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Abstract. The thermodynamics of an electrically charged, multicomponent continuous medium with elec-
tromagnetic fields is analysed in the non-relativistic limit. Applying locally the first and second law of
thermodynamics and Maxwell’s equations for a linear theory of electromagnetism, three equations char-
acterising the continuous medium are derived: a thermostatic equilibrium equation, a reversible and an
irreversible thermodynamic evolution equation. For a local thermodynamic equilibrium, explicit expres-
sions for the temperature and the chemical potentials in terms of the electromagnetic fields are obtained.
The linear phenomenological relations describe novel effects of non-uniform electromagnetic fields on the
transport equations and account also for magnetoresistance and optical tweezers.

1 Introduction

The development of modern thermodynamics started dur-
ing the industrialisation period and was closely related to
the need to improve the efficiency of steam engines. Since
the laws of thermodynamics were discovered in the 19th
century, it is commonly believed nowadays that thermo-
dynamics became a mature research field before the dawn
of the 20th century. However, this is historically not the
case. Since the foundational work of Carnot [1] until af-
ter the rise of quantum mechanics, thermodynamics has
been a phenomenological theory mainly restricted to the
description of either equilibrium states or transformations
relating one equilibrium state to another [2]. In essence,
thermodynamics was essentially reduced to thermostatics
or quasi-thermostatics.

After some pioneering work carried out by Eckart [3,4]
in 1940, Stückelberg and Scheurer [5] reformulated ther-
modynamics as a phenomenological theory describing the
evolution of a thermodynamic system by a set of first-
order differential equations in the 1950’s. By doing so, he
and others following similar lines of thought actually ex-
tended the existing theory of equilibrium states or thermo-
statics, in order to obtain a genuine thermodynamic the-
ory, i.e. a theory describing the evolution and the approach
to equilibrium of thermodynamic systems. This extension
of thermodynamics is based on the time-dependent state
functions “energy” and “entropy” obeying the two fun-
damental laws of thermodynamics. From these two laws,
the time evolution equations of the system are derived.
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By adopting a local description, he also established the
local time evolution of a continuous thermodynamic sys-
tem, thus determining the irreversible thermodynamics
of a continuous media. The irreversible thermodynamic
framework has notably gained wider recognition through
the work of Prigogine [6].

In the present work, we follow essentially the original
approach presented in reference [5] and extend the formal-
ism to describe locally the thermodynamics of continuous
media with electromagnetic fields. The thermodynamics
of fluids with and without electromagnetic fields has been
discussed notably by Müller [7] and Muschik et al. [8–12].
In most experimental conditions, the drift velocities of the
chemical substances with respect to the laboratory rest
frame are clearly non-relativistic. Thus, we restrict our
thermodynamic analysis to a non-relativistic linear elec-
tromagnetic theory, which corresponds to the electric limit
defined by Le Bellac and Lévy-Leblond [13]. Moreover,
we limit our analysis to continuous media without intrin-
sic angular momentum, spontaneous electric polarisation,
spontaneous magnetisation or magnetoelectric coupling.
We establish explicitly the consistency of a non-relativistic
linear electromagnetic theory. In order to obtain the ther-
mostatic equilibrium equation and thermodynamic evolu-
tion equations in the local rest frame of the matter, we
apply locally the first and second laws on the internal en-
ergy of the system using the continuity equations of the
relevant dynamical fields. Finally, the linear phenomeno-
logical relations [14,15], which are a consequence of the
second law, give rise to physical laws and effects coupling
generalised currents to generalised forces.

Requiring the local thermodynamic system to be at
equilibrium, enables us to define a temperature field and
a chemical potential field for the global thermodynamic
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system. We derive explicit expressions for the temperature
and the chemical potentials in terms of the electromag-
netic fields, which imply that the linear phenomenological
relations describe the effects of non-uniform electromag-
netic fields on the transport equations. The phenomeno-
logical relations account in particular for magnetoresis-
tance and optical tweezers.

The structure of this publication is as follows. In Sec-
tion 2, we determine the continuity equations of the rel-
evant physical fields based on the axiomatic formulation
of the first and second law of thermodynamics outlined in
Appendices A.1 and A.2, and the mathematical structure
of the continuity equations established in Appendix A.3.
In Section 3, we apply these laws to the internal energy of
the system and determine the thermostatic and thermo-
dynamic equations. Finally, in Section 4, we characterise
physically the linear phenomenological relations.

2 Thermodynamic continuity equations

2.1 Thermodynamic state fields

The state of a classical continuous medium is defined by a
set of state variables. The system is assumed to be continu-
ous on the scale of interest, as explained in Appendix A.3.
The local state of a continuous system is defined by a set
of state fields that are function of the space and time coor-
dinates. These coordinates are respectively (x′, t′) in the
spatial frame, which is the inertial Eulerian frame, and
(x, t) in the local material frame where the center of mass
of the local element of matter is at rest, which is the mov-
ing Lagrangian frame. The correspondence between the
two frames is given in Appendix A.4. In order to deter-
mine the local thermodynamic state of a non-relativistic
continuous medium consisting of N chemical substances
in the presence of electromagnetic fields, we define five
types of state fields:

– entropy density s (x, t),
– densities nA (x, t) of N chemical substances where A ∈

{1, . . . , N},
– velocity v (x′, t),
– electric displacement D (x, t),
– magnetic induction B (x, t).

Note that the state fields are expressed in terms of the
space and time coordinates (x, t) of the local material
frame, except the velocity field v (x′, t) that depends on
the spatial coordinate x′ of the spatial frame, since it rep-
resents the relative velocity between the local material
frame and the spatial frame, as shown in Appendix A.3.

The local thermodynamic state of the continuous
medium is defined formally as the following set of state
fields: {s (x, t) , nA (x, t) ,v (x′, t) ,D (x, t) ,B (x, t)}.

The physical fields describing the thermodynamics of
such a medium are locally functions of these state fields.
Some extensive density fields are of particular interest in
this analysis, i.e.

– mass density m (s, nA,v,D,B),
– electric charge density q (s, nA,v,D,B),

– energy density e (s, nA,v,D,B),
– internal energy density u (s, nA,v,D,B),
– momentum density p (s, nA,v,D,B),
– angular momentum density � (s, nA,v,D,B),

where we removed the explicit space and time dependence
of the state fields in order to simplify the notation. In the
remainder of this publication, we will do likewise.

2.2 Electromagnetic linear constitutive equations

We consider a continuous medium without spontaneous
electric polarisation or spontaneous magnetisation. In or-
der to have a linear electromagnetic theory, we have to as-
sume the existence of linear mappings between the exten-
sive electromagnetic state fields D and B and the intensive
electromagnetic fields E and H, respectively. These map-
pings are the linear electromagnetic constitutive relations
defined in the local material frame of the matter where
v = 0. We restrict our analysis to the physical case where
E is independent of B, and H is independent of D.

In the absence of an electric displacement field D, the
electric field E (s, nA,D) vanishes. Similarly, in the ab-
sence of a magnetic induction field B, the magnetic field
H (s, nA,B) vanishes as well. Thus, the linear electromag-
netic constitutive relations in the local material frame are
given by,

E (s, nA,D) = ε−1 (s, nA) ·D,

H (s, nA,B) = μ−1 (s, nA) ·B, (1)

where ε (s, nA) and μ (s, nA) are, respectively, the elec-
tric permittivity and the magnetic permeability tensors
of the matter in the local material frame. It is useful to
recast the linear electromagnetic constitutive relations (1)
explicitly as,

D = ε (s, nA) ·E (s, nA,D) ,

B = μ (s, nA) ·H (s, nA,B) . (2)

The electric permittivity tensor ε (s, nA) and the mag-
netic permeability tensor μ (s, nA) are recast in terms of
the electric susceptibility tensor χe (s, nA) and the mag-
netic susceptibility tensor χm (s, nA) of the matter, re-
spectively, according to,

ε (s, nA) = ε0 (� + χe (s, nA)) ,

μ (s, nA) = μ0 (� + χm (s, nA)) , (3)

where � is the rank-2 identity tensor, ε0 and μ0 are, re-
spectively, the electric permittivity and the magnetic per-
meability in the vacuum that are related by the speed of
an electromagnetic wave in the vacuum: c = 1/

√
ε0μ0.

2.3 Thermodynamical continuity equations

The analytical structure of the continuity equations for
extensive physical observables in the local material frame
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is given for scalar fields by the relation (A.22) and for vec-
tor fields by the relation (A.23), as established explicitly
in Appendix A.3. We now express these equations explic-
itly in terms of the physical state fields and identify the
source and current densities.

2.3.1 Electric charge continuity equation

The electric charge density field q (s, nA) is a property
of the matter constituents that is considered as a function
of the matter state fields s and nA only. The conserva-
tion of the electric charge implies that there is no internal
source of charge, i.e. ρq = 0. Thus, the continuity equa-
tion for the electric charge in the local material frame is
given by,

q̇ + (∇ · v) q + ∇ · jq = 0, (4)

where the dot denotes the time derivative in the local ma-
terial frame, which is related to the time derivative in
the spatial frame through the relation (A.20), established
in Appendix A.3. Moreover, the diffusive electric current
density jq in the local material frame is related to the
electric current density j′q in the spatial frame by,

j′q (s, nA,v) = jq (s, nA) + q (s, nA)v, (5)

as shown in Appendix A.4, and the prime denotes a vector
field defined in the spatial frame. The physical interpreta-
tion of relation (5) is that the electric current density j′q
defined in the spatial frame is the sum of the diffusive elec-
tric current density jq defined in the local material frame
and the convective electric current density qv due to the
relative motion of the local material frame with respect to
the spatial frame.

