coronary risk factors.51,52 Fluid dynamic consequences
of CAD-related vessel stiffness or functional abnormal-
ities of the epicardial conduit vessels may account for the
longitudinal heterogeneity in myocardial perfusion. On
the basis of the Hagen-Poiseuille equation,70-72 intra-
coronary resistance relates to the velocity of the blood
flow and inversely to the fourth power of the vessel
diameter. Normal functioning of the coronary vascular
endothelium guarantees that increases in flow velocity
during exercise or pharmacologic vasodilation are asso-
ciated with a flow-mediated dilation of the coronary
circulation that balances the velocity-induced increase in
coronary resistance so that the resistance is kept low.73,74

An abnormal structural or functional coronary vascular
state during the early development of CAD, however, is
commonly associated with an impairment of flow-
mediated epicardial vasodilation. Under such condi-
tions, the resistance to higher coronary flow increases
leads to a progressive proximal-to-distal decline in
intracoronary pressure along the epicardial artery,70

which is assumed to be a cause for a gradual, base-to-
apex relative decline or heterogeneity in myocardial
perfusion or MBF.51,52,69,70 The assessment of a hetero-
geneity in longitudinal myocardial perfusion or quanti-
tatively in MBFs by means of PET, therefore, could be a
promising noninvasive index of early structural or func-
tional alterations of the CAD process predominantly at
the site of the epicardial artery.

REPRODUCIBILITY OF MBFS DURING
VASOMOTOR STRESS

As PET-measured MBF responses to cold exposure
or to pharmacologic vasodilation are increasingly ap-

plied to determine the effects of lifestyle modifications or
therapeutic interventions on coronary circulatory func-
tion,15,16,20,48,75-78 there is a need to establish the repro-
ducibility of these MBF measurements. Such an analysis
is necessary to assess the true measurement error of
PET-measured MBFs in repeat assessments or to deter-
mine the sample size of future study populations needed
for serial clinical PET studies. Previous studies have
demonstrated that hyperemic MBF increases during
pharmacologic vasodilation can be measured reproduc-
ibly with N-13 ammonia or O-15–labeled water and
PET.64,79 As recent investigations demonstrate, there is
also a reliable 1-day reproducibility for CPT-related
MBF when determined with O-15–labeled water.80 More
recently and in a more extended investigation,81 the
hemodynamic and MBF responses to CPT, as measured
with N-13 ammonia and PET, were demonstrated to
be highly reproducible in the short term as well as in the
long term (1-day and 2- to 3-week protocol) (Table 1).81

The range of measurement errors, as denoted by the
standard error of estimate (SEE) for the endothelium-
related change in MBF (�MBF) from rest to CPT, was
0.09 mL · g�1 · min�1 for short-term and 0.17
mL · g�1 · min�1 for long-term repeat measurements. It
follows, therefore, that alterations in �MBF in serial
pharmaceutical studies that are above this range of SEE
values are indeed likely to be related to beneficial effects
of pharmaceutical interventions on coronary endothelial
function.81 The data from the latter study also provided
useful information with regard to the sample size needed
to sufficiently power a study for serial MBF studies with
CPT. Accordingly, a sample size of about 22 individuals

Figure 4. Hyperemic MBF increase after adenosine stimulation
and its alteration with the intravenous infusion of the NO
synthase inhibitor NGNN -nitro-L-arginine methyl ester (L-NAME)
(4 mg per kilogram of body weight). In the presence of
L-NAME, the hyperemic MBF response was attenuated by
21%, which is likely to reflect the impairment of the flow-
mediated and, thus, endothelium-derived and NO-mediated
vasodilation by L-NAME. NS, Not significant. (Data from
reference.67)

Figure 3. Association between coronary flow response to CPT
and acetylcholine stimulation during coronary angiography in
12 normal control patients and in 19 patients with diffuse CAD.
The CPT-induced changes in coronary vascular resistance
inversely and significantly correlated with the extent of endo-
thelial dysfunction of the coronary arteriolar vessels as deter-
mined with acetylcholine stimulation. (Reprinted with permis-
sion from reference.53)
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with coronary risk factors is desirable for a long-term
interventional pharmaceutical trial whereas a sample size
of 14 would be sufficient for a 1-day protocol.

In interpreting the data of reproducibility studies,
Bland and Altman82 proposed a repeatability coefficient
(RPC) that is widely used to demonstrate the agreement
between repeat measurements. The RPC can be used for a

direct comparison of the precision of PET-determined
MBFs between different studies (Table 2). With regard to
the RPC for the endothelium-related �MBF to CPT, it was
observed to be 0.18 mL · g�1 · min�1 for the short-term and
0.27 mL · g�1 · min�1 for the long-term reproducibility
measurements with N-13 ammonia and PET.81 Both values
were found to be lower than the short-term RPC of

Table 1. MBF and hemodynamics at measurements 1 (M 1) and 2 (M 2) on the same day, and measurement
3 (M 3) after 2 weeks, for all study participants (n � 20)

M 1 M 2 M 3

Mean difference

M 1–2 M 1–3

MBF in ml/g/min
At rest 0.67 � 0.19 0.66 � 0.15 0.63 � 0.18 0.09 � 0.10 0.10 � 0.10
During CPT 0.88 � 0.21 0.85 � 0.20 0.82 � 0.21 0.11 � 0.09 0.14 � 0.10
� Change to CPT 0.21 � 0.17 0.19 � 0.16 0.19 � 0.14 0.08 � 0.05 0.19 � 0.10

Hemodynamics at rest
Heart rate (beat/min) 61 � 7 62 � 9 61 � 9 2.5 � 2.2 7.1 � 5.0
SBP (mmHg) 116 � 12 120 � 15 115 � 13 5.5 � 7.6 6.6 � 5.6
DBP (mmHg) 71 � 7 73 � 6 69 � 8 3.0 � 2.6* 5.5 � 5.3
RPP (mmHg/min) 7,113 � 1,161 7,349 � 1,157 6,936 � 986 430 � 445 789 � 691

Hemodynamics during CPT
Heart rate (beat/min) 68 � 8 67 � 7 67 � 9 3.5 � 2.4 5.8 � 5.1
SBP (mmHg) 148 � 22 152 � 22 149 � 23 5.8 � 10 8.3 � 11
DBP (mmHg) 86 � 11 87 � 12 85 � 13 2.7 � 2.1 8.5 � 6.9
RPP (mmHg/min) 9,982 � 1,798 10,160 � 1,456 9,935 � 1,259 724 � 543 1,470 � 1,011
�RPP (mmHg/min) 2,869 � 1,666 2,811 � 1,300 2,999 � 1,740 762 � 517 1,046 � 857

SBP, Systolic blood pressure;P DBP, diastolic blood pressure;P RPP, rate-pressure product.P
(With kind permission from reference 81).
*P � 0.05 for difference by paired t-test.tt

Table 2. MBF repeatability coefficient in different studies

Schindler
et al.81

Siegrist
et al.80

Kaufmann
et al.64

Wyss
et al.47

Jagathesan
et al.83

Radiotracer N-13 ammonia O-15 water 15O-water 15O-water 15O-water
Period ST (1 day) LT (2 wk) ST (1 day) ST (1 day) ST (1 day) LT (24 wk)
MBF at baseline 0.26 0.26 NA 0.17 0.26 0.30* 0.26†

MBF during CPT 0.28 0.31 0.41 NA NA NA NA
�MBF to CPT 0.18 0.27 NA NA NA NA NA
MBF during
adenosine

NA NA NA 0.94 1.34 NA NA

MBF during bicycle
exercise

NA NA NA NA 0.82 NA NA

MBF during
dobutamine

NA NA NA NA NA 0.49 0.58

ST, Short term;T LT, long term; NA, not assessed.T
(With kind permission from reference 81).
*Ischemic myocardium.
†Remote myocardium.
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CPT-relatedMBFs as measured with O-15–labeled water in
a 1-day study protocol80 and also for hyperemic MBF
increases reported in previous studies,47,64,83 which have
been reported to be between 0.49 and 1.34 mL · g�1 · min�1

(Table 2).