2.3.2 Entropy continuity equation

In order to satisfy locally the evolution condition of the
second law (A.2), we require the entropy source density
field ρs to be non-negatively defined, i.e.

ρs � 0. (6)

The continuity equation for the entropy in the local ma-
terial frame is given by,

ṡ + (∇ · v) s + ∇ · js = ρs � 0. (7)

2.3.3 Chemical substance continuity equation

The source density ρA of the chemical substance A in a
chemical reaction a is proportional to the stoichiometric
coefficients νaA such that,

ρA =
∑

a

ωaνaA, (8)

where ωa is the local rate of the reaction a. Note that
if the rate of reaction ωa is positive, then the substances

with a positive stoichiometric coefficient νaA are produced
and the substances with a negative stoichiometric coeffi-
cient are consumed, and vice versa if the reaction rate is
negative. Thus, the continuity equation for the chemical
substance A in the local material frame is given by,

ṅA + (∇ · v) nA + ∇ · jA =
∑

a

ωaνaA. (9)

2.3.4 Inhomogeneous Maxwell’s equations

From a mathematical standpoint, the electromagnetic evo-
lution equations, often referred to as Maxwell’s equations,
are invariant under any diffeomorphism of space-time as
first pointed out by van Dantzig [16] and communicated by
Dirac. This implies that these equations can be expressed
in a fully coordinate-free fashion, for example using the
language of differential forms as presented by Misner
et al. [17] and showed explicitly by Hehl and Obukhov [18].
In a non-relativistic framework, i.e. v/c → 0, the diffeo-
morphism of interest is the Galilean transformation and
in a relativistic framework, i.e. v/c → 1, it is the Lorentz
transformation.

It is worth justifying that electromagnetic waves are
described consistently within a non-relativistic framework.
From a physical perspective, in such a framework, the
speed of light in the vacuum, c, is infinitely larger than
the relative velocity v of the two frames, i.e. v/c → 0.
Thus, in the non-relativistic limit, the speed of light in the
vacuum c is the same in the spatial and material frames.
This implies that these two frames are equivalent for the
description of electromagnetic waves and establishes ex-
plicitly the consistency of electromagnetic waves in the
non-relativistic limit.

The inhomogeneous Maxwell’s equations depend ex-
plicitly on the electric charge and current densities. These
equations are Gauss’ law and Maxwell-Ampère’s law de-
fined in the spatial frame respectively as,

∇′ ·D′ = q′, (10)

∂t′D′ + j′q = ∇′ × H′, (11)

where the prime denotes a scalar field, a vector field or an
operator defined in the spatial frame.

As shown in Appendix A.4, the electromagnetic
fields D and H defined in the local material frame are
related to the electromagnetic fields D′, B′ and H′ de-
fined in the spatial frame by [19],

D = D′,

H (s, nA,B) = H′ (s, nA,v,B′) − v × D′. (12)

Using the fact that the electric charge density is an
invariant, i.e. q′ = q, as well the transformation rela-
tions (A.19), (5) and (12), Gauss’ law (10) and the vecto-
rial identity,

∇ × (v × D′) = ∇ × (v × D)
= (∇ ·D)v − (∇ · v)D

+ (D · ∇)v − (v · ∇)D,
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Gauss’ law (10) and Maxwell-Ampère’s law (11) are recast
respectively in the local material frame as,

∇ ·D = q, (13)

Ḋ + (∇ · v)D − (D · ∇)v + jq = ∇ × H, (14)

where Maxwell-Ampère’s law (14) represents the continu-
ity equation for the electric displacement field D, which is
only valid in the non-relativistic limit, i.e. v/c → 0. Gauss’
law (13) and Maxwell-Ampère’s law (14) are Galilean in-
variant, which can be shown explicitly using the transfor-
mation laws established in Appendix A.4.

Note that the continuity equation for the electric
charge (4) can be obtained by taking the divergence
of Maxwell-Ampère’s law (14) and using some vectorial
identities.

2.3.5 Homogeneous Maxwell’s equations

The homogeneous Maxwell’s equations do not depend ex-
plicitly on the electric charge and current densities. These
equations are Thomson’s law and Faraday’s law defined
in the spatial frame, respectively as,

∇′ ·B′ = 0, (15)

∂t′B′ = −∇′ × E′, (16)

where the prime denotes a vector field or an operator de-
fined in the spatial frame.

As shown in Appendix A.4, the electromagnetic
fields B and E defined in the local material frame are re-
lated to the electromagnetic fields D′, B′ and E′ defined
in the spatial frame, by [19],

B = B′,

E (s, nA,D) = E′ (s, nA,v,D′) + v × B′. (17)

Using the transformation relations (A.19) and (17),
Thomson’s law (15) and the vectorial identity,

∇ × (v × B′) = ∇ × (v × B)

= (∇ ·B)v − (∇ · v)B

+ (B · ∇)v − (v · ∇)B,

Thomson’s law (15) and Faraday’s law (16) are recast re-
spectively in the local material frame as,

∇ ·B = 0, (18)

Ḃ + (∇ · v)B− (B · ∇)v = −∇ × E, (19)

where Faraday’s law (19) represents the continuity equa-
tion for the magnetic induction field B, which is only
valid in the non-relativistic limit, i.e. v/c → 0. Thomson’s
law (18) and Faraday’s law (19) are Galilean invariant,
which can be shown explicitly using the transformation
laws established in Appendix A.4.

2.3.6 Energy continuity equation

In order to satisfy locally the first law (A.1), the only
energy source, which does not result from an energy flux,
is due to the action of the external forces on the local
system. Thus, the energy source density ρe is of the form,

ρe = fext · v. (20)

In our thermodynamic approach, the electromagnetic
force density is exerted by the electromagnetic fields on
the matter fields. Since the matter fields and the electro-
magnetic fields are part of the local system, the electro-
magnetic force density is considered as an “internal” force
of the local system. Thus, the force density f ext repre-
sents the external force density of the non-electromagnetic
fields. The continuity equation for the energy density e is
given by,

ė + (∇ · v) e + ∇ · je = fext · v. (21)

The electromagnetic state fields E and H are the conju-
gate fields of the electromagnetic state fields D and B
respectively, i.e.

E (s, nA,D) =
∂e (s, nA,v,D,B)

∂D
,

H (s, nA,B) =
∂e (s, nA,v,D,B)

∂B
. (22)

The Schwarz integrability conditions for the energy
density,

∂

∂Di

(
∂e

∂Dj

)
=

∂

∂Dj

(
∂e

∂Di

)
,

∂

∂Bi

(
∂e

∂Bj

)
=

∂

∂Bj

(
∂e

∂Bi

)
, (23)

the definitions (22) and the linear electromagnetic con-
stitutive equations (2) imply that the electric permittiv-
ity tensor ε (s, nA) and the magnetic permeability ten-
sor μ (s, nA) are symmetric with respect to their indices.
Moreover, the definitions (3) imply that the electric sus-
ceptibility tensor χe (s, nA) and the magnetic susceptibil-
ity tensor χm (s, nA) are also symmetric with respect to
their indices.

The analytical expression for the energy density
e (s, nA,v,D,B) can be split as,

e (s, nA,v,D,B) = emat (s, nA,v) + eem (s, nA,D,B),
(24)

where emat (s, nA,v) ≡ e (s, nA,v,0,0) is the energy
density of the matter fields and eem (s, nA,D,B) ≡
e (s, nA,0,D,B) is the energy density of the electromag-
netic fields and of their interaction with the matter fields,
which has to satisfy the integrability conditions (22), i.e.

eem (s, nA,D,B) =
1
2

(
ε−1 (s, nA) · (D � D) + μ−1 (s, nA) · (B� B)

)
, (25)
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where the symbol � denotes a symmetrised tensorial
product ⊗. Thus, the electromagnetic energy density is
a positive definite quadratic form, as expected for a lin-
ear electromagnetic theory. It can be written explicitly in
components as,

eem (s, nA,D,B) =
1
2

(
ε−1

ij (s, nA)DiDj + μ−1
ij (s, nA)BiBj

)
,

using the Einstein implicit summation convention.
Using the linear electromagnetic constitutive equa-

tion (2), it is convenient to recast the electromagnetic en-
ergy density (25) as,

eem (s, nA,D,B) =
1
2

(
E ·D + H · B

)
. (26)

The energy density e (s, nA,v,D,B) can be split into a
kinetic and an internal part according to,

e (s, nA,v,D,B) =
1
2
m (s, nA)v2 +u (s, nA,D,B) , (27)

where u (s, nA,D,B) = e (s, nA,0,D,B) is the internal
energy density, which is defined as the energy density in
the local material frame where v = 0.

The internal energy density u (s, nA,D,B) can be
split as,

u (s, nA,D,B) = umat (s, nA) + uem (s, nA,D,B) , (28)

where umat (s, nA) ≡ u (s, nA,0,0) is the internal energy
density of the matter fields and uem (s, nA,D,B) is the
internal energy density of the electromagnetic fields and of
their interaction with the matter fields, which is given by,

uem (s, nA,D,B) =
1
2

(
ε−1 (s, nA) · (D � D)

+ μ−1 (s, nA) · (B� B)
)
. (29)

Since uem (s, nA,D,B) is a quadratic form of the frame-
independent vectors fields D and B, it is invariant under
translations, as expected.

Using the constitutive electromagnetic relation (2), it
is convenient to recast the electromagnetic part of the in-
ternal energy density (29) as,

uem (s, nA,D,B) =
1
2

(
E · D + H · B

)
. (30)

Since the electromagnetic fields in the local material frame
are independent of the velocity field v, the relation (27)
implies that the electromagnetic fields E (s, nA,D) and
H (s, nA,B) are the conjugate fields of the electromagnetic
state fields D and B with respect to the internal energy
density u (s, nA,D,B), i.e.

E (s, nA,D) =
∂u (s, nA,D,B)

∂D
,

H (s, nA,B) =
∂u (s, nA,D,B)

∂B
. (31)

2.3.7 Momentum and mass continuity equations

The momentum source density is due to the external force
density only, i.e.

ρp = fext, (32)

where f ext is the external force density. The continuity
equation for the momentum density p is given by,

ṗ + (∇ · v)p − ∇ · σ = f ext, (33)

where the stress tensor σ is defined as the opposite of the
momentum current density tensor jp, i.e.

σ ≡ −jp. (34)

The momentum density is of the form [20],

p (s, nA,v,D,B) = m (s, nA)v + D× B. (35)

It is useful to split the momentum density (35) into a
matter part pmat (s, nA,v) and an electromagnetic part
pem (D,B) according to,

p (s, nA,v,D,B) = pmat (s, nA,v) + pem (D,B) , (36)

where

pmat (s, nA,v) = m (s, nA)v, (37)
pem (D,B) = D × B. (38)

Similarly, the stress tensor σ (s, nA,v,D,B) is also split
into a matter part σmat (s, nA,v) and an electromagnetic
part σem (s, nA,D,B) according to,

σ (s, nA,v,D,B) = σmat (s, nA,v) + σem (s, nA,D,B) .
(39)

The relations (36) and (39) imply that the continuity
equation (33) can be split according to,

ṗmat + (∇ · v)pmat − ∇ · σmat = fext + fem, (40)
ṗem + (∇ · v)pem − ∇ · σem = −fem, (41)

where f em is the electromagnetic force density exerted by
the electromagnetic fields on the matter fields. Note that
the electromagnetic force density f em is an internal force
density for the whole system. However, it is considered as
an “external” force density for the matter or electromag-
netic subsystems.

Using the expression (37) for the momentum density
of the matter part, the continuity equation (40) for the
momentum density of the matter part becomes,

mv̇ +
(
ṁ + (∇ · v) m

)
v = f ext + fem + ∇ · σmat, (42)

which is Newton’s second law of motion. The non-
relativistic frame-independence of Newton’s second law of
motion implies that the second term on the LHS of the
equation of motion (42) has to vanish, i.e.

ṁ + (∇ · v) m = 0, (43)
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which is the continuity equation for the mass. Since the
mass density field m (s, nA) is a property of the matter
constituents, it is a function of the matter scalar state
fields s and nA only. The continuity equation (43) for the
mass implies that there is no internal source of mass, i.e.
ρm = 0, and no diffusive mass current density, i.e. jm =
0. Physically, this implies that the mass is a conserved
quantity in a non-relativistic framework.

Using the continuity equation (43), Newton’s second
law of motion reduces to,

mv̇ = fext + fem + ∇ · σmat, (44)

and corresponds to one of the Navier-Stokes equations,
expressed in the local material frame, for an electrically
charged continuous medium with electromagnetic fields.
Note that the term ∇ · σmat represents the mechanical
shear force density.

The expressions for the electromagnetic constitutive
equations (2), the susceptibility tensors (3) and the elec-
tromagnetic momentum density (38) imply that the scalar
product,

(
ṗem + (∇ · v)pem

)
· v =

v
c
· 1
c

[((
(�+ χe) · E

)

×
(

(�+ χm) ·H
))v̇

c

+ (∇ · v)
((

(� + χe) ·E
)

×
(

(�+ χm) ·H
))]

,

is a relativistic correction proportional to v/c, which is ne-
glected in a non-relativistic framework and the dot on the
righthand corner of the brackets on the second line denotes
a material time derivative. Thus, in the non-relativistic
limit, the scalar product of the continuity equation (41)
and the velocity vector v reduces to,

(∇ · σem) · v = f em · v. (45)

Maxwell-Ampère’s law (14) and Faraday’s law (19) imply
that the scalar product of the continuity equation (41)
and the velocity field v can be expressed as,
(

(D × B)ṙ + 2 (∇ · v) (D × B)

− ( (D · ∇)v
)× B− D× ( (B · ∇)v

)) · v

=
(
− jq×B− D × (∇ × E) − B× (∇×H)

)
· v, (46)

where the terms on the LHS are relativistic corrections
that are neglected in a non-relativistic framework and the
dot on the righthand corner of the first brackets on the
first line denotes a material time derivative. Thus, in the
non-relativistic limit, the scalar product (46) reduces to,
(
−D×(∇ × E)−B×(∇ × H)

)
·v =

(
jq ×B

)
·v. (47)

Using the vectorial identities,

− D × (∇ × E) = −D∇E + (D · ∇)E
= −D∇E− (∇ · D)E + ∇D · (D� E) ,

and

− B × (∇ × H) = −B∇H + (B · ∇)H
= −B∇H− (∇ · B)H + ∇B · (B� H),

and Gauss’ law (13) and Thomson’s law (18), the equa-
tion (47) is recast as,

(
∇D,B · (D � E + B� H)

)
· v

=
(
qE + jq × B + D∇E + B∇H

)
· v, (48)

where the covariant vectors ∇D,B · (D � E + B� H) and
D∇E + B∇H are explicitly written in components as,

∇D,B · (D � E + B� H) = ∂j

(
DjE + BjH

)
,

D∇E + B∇H = Dj∇Ej + Bj∇Hj .

At this point, it is useful to introduce the Legendre trans-
form of the electromagnetic part of the internal energy
density �em

u (s, nA,E,H) defined as,

�em
u (s, nA,E,H) ≡ ∂uem

∂D
·D

+
∂uem

∂B
·B−uem(s, nA,D,B). (49)

Using the constitutive equations (1), the expression (29)
and the differential relations (31), the Legendre trans-
form (49) is found to be,

�em
u (s, nA,E,H) =

1
2

(
E · D + H ·B

)
, (50)

where,

D (s, nA,E) =
∂�em

u (s, nA,E,H)
∂E

,

B (s, nA,H) =
∂�em

u (s, nA,E,H)
∂H

. (51)

Using the constitutive equations (2), the Legendre trans-
form (50) can be recast in terms of the electromagnetic
fields E and H as,

�em
u (s, nA,E,H) =

1
2

(
ε (s, nA) · (E� E)

+ μ (s, nA) · (H� H)
)
, (52)

which establishes that

�em
u (s, nA,E,H) = uem (s, nA,D,B) .

The constitutive equations (2) imply that the gradient of
the Legendre transform (52) is of the form,

∇�em
u = D∇E + B∇H

+
1
2

(
(E� E)∇ε + (H� H)∇μ

)
. (53)
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By substituting the relation (53) into the equation (48),
the latter reduces to,
(
∇D,B · (D � E + B� H− �em

u �)
)
· v

=
(
qE + jq×B− 1

2

(
(E�E)∇ε + (H�H)∇μ

))
·v.

(54)

By identification of the equations (45) and (54), the ex-
pressions for the electromagnetic stress tensor σem and
the electromagnetic force density f em are found to be,

σem = D � E + B� H − 1
2

(
E ·D + H · B

)
�, (55)

fem = qE + jq×B− 1
2

(
(E� E)∇ε + (H� H)∇μ

)
.

(56)

The first and second terms on the RHS of the expres-
sion (56) represent the Lorentz force density exerted by
the electromagnetic fields E and B on the matter fields q
and jq. The last term represents the opposite of the pon-
deromotive force density exerted by the gradient of the
matter fields ε (s, nA) and μ (s, nA) on the electromag-
netic fields E and H. The Lorentz force density represents
the action of the electromagnetic fields on the matter fields
and the ponderomotive force density represents the re-
action of the matter fields on the electromagnetic fields.
Therefore, the ponderomotive force density has a nega-
tive sign in expression (56) for the electromagnetic force
density f em.

2.3.8 Angular momentum continuity equation

Since we do not include an intrinsic angular momentum
in this publication, we shall refer to the orbital angular
momentum simply as angular momentum. The angular
momentum source density ρ� is due to the torque resulting
from the action of the external force density fext, i.e.

ρ� = r × fext, (57)

where r is the position of the centre of mass of the local
element of matter. The continuity equation for the angular
momentum � is given by,

�̇ + (∇ · v) � + ∇ · j� = r × fext, (58)

where the angular momentum density � satisfies the dy-
namical relation,

� = r× p. (59)

From the definitions of the stress tensor (34) and the angu-
lar momentum density field (59), we deduce the expression
of the orbital angular momentum current density tensor
field j�,

j� = r × jp = −r × σ. (60)

Using relations (59) and (60), the continuity equation (58)
becomes,

�̇ + (∇ · v) � − ∇σ · (r × σ) = r× fext. (61)

The vectorial product between the position r and the con-
tinuity equation for the momentum (33) yields,

r × ṗ + (∇ · v) � − r× (∇ · σ) = r × fext. (62)

Using the vectorial identity,

�̇ = v × p + r × ṗ,

where v = ṙ, the difference between the relations (62)
and (61) is given by,

∇σ · (r × σ) − r × (∇ · σ) − v × p = 0. (63)

The definitions of the momentum densities (36)–(38) and
the relation (3) imply that,

v×p = mv×v+
v
c
×1

c

[(
(�+ χe)·E

)
×
(

(� + χm)·H
)]

is a relativistic correction proportional to v/c, which is ne-
glected in a non-relativistic framework. Thus, in the non-
relativistic limit, the relation (63) reduces to,

∇σ · (r× σ) − r × (∇ · σ) = 0, (64)

where the vectorial terms on the LHS of the relation (64)
are written explicitly in components as,

(∇σ · (r × σ))i = εijk∂l

(
rjσ

l
k

)

= εijk
(
σjk + rj∂lσ

l
k

)
,

(r × (∇ · σ))i = εijkrj∂lσ
l
k,

using the Einstein implicit summation convention, the
components of the totally antisymmetric contravariant
Levi-Civita tensor εijk and the trivial identity ∂irj = δij .
Hence, the relation (64) can be recast as,

σ̂ = 0, (65)

where σ̂ is the stress pseudo-vector defined as the dual of
the antisymmetric part of the stress tensor and written
explicitly in components as,

σ̂i = εijkσjk.