CORONARY CIRCULATORY FUNCTION AND
CARDIOVASCULAR EVENTS

The causes of coronary circulatory dysfunction in
patients with coronary risk factors are certainly multifacto-
rial, whereas an increased vascular production of reactive
oxygen species (ROS) derived from superoxide-producing
endothelial enzymes, such as nicotinamide-adenine-
dinucleotide phosphate (NAD[P]H) oxidase, xanthine oxi-
dase, or uncoupled NO synthase, leading to a reduction in
the bioavailability of endothelium-derived NO, is thought to
be a common final pathway underlying abnormal coronary
circulatory function.84 An impairment of endothelium-
dependent coronary circulatory function is commonly as-
sociated with other active processes such as inflammation,
proliferation, or apoptosis, as well as the expression of
vascular cellular adhesion molecules (eg, intercellular ad-
hesion molecule). This so-called endothelial activation may
reflect the initial injury of the vascular wall that may initiate
and contribute to the development and progression of the
atherosclerotic process. Such endothelial activation plays an
important role in the pathogenesis of acute coronary syn-
dromes, which is characterized by coronary plaque vulner-
ability; paradoxical vasoconstriction paralleled by endothe-
lial dysfunction, which is likely to contribute to plaque
rupture85,86; and increased thrombogenicity as a result of a
loss of a potent antithrombotic endothelial surface.87 An
impairment of coronary circulatory function, therefore, is
likely to reflect in part the vulnerability of a plaque to
rupture, which may explain the independent predictive
value of coronary circulatory dysfunction for future cardio-
vascular events.9-11,88 It may be concluded that functional
alterations of coronary circulatory function appear to reflect
ongoing processes that modify the functional status of the
arterial wall and may provide a rationale for the indepen-
dent predictive value of functional abnormalities in coro-
nary circulatory function for future cardiovascular events
(Figure 5).10 Such functional alterations of the coronary
circulation appear to be superior to the assessment of CAD-
related structural alterations of the epicardial wall in the
prediction of the future cardiovascular clinical outcome.89-93

PET-DETERMINED CORONARY CIRCULATORY
FUNCTION AND VASCULAR

OXIDATION-REDUCTION STATE

Measurements of MBF at rest and during various
forms of vasomotor stress have contributed new in vivo

mechanistic insight into the mechanisms affecting coronary
circulatory function in individuals with coronary risk fac-
tors. For example, Kaufmann et al77 showed that acute
intravenous antioxidant intervention with vitamin C, to
reduce the oxidative stress burden in smokers, significantly
increased hyperemic MBF increases to pharmacologic va-
sodilation. The latter findings strongly suggest ROS as a
prevalent cause for the impairment of the total coronary
vasodilator function in chronic smokers. In individuals with
familial hypercholesterolemia or with secondary hypercho-
lesterolemia, hyperemic MBFs during pharmacologic vaso-
dilation are commonly reduced when compared with age-
matched control subjects.94-96 Notably, the hyperemic flow
increases and myocardial flow reserve were inversely cor-
related with the severity of abnormal plasma lipid levels.
Despite the well-known detrimental effects of total choles-
terol plasma levels on the coronary circulation, it appears
that not only total cholesterol but also low-density lipopro-
tein cholesterol is a major determinant of a reduced coro-
nary vasodilatory capacity as determined with PET.94 Con-
versely, restoring tetrahydrobiopterin (BH4) deficiency in
hypercholesterolemic individuals normalized adenosine-
stimulated hyperemic flow responses.76 Such a finding
points out that BH4 deficiency may also contribute to
coronary circulatory dysfunction, most likely through an
uncoupling of endothelial NOS97 with further increases
in ROS in hypercholesterolemia.