Thus, the stress tensor σ is a symmetric rank-2 tensor.

2.3.9 Internal energy continuity equation

The continuity equation for the internal energy density u
reads,

u̇ + (∇ · v) u + ∇ · ju = ρu. (66)

Taking the time derivative of the energy (27) and using the
continuity equations for the mass (43), the energy (21) and
the internal energy (66), the second law of Newton (44),
the electromagnetic dynamical equation (45), the split-
ting (39) and the vectorial identity,

(∇ · σ) · v = ∇σ · (σ · v) − σ · (∇ � v),
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the expression for the internal energy current density ju
and the internal energy source density ρu are identified
respectively as,

ju = je + σ · v, (67)
ρu = σ · (∇ � v) . (68)

Note that,
jW = −σ · v, (69)

represents the work current density due to the matter and
electromagnetic fields.

The physical interpretation of the expression (68) for
the source density ρu is also clear. The source of internal
energy density is due to the shear on the local element of
matter dΣ. It is important to emphasize that even in the
local material frame where the local center of mass has no
velocity, i.e. v = 0, the infinitesimal element of matter is
still subjected to the constraints due to the environment,
which generate deformations (∇ � v).

3 Evolution equations

3.1 Conservation of the mass

The mass density field m is a property of the mat-
ter and thus a function of the matter state fields, i.e.
m = m (s, nA). The time derivative of the mass density
field yields,

ṁ =
∂m

∂s
ṡ +

∑

A

∂m

∂nA
ṅA. (70)

Using this relation and the continuity equations for the
entropy (7) and the chemical substance A (9), the conti-
nuity equation for the mass (43) is recast as,

∂m

∂s

(
ρs − (∇ · v) s − ∇ · js

)
+ (∇ · v) m

+
∑

A

∂m

∂nA

(
ρA − (∇ · v)nA − ∇ · jA

)
= 0. (71)

The evolution condition of the second law requires the
entropy production to be positive, i.e. ρs � 0, irrespective
of the value and sign of the other fields. Thus, the partial
derivative factor multiplying ρs has to vanish, i.e.

∂m

∂s
= 0. (72)

This implies that the mass density is only a function of the
densities nA, i.e. m = m (nA). Hence, the equation (71)
reduces to,
(

m −
∑

A

∂m

∂nA
nA

)
(∇ · v) +

∑

A

∂m

∂nA
(ρA − ∇ · jA) = 0.

(73)

The relation (73) has to hold locally for all matter flows,
which implies that the terms in the first brackets have to
vanish according to,

m −
∑

A

∂m

∂nA
nA = 0. (74)

The derivative of relation (74) with respect to the density
nB of a chemical substance B yields,

∂m

∂nB
−
∑

A

(
∂2m

∂nA∂nB
nA +

∂m

∂nA
δAB

)
= 0, (75)

which implies that,

∂2m

∂nA∂nB
= 0 ∀A, (76)

and therefore the partial derivatives,

mA ≡ ∂m

∂nA
= cst, (77)

are independent constants representing the mass of a unit
of chemical substance A. Thus, the mass density field m
is the sum of the mass densities of the different chemical
substances according to,

m =
∑

A

mAnA. (78)

From the relations (73) and (74), it follows that,
∑

A

mA (ρA − ∇ · jA) = 0. (79)

Using the fact that the mass mA is an invariant, i.e.

∇mA = 0, (80)

which is a consequence of (77), the equation (79) can be
recast as,

∑

A

mAρA − ∇ ·
(
∑

A

mAjA

)
= 0. (81)

It has to hold in the presence or in the absence of chemical
reactions, i.e. ∑

A

ρAmA = 0, (82)

which is expressed in terms of the stoichiometric coeffi-
cients νaA using the expression (8) according to,

∑

A

mA

(
∑

a

ωaνaA

)
= 0. (83)

Since the reaction rates ωa are independent, each chemical
reaction a satisfies the mass conservation law,

∑

A

mAνaA = 0, (84)

which is the law of Lavoisier.
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Substituting condition (82) into equation (81), the lat-
ter reduces to,

∇ ·
(
∑

A

mAjA

)
= 0. (85)

It has to hold for any current flow, which defines the ma-
terial frame where the local center of mass of the matter
element is at rest, i.e.

∑

A

mAjA = 0. (86)

This condition allows for a coherent physical interpreta-
tion of the velocity v, as we now show. We define the
velocity vA of the substance A as,

vAnA ≡ vnA + jA. (87)

Using relations (37), (78), (86) and (87), the matter mo-
mentum density pmat becomes,

pmat =
∑

A

mAnAvA. (88)

Thus, the velocity v is found to be,

v =

∑

A

mAnAvA

∑

A

mAnA

, (89)

and represents the velocity of the center of mass of the
infinitesimal mass element dm contained within the local
infinitesimal thermodynamic system dΣ. It is the barycen-
tric velocity of the local element of matter.

3.2 Conservation of the electric charge

The electric charge density field q is a property of the
matter and thus a function of the matter state fields, i.e.
q = q (s, nA). The time derivative of the electric charge
density field q yields,

q̇ =
∂q

∂s
ṡ +

∑

A

∂q

∂nA
ṅA. (90)

Using this relation and the continuity equations for the
entropy (7) and the chemical substance A (9), the conti-
nuity equation for the charge (4) is recast as,

∂q

∂s

(
ρs − (∇ · v) s − ∇ · js

)
+ (∇ · v) q + ∇ · jq (91)

+
∑

A

∂q

∂nA

(
ρA − (∇ · v) nA − ∇ · jA

)
= 0.

In a similar way to the mass density, the charge density
cannot be a function of the entropy in order to satisfy the
evolution condition of the second law. Hence, the electric

charge density is only a function of the densities nA, i.e.
q = q (nA). Hence, equation (91) reduces to,

(
q −

∑

A

∂q

∂nA
nA

)
(∇ · v)

+
∑

A

∂q

∂nA
(ρA − ∇ · jA) + ∇ · jq = 0. (92)

The relation (92) has to hold locally for all matter flows,
which implies that the terms in the first brackets have to
vanish according to,

q −
∑

A

∂q

∂nA
nA = 0. (93)

The derivative of the relation (93) with respect to the
density nB of a chemical substance B yields,

∂q

∂nB
−
∑

A

(
∂2q

∂nA∂nB
nA +

∂q

∂nA
δAB

)
= 0, (94)

which implies that,

∂2q

∂nA∂nB
= 0 ∀A, (95)

and therefore the partial derivatives,

qA ≡ ∂q

∂nA
= cst, (96)

are independent constants representing the free electric
charge of a unit of chemical substance A. Thus, the electric
charge density field qA is the sum of the electric charge
densities of the different chemical substances according to,

q =
∑

A

qAnA. (97)

From the relations (92) and (93), it follows that,

∑

A

qA (ρA − ∇ · jA) + ∇ · jq = 0. (98)

Using the fact that the electric charge qA is an invariant,
i.e.

∇qA = 0, (99)

which is a consequence of (96), the equation (98) can be
recast as,

∑

A

qAρA + ∇ ·
(

jq −
∑

A

mAjA

)
= 0. (100)

It has to hold in the presence or in the absence of chemical
reactions, i.e. ∑

A

ρAqA = 0, (101)

http://www.epj.org


Page 10 of 20 Eur. Phys. J. B (2012) 85: 412

which is expressed in terms of the stoichiometric coeffi-
cients νaA using the expression (8) according to,

∑

A

qA

(
∑

a

ωaνaA

)
= 0. (102)

Since the reaction rates ωa are independent, each chemical
reaction a satisfies the charge conservation law,

∑

A

qAνaA = 0. (103)

Substituting the condition (101) into the equation (100),
the latter reduces to,

∇ ·
(

jq −
∑

A

qAjA

)
= 0. (104)

It has to hold for any current flow, which yields an expres-
sion for the diffusive electric current density jq in terms of
the chemical composition, i.e.

jq =
∑

A

qAjA. (105)

Using the relations (87), (97) and (105), the expression (5)
for the electric current density in the spatial frame be-
comes,

j′q =
∑

A

qAnAvA. (106)

There are four types of electric charge carriers in our
model, which are considered as different types of chem-
ical substances A of the matter:

– free electrons (i.e. A = e), qe < 0,
– anions, qA < 0,
– cations, qA > 0,
– neutral substances, qA = 0.

Note that for physical consistency, free electrons are in-
cluded as a separate chemical substance in our phe-
nomenological model.

3.3 Matter dynamics

In order to characterise physically the matter dynamics,
we substitute the expression (88) for the chemical nature
of the matter momentum density and the continuity equa-
tion of the chemical substance (9) into the continuity equa-
tion (40) for the matter momentum density pmat. The
latter then becomes,

∑

A

(
nAmAv̇A − (∇ · jA)mAvA + ρAmAvA

)

− ∇ · σmat = fext + fem. (107)

Using the vectorial identity,

(∇ · jA)mAvA = ∇j · (mAvA � jA) − (jA · ∇) mAvA,

where the index j denotes that there is a dot product
between the covariant differential operator ∇ and the
contravariant current density jA, the continuity equa-
tion (107) for the matter momentum density pmat can
be recast as,
∑

A

mA

(
nAv̇A + (jA · ∇)vA

)
+
∑

A

ρAmAvA

− ∇j ·
(
σmat +

∑

A

mAvA � jA
)

= f ext + fem. (108)

The matter stress tensor σmat is split into a reversible part
due to the pressure P and an irreversible part σ̃mat. The
pressure P is isotropic in the local material frame and it
opposes the constraints on the matter σmat, i.e.

σmat = −P�+ σ̃mat, (109)

which implies that the continuity equation (108) is re-
cast as,
∑

A

mA

(
nAv̇A + (jA · ∇)vA

)
+ ∇P +

∑

A

ρAmAvA

− ∇j ·
(
σ̃mat +

∑

A

mAvA � jA
)

= f ext + fem. (110)

It has to hold in the presence or in the absence of chemical
reactions, i.e. ∑

A

ρAmAvA = 0, (111)

which means that the chemical reactions preserve the local
momentum of the matter. Moreover, it has to hold for any
current flow, which yields an explicit expression for the
irreversible part of the matter stress tensor, i.e.

σ̃mat = −
∑

A

mAvA � jA. (112)

The conditions (111) and (112) imply that the continuity
equation (110) reduces to,
∑

A

mA

(
nAv̇A + (jA · ∇)vA

)
= f ext + fem − ∇P, (113)

which describes the matter dynamics that is contained in
the time evolution of the chemical substances.

3.4 Thermostatic equation, reversible and irreversible
thermodynamic equations

In order to determine the internal energy balance, we take
the time derivative of the internal energy density field
u (s, nA,D,B) of the system Σ, i.e.

u̇ =
∂u

∂s
ṡ +

∑

A

∂u

∂nA
ṅA +

∂u

∂D
· Ḋ +

∂u

∂B
· Ḃ. (114)

The local thermodynamic system dΣ is assumed to
be at equilibrium. Thus, we can define the intensive
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fields temperature T (s, nA,D,B) and chemical potential
μA (s, nA,D,B) of the substance A as the conjugate of
the state scalar fields densities s and nA respectively, i.e.

T (s, nA,D,B) ≡ ∂u (s, nA,D,B)
∂s

,

μA (s, nA,D,B) ≡ ∂u (s, nA,D,B)
∂nA

. (115)

In order to determine the temperature of the system in
terms of the electromagnetic fields, we explicitly substi-
tute the expressions (28) and (29) for the internal energy
density u (s, nA,D,B) into the definition of the tempera-
ture (115) using the vectorial identities,

∂ε−1

∂s
= −∂ε

∂s
· ε−2,

∂μ−1

∂s
= −∂μ

∂s
· μ−2,

to obtain,

T (s, nA,D,B) = T (s, nA,0,0) − 1
2

(
∂ε

∂s
· ε−2 · (D � D)

+
∂μ

∂s
· μ−2 · (B � B)

)
. (116)

Using the linear electromagnetic constitutive equa-
tions (1), the expression for the temperature (116) is re-
cast as,

T (s, nA,D,B) = T (s, nA,0,0) − 1
2

(
∂ε

∂s
· (E � E)

+
∂μ

∂s
· (H� H)

)
. (117)

Note that the phenomenological tensors ∂ε/∂s and ∂μ/∂s
are closely related to the temperature dependence of the
electric permittivity tensor and the magnetic permeability
tensor, respectively.

In order to determine the chemical potential of the
system in terms of the electromagnetic fields, we explic-
itly substitute the expressions (28) and (29) for the in-
ternal energy density u (s, nA,D,B) into the definition of
the chemical potential of the substance A (115) using the
vectorial identities,

∂ε−1

∂nA
= − ∂ε

∂nA
· ε−2,

∂μ−1

∂nA
= − ∂μ

∂nA
· μ−2,

to obtain,

μA (s, nA,D,B) = μA (s, nA,0,0)− 1
2

(
∂ε

∂nA
·ε−2 ·(D�D)

+
∂μ

∂nA
· μ−2 · (B � B)

)
. (118)

Using the linear electromagnetic constitutive equa-
tions (1), the expression for the chemical potential of the
substance A (118) is recast as,

μA (s, nA,D,B) = μA (s, nA,0,0)

− 1
2

(
∂ε

∂nA
· (E�E)+

∂μ

∂nA
· (H�H)

)
.

(119)

Note that the phenomenological tensors ∂ε/∂nA and
∂μ/∂nA describe, respectively, the dependence of the elec-
tric permittivity tensor and the magnetic permeability
tensor on the density of the chemical substance A.

Using the relations (31) and (115), the time derivative
of the internal energy density (114) is recast as,

u̇ = T ṡ +
∑

A

μAṅA + E · Ḋ + H · Ḃ. (120)

The first law or energy balance is given by the continu-
ity equation for the internal energy (66). Using the con-
tinuity equations for the entropy (7) and the chemical
substance A (9), Maxwell-Ampère’s law (14), Faraday’s
law (19) and the internal energy source density (68), the
continuity equation for the internal energy (66) is re-
cast as,

T
(
ρs − (∇ · v) s − ∇ · js

)

+
∑

A

μA

(
ρA − (∇ · v) nA − ∇ · jA

)

+ E ·
(
∇ × H− (∇ · v)D + (D · ∇)v − jq

)

+ H ·
(
− ∇ × E− (∇ · v)B + (B · ∇)v

)

+ (∇ · v) u + ∇ · ju = σ · (∇ � v) . (121)

Moreover, using the vectorial identities,

T (∇ · js) = ∇ · (T js) − js · ∇T,

∑

A

μA (∇ · jA) = ∇ ·
(
∑

A

μAjA

)
−
∑

A

jA · ∇μA,

H ·
(
∇ × E

)
− E ·

(
∇ × H

)
= ∇ ·

(
E× H

)
,

the internal energy balance equation (121) becomes,
(

u − Ts −
∑

A

μAnA − E · D− H ·B
)

(∇ · v)

+ ∇ ·
(

ju − T js −
∑

A

μAjA − E × H

)

+ Tρs +
∑

A

μAρA − σ · (∇ � v)

+ js · ∇T +
∑

A

jA · ∇μA − jq · E

+
(
E (D · ∇) + H (B · ∇)

)
· v = 0. (122)

http://www.epj.org


Page 12 of 20 Eur. Phys. J. B (2012) 85: 412

It is useful to introduce the chemical affinity Aa of a chem-
ical reaction a defined as,

Aa = −
∑

A

νaAμA. (123)

Expressions (8) and (123) imply that the sum over the
chemical substances A can be replaced by a sum over the
chemical reactions a according to,

∑

A

μAρA = −
∑

a

ωaAa. (124)

Moreover, using the definition (55) of the electromagnetic
stress tensor σem and the splitting (39), the vectorial
identity,

(
E (D · ∇) + H (B · ∇)

)
· v =

(D � E + B� H) · (∇ � v),

is recast as,
(
E (D · ∇) + H (B · ∇)

)
· v =

(
σ − σmat

) · (∇ � v)

+
1
2

(
E·D+H·B

)
(∇·v) .

(125)

Using the identities (109) and (124), the internal energy
balance equation (122) becomes,
(
u − Ts + P −

∑

A

μAnA − 1
2

(E ·D + H ·B)
)

(∇ · v)

+ ∇ ·
(

ju − T js −
∑

A

μAjA − E× H

)

+ Tρs −
∑

a

ωaAa − σ̃mat · (∇ � v)

+ js · ∇T +
∑

A

jA · ∇μA − jq ·E = 0. (126)

Using expressions (105) and (112) for the diffusive electric
current density vector and the matter momentum stress
tensor, we obtain the identities,

jq · E =
∑

A

qAjA ·E,

σ̃mat · (∇ � v) =
∑

A

jA ·
(
− mAvA∇v

)
. (127)

Using the identities (127), the internal energy balance
equation (126) becomes,
(

u − Ts + P −
∑

A

μAnA − 1
2

(E ·D + H ·B)

)
(∇ · v)

+ ∇ ·
(

ju − T js −
∑

A

μAjA − E × H

)

+ Tρs −
∑

a

ωaAa − js · (−∇T )

−
∑

A

jA ·
(
− ∇μA + qAE− mAvA∇v

)
= 0. (128)

The internal energy balance equation (128) has to hold
locally for all flows. This implies that the terms in the
first brackets have to vanish, which yields the thermostatic
equilibrium equation for the matter, i.e.

u = Ts − P +
∑

A

μAnA +
1
2

(
E ·D + H ·B

)
. (129)

Similarly, the internal energy balance equation (128) has
to hold locally for all currents. This implies that the terms
in the second brackets have to vanish, which yields the
reversible thermodynamic evolution equation for the mat-
ter, i.e.

ju = T js +
∑

A

μAjA + E× H. (130)

The mechanical work current density jW , the heat current
density jQ, the chemical energy current density jCH and
the electromagnetic energy current density jEM satisfy,

je = jW + ju = jW + jQ + jCH + jEM, (131)

and are respectively found to be,

jW = −v · σ = v · jp,

jQ = T js,

jCH =
∑

A

μAjA,

jEM = E× H. (132)

Finally, the thermostatic equilibrium equation (129) and
the reversible thermodynamic evolution equation (130)
imply that the internal energy balance equation (128)
yields the irreversible thermodynamic evolution equation
for the matter, i.e.