Of note, previous investigations using PET measure-
ments of MBF at rest and the response to CPT demon-

Figure 5. Prognostic value of PET-measured, endothelium-
related MBF responses to sympathetic stimulation with CPT.
The Kaplan-Meier analysis demonstrates an association be-
tween the incidence of cardiovascular events and the degree of
the diminished MBF response to CPT (�MBF �40% in group
1, �MBF �40% in group 2, and �MBF �0% in group 3).
(Reprinted with permission from reference.9)
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strated heterogeneous responses in endothelium-related
MBFs during CPT to short- and long-term antioxidant
intervention with vitamin C in patients with different
coronary risk factors such as smoking, arterial hyperten-
sion, and hypercholesterolemia (Figure 6).15 Such in
vivo findings by PET imaging15 may be in contrast to
experimental investigations that proposed increases in
ROS as the main common pathway underlying endothe-
lial dysfunction84,98 and, thus, may suggest a rather
complex mechanism that may account for abnormalities
in coronary circulatory function.23 With regard to
chronic smokers, short- and long-term antioxidant vita-
min C challenges improved abnormalities in MBF re-
sponses to CPT, whereas no such beneficial effect was
observed in individuals with hypercholesterolemia
(Figure 6). This may suggest that abnormalities in
endothelium-related coronary vasomotion in smokers are
predominantly mediated by the release of ROS, whereas
other mechanisms appear to prevail in the presence of
hypercholesterolemia. For example, selective targeting
of G protein–dependent signal transduction by oxidized
low-density lipoprotein results in a diminished receptor-
mediated stimulation of endothelial NO production.99

Interestingly, in hypertensive patients short-term vitamin
C challenges did not lead to an improvement in impaired
MBF responses to CPT. In contrast, after long-term
application of vitamin C over a period of 3 months, a
normalized endothelium-related MBF response to CPT
was observed, which was also sustained after a 2-year
follow-up. The reason for the delayed onset of the
beneficial effect of vitamin C challenges on endothelium-
related MBF responses to cold exposure remains un-

certain, but it may be related to an improvement in the
endothelial oxidation-reduction equilibrium resulting
in increased expression of eNOS or prevention of
eNOS uncoupling through enhanced bioavailability of
BH4.97,100,101

INSULIN RESISTANCE AFFECTING
CORONARY CIRCULATION

In recent years, obesity, which is frequently associ-
ated with the insulin resistance syndrome and systemic
microinflammation, has been recognized as an increasing
risk factor for cardiovascular morbidity and death.102

The exact mechanisms by which obesity initiates and
accelerates coronary vascular disease remain to be inves-
tigated. Studying coronary circulatory function with PET
demonstrated that insulin-resistant patients without tra-
ditional coronary risk factors may present abnormalities
in coronary circulatory function.20 In these individuals
with insulin resistance, the endothelium-related MBF
response to CPT was diminished whereas hyperemic
MBF during dipyridamole stimulation was still pre-
served. Consequently, the functional abnormality in this
group of insulin-resistant individuals was confined to the
coronary vascular endothelium. Notably, whereas initial
stages of the vascular injury may only involve the
endothelium,17,56,75,103 more advanced stages of coro-
nary risk factor states, such as increases in oxidative
stress burden, may also lead to an impairment in smooth
muscle cell vasodilator function.97 For example, func-
tional abnormality of the coronary circulation in individ-
uals with increasing body weight progresses from an
impairment in endothelium-dependent MBF response
to CPT in the overweight condition to an impairment
of the predominantly endothelium-independent hyper-
emic MBFs during dipyridamole stimulation in the obese
condition (Figure 7A and B).18 Similar observations were
reported by Prior et al,19 who observed a progressive
worsening of functional abnormalities of endothelium-
dependent vasomotion to manifest with increasing sever-
ity of insulin resistance and carbohydrate intolerance,
whereas attenuated endothelium-independent hyperemic
flow responses to pharmacologic vasodilation paralleled
the more clinically evident metabolic abnormalities in
diabetes. In support of the latter findings, patients with
type 1 and type 2 diabetes mellitus revealed a compara-
ble marked impairment of hyperemic MBFs that was
related to euglycemic control and that also correlated
inversely with plasma glucose concentrations averaged
over several months.60,104-108

In a more complex setting the assessment of coro-
nary circulatory function in overweight individuals with
PET could demonstrate that increases in body weight,
paralleled by an increase in plasma markers of the insulin