ρs =
1
T

{
∑

a

ωaAa + js · (−∇T )

+
∑

A

jA ·
(
− ∇μA + qAE− mAvA∇v

)}
. (133)

4 Thermodynamical phenomenology

4.1 Linear phenomenological relations and Onsager
matrix elements

In order to deduce the linear phenomenological relations,
we follow the approach developed by Onsager [14,15]. Ex-
pression (133) can be formally split into a scalar and a
vectorial part, which are irreducible representations of the
Euclidean group and have different symmetries. Thus, the
entropy source density (133) is expressed formally as,

ρs =
1
T

{
∑

a

ωaAa +
∑

α

jα · Fα

}
, (134)
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where ωa is a scalar chemical reaction rate density, Aa is
a scalar chemical affinity, jα is a vectorial current density,
Fα is a vectorial force.

In relation (134), there are two types of vectorial cur-
rent densities and forces (i.e. α ∈ {s, A}). First, there is a
thermal current density js and a dissipative thermal force
Fs = −∇T . Second, there are current densities jA for the
chemical substances A and dissipative forces FA acting
on these substances. The expression for the forces FA is
given by the dissipation relation (133), i.e.

FA = −∇μA + qAE− mAvA∇v, (135)

where the first term on the RHS is the chemical force,
the second term is the Coulomb force and the last is the
viscous force.

The local expression of the second law requires the
entropy source density to be locally positive definite (6).
Extending Onsager’s approach, in the neighbourhood of a
local thermodynamic state where the scalar affinities Aa

and the vectorial forces Fα are sufficiently small, the en-
tropy source density can be expressed formally as the sum
of quadratic forms of Aa and Fα, which ensures that it is
positive definite, i.e.

ρs =
1
T

(∑

a,b

LabAaAb+
∑

α,β

Lαβ ·(Fα � Fβ)
)

� 0, (136)

where the phenomenological components are the Onsager
matrix elements, which are of two different types:
scalars Lαβ and rank-2 tensors Lαβ. This is simply due to
the fact that the entropy source density ρs is a quadratic
form of the generalised force density fields (136). The sym-
metries of the Onsager matrices are given by the Onsager
reciprocity relations [21,22], i.e.

Lab (s, nA,D,B) = Lab (s, nA,D,−B),
Lαβ (s, nA,D,B) = Lαβ (s, nA,D,−B), (137)

which cannot be derived within a thermodynamic ap-
proach but require a statistical treatment since they are
a consequence of the time reversibility of the microscopic
dynamics [14]. The inequality (136) has to hold for each
part, in accordance with the Curie symmetry principle [23]
that forbids couplings between fields of different nature,
which implies that each quadratic form has to be positive
definite.

Thus, the chemical reaction rate densities ωa are re-
lated to the chemical affinities Ab through scalar linear
phenomenological relations, i.e.

ωa =
∑

b

LabAb, (138)

where the Onsager matrix has to satisfy,

1
T

{Lab} � 0, (139)

in order for the scalar quadratic form in the relation (136)
to be positive definite. The scalar linear phenomenologi-
cal relations (138) account for the dissipation due to the
chemistry.

Similarly, the vectorial current densities jα are related
to the vectorial forces Fβ through vectorial linear phe-
nomenological relations, i.e.

jα =
∑

β

Lαβ ·Fβ , (140)

where the Onsager matrix has to satisfy,

1
T

{Lαβ} � 0, (141)

in order for the vectorial quadratic form in the rela-
tion (136) to be positive definite. The vectorial linear phe-
nomenological relations (140) are expressed explicitly in
terms of the currents densities js and jA and forces densi-
ties Fs and FA as,

⎧
⎪⎪⎨

⎪⎪⎩

js = Lss · (−∇T ) +
∑

B

LsB ·FB

jA = LAs · (−∇T ) +
∑

B

LAB ·FB,
(142)

where the Onsager matrix (141) is positive definite, i.e.

1
T

⎛

⎝
Lss LsB

LAs LAB

⎞

⎠ � 0. (143)

The vectorial linear phenomenological relations (142) ac-
count for the dissipation due to the transport.

We now discuss the physical meaning of the linear
phenomenological relations. We analyse the linear phe-
nomenological scalar and vectorial relations in turn. It
is worth emphasising that although the scalar (138) and
the vectorial (142) linear phenomenological relations are
structurally independent, they are coupled through the in-
tensive chemical fields Aa and μA as shown explicitly in
relation (123).

4.2 Scalar relations: chemistry

Chemical couplings

We consider the thermodynamics of the local system
dΣ for a multicomponent fluid. The scalar linear rela-
tion (138) describes the chemical coupling [24] between
the reactions a and b, i.e.

ωa (s, nA,D,B) =
∑

b

Cab (s, nA,D,B)Ab (s, nA,D,B),

(144)
where Cab (s, nA,D,B) = Lab (s, nA,D,B) are the chem-
ical coupling coefficients, which are non-zero only if the
reactions a and b occur in series or in parallel.
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4.3 Vectorial relations: transport

4.3.1 Viscosity

We consider the thermodynamics of the local system dΣ
for a single chemical substance A, consisting of electri-
cally neutral elementary units, i.e. qA = 0, and that are
homogeneously diluted, i.e. ∇μA = 0, in an electrically
neutral and non-reactive viscous liquid solution at a uni-
form temperature, i.e. ∇T = 0. For a single chemical
substance v = vA. Thus, using relation (135), the linear
phenomenological relation (142) reduces to,

mAvA∇vA = −η (s, nA,D,B) ·GjA (s, nA,D,B), (145)

where
η (s, nA,D,B) ≡ (GLAA)−1 , (146)

is the viscosity tensor of the liquid solution and G is a
geometric factor. The equation (145) is a tensorial gener-
alisation of Stokes’ law [25]. The symmetric viscosity ten-
sor η can be split irreducibly into a bulk viscosity scalar η
and a shear viscosity trace-free tensor η̃, i.e.

η = η� + η̃. (147)

The bulk viscosity scalar η describes viscous friction where
the viscous force mAvA∇vA is collinear to the matter
flow jA. The shear viscosity trace-free tensor η̃ describes
viscous friction where the viscous force mAvA∇vA is or-
thogonal to the matter flow jA.

In the rest of this section on transport, we consider
only the case where there is no viscosity and no viscous
force, i.e. mAvA∇vA = 0.

4.3.2 Heat transport

We consider the thermodynamics of the local system dΣ
consisting of chemical substances A at rest in the local
material frame of the fluid, i.e.

jA (s, nA,D,B) = 0 ∀A.

In that case, the definition (132) of the heat current
density jQ (s, nA,D,B) implies that the product of the
temperature T (s, nA,D,B) and the vectorial linear rela-
tions (142) describes the heat transport, i.e.

jQ (s, nA,D,B) = −κ (s, nA,D,B) ·∇T (s, nA,D,B),
(148)

where κ (s, nA,D,B) is the heat conductivity rank-2 ten-
sor. The diagonal terms of the tensorial relation (148) rep-
resent Fourier’s law [26], which can be inverted, i.e.

∇T (s, nA,D,B) = −κ−1 (s, nA,D,B) · jQ (s, nA,D,B) .
(149)

The off-diagonal terms describe other phenomena. For in-
stance, we consider a thin layer perpendicular to the z axis
with a heat current jQ flowing along the x axis. The tenso-
rial relation (149) predicts the existence of a temperature
gradient ∇T in the direction of the y axis. In presence of

a magnetic induction field B applied along the z axis, this
phenomenon is known as the Righi-Leduc effect [27,28].

In the particular case where the temperature of the
matter fields is uniform, i.e. ∇T (s, nA,0,0) = 0, expres-
sion (117) for the temperature in terms of the electromag-
netic fields, implies that Fourier’s law (148) reduces to,

jQ (s, nA,D,B) = κ (s, nA,D,B)

× ∇
(

∂ε

∂s
· (E� E) +

∂μ

∂s
· (H� H)

)
,

(150)

which describes the heat flow of polarised and magne-
tised electrically neutral substances in the presence of non-
uniform electromagnetic fields.

4.3.3 Matter transport

We consider the thermodynamics of the local system dΣ
consisting of electrically neutral chemical substances B
with a uniform temperature T (s, nA,D,B), i.e.

qB (nB) = 0 ∀B and ∇T (s, nA,D,B) = 0.

In that case, the vectorial linear relations (142) represent
Fick’s law [29] describing the chemical transport of the
chemical substance A with respect to the chemical sub-
stances B, i.e.

jA (s, nA,D,B) =

−
∑

B

FAB (s, nA,D,B) · ∇μB (s, nA,D,B), (151)

where FAB (s, nA,D,B) is the chemical transport rank-2
tensor.

In the particular case where the chemical potential of
the matter fields is uniform, i.e. ∇μA (s, nA,0,0) = 0,
expression (119) for the chemical potential in terms of
the electromagnetic fields, implies that Fick’s law (151)
reduces to,

jA (s, nA,D,B) =
∑

B

FAB (s, nA,D,B)

× ∇
(

∂ε

∂nB
·(E� E)+

∂μ

∂nB
·(H� H)

)
,

(152)

which describes optical tweezers [30], i.e. the flow of po-
larised and magnetised electrically neutral substances in
the presence of non-uniform electromagnetic fields.

4.3.4 Electric transport

We consider the thermodynamics of the local system dΣ
with a uniform temperature T (s, nA,D,B) and uniform
chemical potentials μB (s, nA,D,B), i.e.

∇T (s, nA,D,B) = 0 ∇μB (s, nA,D,B) = 0 ∀B
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In that case, the definition (105) of the diffusive electric
current density jq (s, nA,D,B) implies that the product
of the electric charge qA (nA) per unit of chemical sub-
stance A and the vectorial linear relations (142) describe
the electric transport, i.e.

jq (s, nA,D,B) = σq (s, nA,D,B) ·E (s, nA,D), (153)

where σq (s, nA,D,B) is the electric conductivity rank-2
tensor. The diagonal terms of the tensorial relation (153)
represent Ohm’s law [31], which can be inverted, i.e.

E (s, nA,D) = ρq (s, nA,D,B) · jq (s, nA,D,B), (154)

where ρq (s, nA,D,B) is the electric resistivity tensor de-
fined as the inverse of the electric conductivity tensor, i.e.

ρq (s, nA,D,B) ≡ σ−1
q (s, nA,D,B) .

The electric resistivity tensor depends on the magnetic
induction field B and thus accounts for magnetoresis-
tance [32].

The off-diagonal terms describe other phenomena. For
instance, we consider a thin layer perpendicular to the
z axis with an electric current jq flowing along the x axis.
The tensorial relation (149) predicts the existence of an
electric field E in the direction of the y axis. In presence
of a magnetic induction field B applied along the z axis,
this phenomenon is known as the Hall effect [33].

4.3.5 Thermochemical transport

We consider the thermodynamics of the local system dΣ
consisting of electrically neutral chemical substances A
and B at rest in the local material frame of the fluid, i.e.

qA,B (nA,B) = 0 and jA,B (s, nA,B,D,B) = 0.

In that case, the definition (132) of the heat current
density jQ (s, nA,D,B) implies that the product of the
temperature T (s, nA,D,B) and the vectorial linear rela-
tions (142) represent the Dufour effect [34] describing the
thermochemical transport generated by a chemical gradi-
ent ∇μB (s, nA,D,B), i.e.

jQ (s, nA,D,B) = −
∑

B

DB (s, nA,D,B)

× ∇μB (s, nA,D,B), (155)

where DB (s, nA,D,B) is the thermochemical trans-
port rank-2 tensor of the electrically neutral chem-
ical substance B. In the particular case where the
chemical potential of the matter fields is uniform, i.e.
∇μA (s, nA,0,0) = 0, the expression (119) for the chemi-
cal potential in terms of the electromagnetic fields, implies
that the Dufour effect (155) reduces to,

jQ (s, nA,D,B) =
∑

B

DB (s, nA,D,B)

× ∇
(

∂ε

∂nB
·(E� E)+

∂μ

∂nB
·(H� H)

)
,

(156)

which describes the heat flow of polarised and magne-
tised electrically neutral substances in the presence of non-
uniform electromagnetic fields.

Moreover, when the system is at equilibrium, the vec-
torial linear relations (142) represent the Soret effect [35]
describing the difference of chemical potential between the
substances A and B generated by a temperature gradient
∇T (s, nA,B,D,B), i.e.

∇(Δμ)(s, nA,B,D,B) = −S (s, nA,B,D,B)
× ∇T (s, nA,B,D,B), (157)

where Δμ (s, nA,B,D,B) = μA−μB

2 is the difference of
chemical potential between the substances A and B and
S (s, nA,B,D,B) is the Soret rank-2 tensor. In the par-
ticular case where the temperature of the matter fields is
uniform, i.e. ∇T (s, nA,0,0) = 0, the expressions (117)
and (119) respectively for the temperature and chemical
potential in terms of the electromagnetic fields, imply that
the Soret effect (157) reduces to,

∇(Δμ)(s, nA,B,D,B) = S (s, nA,B,D,B)

×∇
(

∂ε

∂s
·(E�E)+

∂μ

∂s
·(H�H)

)
,

(158)

which describes the difference of chemical potential in the
presence of non-uniform electromagnetic fields.

4.3.6 Thermoelectric transport

We consider the thermodynamics of the local system dΣ
with uniform chemical potentials μB (s, nA,D,B) in the
absence of chemical current densities jA (s, nA,D,B), i.e.

∇μB (s, nA,D,B) = 0; jA (s, nA,D,B) = 0 ∀A, B.

In that case, the definition (105) of the diffusive electric
current density jq (s, nA,D,B) implies that the product
of the electric charge qA (nA) per unit of chemical sub-
stance A and the vectorial linear relations (142) represent
the Seebeck effect [36] describing the electric field gener-
ated by a temperature gradient ∇T , i.e.

E (s, nA,D) = −ε (s, nA,D,B) ·∇T (s, nA,D,B), (159)

where ε (s, nA,D,B) is the Seebeck rank-2 tensor.
The off-diagonal terms describe other phenomena. For

instance, we consider a thin layer perpendicular to the
z axis with a temperature gradient ∇T applied along the
x axis. The tensorial relation (159) predicts the existence
of an electric field E in the direction of the y axis. In
presence of a magnetic induction field B applied along the
z axis, this phenomenon is known as the Nernst effect [37].

In the particular case where the temperature of the
matter fields is uniform, i.e. ∇T (s, nA,0,0) = 0, ex-
pression (117) for the temperature in terms of the elec-
tromagnetic fields, implies that the Seebeck effect (159)
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reduces to,

E (s, nA,D) = ε (s, nA,D,B)

× ∇
(

∂ε

∂s
· (E� E) +

∂μ

∂s
· (H� H)

)
,

(160)

which describes the electric field induced in the presence
of non-uniform electromagnetic fields.

5 Conclusion

We determined the local thermodynamics of a classical
continuous medium consisting of electrically charged and
reactive chemical substances in the presence of electro-
magnetic fields. In order to derive the local thermostatic
equilibrium equation and the local reversible and irre-
versible thermodynamic evolution equations, we took into
account the first and second laws of thermodynamics de-
scribing, respectively, the local evolution of the energy and
the entropy, the chemical reactions describing the local
evolution of the chemical substances, the second law of
Newton in translation and in rotation describing, respec-
tively, the local evolution of the momentum and the an-
gular momentum, and Maxwell’s equations describing the
local evolution of the electromagnetic fields.

For a local thermodynamic equilibrium, we obtained
explicit expressions for the temperature and the chemical
potentials with additional terms arising from the presence
of the electromagnetic fields and from the response of the
matter to such fields. The analysis of the irreversible ther-
modynamics yields novel dissipative transport equations
accounting in particular for the heat flow and the matter
flows due to inhomogeneous electromagnetic fields and di-
electric and magnetic matter responses.

The authors would like to honour the memory of E.C.G.
Stückelberg von Breidenbach who, among other great achieve-
ments, developed a genuine dynamic theory of thermodynam-
ics. They would also like to thank Klaus Maschke for insightful
discussions.

Appendix A: Thermodynamic axiomatic

A.1 First Law

For every physical system Σ, there exists an extensive,
scalar state function E, called energy such that if the sys-
tem is isolated, the energy is conserved, i.e. E is a constant
observable. If the system is not isolated, then

dE (t)
dt

= P ext(t), (A.1)

where P ext(t) is the power corresponding to the energy
exchanged per unit time with the exterior. The system
is called “closed” if there is no exchange of matter, it is
said “adiabatically closed” if additionally there is no heat
exchange, and it is called “isolated” if there is no energy
exchange at all, i.e. P ext(t) = 0.

A.2 Second Law

For every system Σ, there exists an extensive, scalar state
variable S, called entropy, which obeys the following two
conditions [5]:

– evolution condition:
if the system is adiabatically closed, the entropy S (t)
is a monotonous increasing function of time, i.e.

dS (t)
dt

= Πs (t) � 0, (A.2)

where Πs (t) is the entropy production rate accounting
for the irreversibility of the system;

– equilibrium condition:
if the system is isolated, the entropy tends towards a
finite local maximum, compatible with the constraints
as time tends to infinity.

A.3 Continuity equation for an extensive state function

A thermodynamic system Σ is defined by a set of physical
properties. The time evolution of the system is described
by a set of time-dependent states variables accounting
for these properties. The second law of thermodynam-
ics requires the existence of a state variable entropy S (t)
for every system. Thus, the state of a system is de-
fined by the state variable entropy S (t) and a finite
set of n time-dependent state variables denoted X1 (t),
X2 (t) , . . . , Xn (t). The state of the global thermody-
namic system Σ, compatible with the constraints, is de-
fined formally by the following set of state variables, i.e.
{S (t) , X1 (t) , X2 (t) , . . . , Xn (t)}.

The physical properties F (t) characterising the sys-
tem dynamics are called “state functions”, since they are
functions of state variables and time t, i.e.

F (t) ≡ F
(
S (t) , X1 (t) , X2 (t) , . . . , Xn (t) , t

)
. (A.3)

Note that the state variables can be treated as trivial state
functions F (t) that are independent of the other state
variables.