Figure 6. Effects of short-term and long-term antioxidant
intervention on endothelium-related MBF responses to CPT.
The graph demonstrates contrasting MBF responses to vitamin
C challenges in hypercholesterolemic patients, smokers, and
hypertensive patients. iv, Intravenous. (Reprinted with permis-
sion from reference.15)
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resistance syndrome and chronic inflammation, were
independently associated with abnormal coronary circu-
latory function.18 These findings provided first evidence
showing that obesity is an alternate mediator of coronary
vascular disease rather than an epiphenomenon related to
other traditional coronary risk factors.18,109 Of interest,
the role of adipocytokines such as leptin, adiponectin,
or ghrelin affecting the coronary circulation in humans
is controversial and remains to be investigated.110,111

For example, in in vitro studies, leptin released from the
adipose tissue may stimulate proatherosclerotic effects,
such as increases in ROS in cultured human endothelial
cells, acceleration of vascular cell calcification, smooth
muscle cell proliferation, and migration.112 On the other
hand, leptin may induce both endothelium-dependent
and -independent vasodilation,113-115 indicating NO-me-
diated antiatherosclerotic effects.116 In view of these
contrasting observations, PET imaging in obese individ-

uals demonstrated a significant and positive association
between leptin plasma levels and endothelium-related
MBFs to CPT (r � 0.37, P � .036). Increases in leptin
plasma levels, therefore, were associated with relatively
higher endothelium-related MBF increases to CPT. This
positive association might be suggestive of a beneficial
effect of leptin or leptin-related but still undetermined
factors on the coronary endothelium to counteract the
adverse effects of increases in body weight on coronary
vasomotor function.18 As a recent investigation has
shown, analyzing PET measurements of MBF and
plasma markers of various coronary risk factors may be
a unique means by which to tease out the adverse or
beneficial effects of various factors on coronary circula-
tory function in complex in vivo conditions.18 Although
experimental investigations are most important to inves-
tigate a direct cause-effect relationship,84,98,117 in vivo
imaging with PET may contribute to denote important
associations between coronary risk factors and coronary
vascular state.

MONITORING RESPONSES TO
THERAPEUTIC INTERVENTION

On the basis of the central role of coronary
circulatory dysfunction in the development and pro-
gression of atherosclerosis, improvement of abnormal
endothelial-dependent coronary vasomotion by a vari-
ety of interventions, such as angiotensin-converting enzyme
inhibitors,118 �-hydroxymethylglutaryl–coenzyme A reduc-
tase inhibitors,78,119 hormone replacement therapy in
postmenopausal women,75 euglycemic control in dia-
betic patients, and physical exercise,21,120 has become a
primary therapeutic goal in the prevention of the athero-
sclerotic process. Notably, Fichtlscherer et al121 reported
that a normalization of endothelial function of the fore-
arm circulation was paralleled by event-free survival in
patients having had an acute coronary syndrome, but not
in those who did not show a restoration of forearm
vasomotor function as a result of standard therapy.
Similar findings were reported by Modena et al122 in
hypertensive postmenopausal women. An improve-
ment in brachial artery flow-mediated and, thus,
endothelium-dependent vasodilation after institution
of medical therapy to control arterial hypertension
resulted in an improved clinical outcome as compared
with those postmenopausal women who did not respond.
Though low in numbers, these preliminary results sup-
port the evolving concept that improvement in vasomo-
tor function in the peripheral and coronary circulation
could indeed mediate an improvement in clinical out-
come. If this holds true in future clinical studies, then the
assessment of coronary circulatory function by PET
imaging could be a promising and unique tool to suc-

Figure 7. A, MBF at rest, during CPT, and during pharmaco-
logic vasodilation with dipyridamole for the three study groups.
The dipyridamole-stimulated MBF was lower in overweight
patients than in control subjects, though not significantly. In
obese patients the hyperemic MBFs during dipyridamole stim-
ulation were lowest. B, Change in endothelium-related MBF
during CPT (�MBF) for the three study groups. As shown,
there was a progressive decrease in the endothelium-related
MBF response to CPT from control subjects to overweight
patients and obese patients. NS, Not significant (Reprinted with
permission from reference.18)
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cessfully guide preventive medical therapy in the devel-
opment or progression of the CAD process.

In this regard, long-term estrogen replacement in
postmenopausal women without traditional coronary risk
factors may improve endothelium-related MBF re-
sponses to CPT, whereas no such effect was observed
with short-term administration75,123,124 or in postmeno-
pausal women with traditional coronary risk factors.75 In
addition, �-hydroxymethylglutaryl–coenzyme A reduc-
tase inhibitors (simvastatin) beneficially altered the lipid
profile in hypercholesterolemic patients, which was accom-
panied by a significant increase in dipyridamole-stimulated
mean hyperemic MBF from 1.82 � 0.36 mL · g�1 · min�1

at baseline to 2.38 � 0.58 mL · g�1 · min�1 at follow-up,
as measured with N-13 ammonia and PET.119 Such an
improvement in coronary circulatory function in hypercho-
lesterolemic patients after lipid-lowering therapy with
�-hydroxymethylglutaryl–coenzyme A reductase inhib-
itors was confirmed by other investigations.125-127 Inter-
estingly, studying coronary circulatory function with
PET demonstrated that insulin-resistant patients without
traditional coronary risk factors may present abnormali-
ties in coronary vasomotor function.20 More excitingly,
insulin-sensitizing thiazolidinedione therapy normalized
abnormal MBF responses to CPT in 25 individuals with
insulin resistance. The effects of glucose-lowering ther-
apy on coronary circulatory function in type 2 diabetic
patients were studied as well.21 Three months of glucose-
lowering treatment with glyburide and metformin signif-
icantly improved the coronary endothelium-mediated
vasomotor function (Figure 8A). Of note, the decrease in
plasma glucose levels significantly correlated with the
improvement in endothelium-related MBF responses to
CPT and, thus, an improvement in coronary vasomotor
function or dysfunction (r � 0.67, P � .01) (Figure 8B).
This association suggests a direct adverse effect of
elevated plasma glucose levels, apart from the adverse
effects of the insulin resistance syndrome, on diabetes-
related coronary vascular disease in a preclinical state of
CAD.

CONCLUSIONS

Combining cardiac PET perfusion imaging with
tracer kinetic models affords the noninvasive assessment
of regional MBF in milliliters per gram per minute,
which offers important in vivo insight into the complex
nature of the mechanisms underlying functional alter-
ations of the coronary circulation. Thus, cardiac PET
imaging may contribute to unravel the pathophysiology
of the early development of the atherosclerotic process.
Such in vivo imaging with PET may denote important
associations between coronary risk factors and coronary
circulatory function, which may complement or even

contrast experimental studies that investigate direct
cause-effect relationships. Furthermore, by assessing
MBFs at rest and during vasomotor stress, the functional
consequences of structural or functional alterations in the
coronary circulation may be identified before hemody-
namically significant obstructive CAD may manifest.
The identification of such early structural or functional
abnormalities of the coronary circulation appears to carry
important diagnostic and prognostic information.
Whether an improvement or even restoration of abnor-
mal functional alterations of coronary circulatory func-
tion as a result of preventive medical intervention also
results in an improved clinical outcome in these patients
warrants further investigation.

Figure 8. A, Effects of glucose-lowering therapy with gly-
buride and metformin on endothelium-related �MBF to CPT in
patients with type 2 diabetes mellitus. In type 2 diabetic
patients with euglycemic control after 3 months of glucose-
lowering treatment with glucose plasma levels of 126 mg/dL or
less (responders), the endothelium-mediated MBF response to
CPT significantly increased comparable to control subjects,
whereas in patients with glucose plasma levels greater than 126
mg/dL (nonresponders), virtually no change in �MBF to CPT
was observed. B, Association of endothelium-related �MBF to
CPT and change in fasting plasma glucose concentration as
defined by difference in measurements between 3 months of
follow-up and baseline. (Reprinted with permission from
reference.21)
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