A thermodynamic system of finite volume V is char-
acterised by a large number of elementary constituents,
distributed within a none-empty enclosure ∂Σ of sur-
face ∂V , which is a smooth manifold. Although a macro-
scopic medium is a discrete system consisting of a finite
number of particles, it can be idealised as a continuous sys-
tem on a sufficiently large scale. On a scale between the
microscopic and macroscopic scales, the system is locally
sufficiently large from a microscopic perspective to be in-
sensitive to quantum fluctuations and thus to be treated
classically, but it is sufficiently small from a macroscopic
perspective to be considered as infinitesimal. The neigh-
bourhood of every point of the system belongs to a local
thermodynamic system dΣ, which is considered as homo-
geneous and continuous on a microscopic scale and point-
like on a macroscopic scale.
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The dynamics of a local system dΣ can be described
either in a fixed spatial frame, which is a Eulerian frame,
or in a moving local material frame, which is a Lagrangian
frame. The Eulerian frame shall be referred to simply
as the spatial frame and the local Lagrangian frame as
the local material frame. The space and time coordinates,
which parametrise a physical event, are (x′, t′) in the spa-
tial frame and (x, t) in the local material frame. The spa-
tial points x are fixed with respect to the spatial frame,
whereas the material points x′ are moving with the mat-
ter. In a non-relativistic framework, time is an invariant
parameter, i.e. t = t′. However, it is necessary to distin-
guish formally the time parameter in the two frames, since
the partial time derivatives are not equal, i.e. ∂t 	= ∂t′ , as
shown in Appendix A.4.

In order to determine the dynamics in the system Σ,
we start by describing the matter in the spatial frame.
In the spatial frame, the thermodynamic state of the lo-
cal thermodynamic system dΣ is characterised by the
entropy density field s′ (x′, t′) and a set of n fields
x′

1 (x′, t′), x′
2 (x′, t′), . . ., x′

n (x′, t′). The local thermo-
dynamic state compatible with the constraints is de-
fined formally by the following set of state fields, i.e.
{s′ (x′, t′) , x′

1 (x′, t′) , . . . , x′
n (x′, t′)}.

The physical properties f ′(x′, t′) characterising the lo-
cal dynamics of the system are called “state function den-
sities”. These properties are functions of the state fields,
position x′ and time t′, i.e.

f ′(x′, t′) ≡ f ′
(
s′ (x′, t′) , x′

1 (x′, t′) , . . . , x′
n (x′, t′) ,x′, t′

)
.

(A.4)
Note that the state fields can be treated as trivial state
functions densities f ′(x′, t′) that are independent of the
other state fields.

An arbitrary extensive scalar state function F (t′) is re-
lated to the corresponding state function density f ′(x′, t′)
by an integral over the volume, i.e.

F (t′) =
∫

V

dV (x′, t′) f ′ (x′, t′) . (A.5)

In order to obtain the continuity equation for the exten-
sive scalar state function F (t′), we vary F (t′). The in-
finitesimal element δF (t′) is the sum of a bulk term and
a boundary term, i.e.

δF (t′) =
∫

V

dV (x′, t′) δf ′(x′, t′) +
∫

∂V

δdV (x′, t′) f ′(x′, t′),

(A.6)
where the first integrand represents the variation of the
local state function density field δf ′(x′, t′) and the sec-
ond integrand represents the variation of the local in-
finitesimal volume δdV (x′, t′). The latter is the inner prod-
uct of the contravariant displacement vector field δr(x′, t′)
and the infinitesimal covariant surface element vector field
dσ(x′, t′) according to,

δdV (x′, t′) = dσ(x′, t′) δr(x′, t′) . (A.7)

The time derivative of the extensive scalar state func-
tional dt′F (t′), the partial time derivative of the state

function density field ∂tf (x′, t′) and the matter velocity
field v(x′, t′) are respectively defined as,

dt′F (t′) ≡ dF (t′)
dt

= lim
δt′→0

δF (t′)
δt′

,

∂t′f
′(x′, t′) ≡ ∂f ′(x′, t′)

∂t′
= lim

δt′→0

δf ′(x′, t′)
δt′

,

v(x′, t′) ≡ lim
δt′→0

δr(x′, t′)
δt

. (A.8)

Thus, the time derivative of the extensive scalar state
function dt′F (t′) is found to be,

dt′F (t′) =
∫

V

dV (x′, t′) ∂t′f
′ (x′, t′)

+
∫

∂V

dσ (x′, t′) · v (x′, t′) f ′ (x′, t′) . (A.9)

Using Gauss’ theorem, this time derivative (A.9) can be
recast as,

dt′F (t′) =
∫

V

dV (x′, t′)
[
∂t′f

′(x′, t′)+∇′·
(
f ′(x′, t′)v(x′, t′)

)]
.

(A.10)
The integral expression (A.10) for the time derivative of
the state function was derived purely on a mathematical
level. We now describe the two physical causes of the rate
of change of the scalar state function F (t′) that accounts
for a physical property of the system. The first is due
to the flux of F (t′) into or out of the system. This flux is
generated by the contravariant current density vector field
j′f ′(x′, t′). The second is due to the production of F (t′)
within the system. This production is generated by the
source density field ρ′f ′(x′, t′). By convention, the current
density field j′f ′(x′, t′) is positive definite for an influx and
the covariant infinitesimal surface element dσ is pointing
out. Thus, on a physical level, the time derivative of the
scalar state function F (t′) is given by,

dt′F (t′) =
∫

V

dV (x′, t′) ρ′f ′ (x, t)−
∫

∂V

dσ(x′, t′) · j′f ′(x′, t′),

(A.11)
where the negative sign in front of the second integral is
due to the fact that the covariant vector dσ(x′, t′) and the
contravariant vector j′f ′(x′, t′) point in opposite directions.
Using Gauss’ theorem, this time derivative (A.11) can be
recast as,

dt′F (t′) =
∫

V

dV (x′, t′)
[
ρ′f ′(x′, t′)−∇′·j′f ′(x′, t′)

]
. (A.12)

By identifying the mathematical (A.10) and physi-
cal (A.12) expressions for the time derivative of the state
function F (t′), the integrands satisfy locally the continuity
equation for F (t′) in the spatial frame given by,

∂t′f
′(x′, t′)+∇′

(
f ′(x′, t′)v(x′, t′)+j′f ′(x′, t′)

)
= ρ′f ′(x′, t′),

(A.13)
where f ′(x′, t′)v(x′, t′) is the convective current density
field and j′f ′(x′, t′) is the diffusive current density field.

http://www.epj.org


Page 18 of 20 Eur. Phys. J. B (2012) 85: 412

The convective current density field is defined as the cur-
rent density due to the motion of the matter with respect
to the spatial frame. The diffusive current density field is
defined as the current density in the local material frame.

At this point, we seek to express the continuity equa-
tion (A.13) in the local material frame. The extensive
physical property F (t) of global system is related to the
corresponding physical property f (x, t) of the local sys-
tem in the material frame by

F (t) =
∫

V

dV (x, t) f (x, t) . (A.14)

The time derivative dtF (t) of the extensive physical prop-
erty of the global system in the material frame is related
to the source density field ρf (x, t) and the current density
field jf (x, t) by,

dtF (t) =
∫

V

dV (x, t)
[
ρf (x, t) − ∇ · jf (x, t)

]
. (A.15)

In a non-relativistic framework, the time t′ in the spatial
frame coincides with the time t in the local material frame,
i.e. t = t′, which implies that,

F (t) = F (t′) ,

dtF (t) = dt′F (t′) , (A.16)

and by comparison between the expressions (A.5)
and (A.14) and the expressions (A.12) and (A.15), respec-
tively, it implies in turn that,

f (x, t) = f ′(x′, t′) ,

ρf (x, t) = ρ′f ′(x′, t′) ,

jf (x, t) = j′f ′(x′, t′) . (A.17)

The time derivative in the local material frame is defi-
ned as,

ḟ (x, t) ≡ ∂tf (x, t) . (A.18)
As shown in Appendix A.4, for every physical event
parametrised by the coordinates (x′, t′) in the spatial
frame, the spatial and temporal differential operators in
the local material frame are related to the corresponding
operators in the spatial frame through a Galilean trans-
formation of velocity v (x′, t′) associated to the event, i.e.

∇ = ∇′,

∂t = ∂t′ + v (x′, t′) · ∇′. (A.19)

The first relation (A.17) and the transformation
law (A.19) for the partial time differential operator un-
der the action of a Galilean transformation between the
spatial frame and the local material frame imply that,

ḟ (x, t) ≡ ∂t′f
′(x′, t′) + v (x′, t′) · ∇′f ′(x′, t′) . (A.20)

Using the relations (A.17), (A.19) and (A.20), the vecto-
rial identities,

∇′ ·
(
f ′(x′, t′)v (x′, t′)

)
= v (x′, t′) · ∇′f ′(x′, t′)

+ (∇′ · v (x′, t′)) f ′(x′, t′),

(A.21)

and v (x′, t′) = v (x′, t), the continuity equation (A.13)
for F (t) expressed in the spatial frame is recast in the
local material frame according to,

ḟ (x, t) + (∇ · v (x′, t)) f (x, t) + ∇ · jf (x, t) = ρf (x, t),
(A.22)

where the velocity field v (x′, t) is expressed in terms of
the spatial coordinate x′ of the spatial frame since it rep-
resents the relative velocity of the local material frame
with respect to the spatial frame. Thus, the velocity field
vanishes in the local material field, i.e. v (x, t) = 0.

In our analysis, we derived the continuity equa-
tion (A.22) for a scalar state function F (t). The gener-
alisation to a tensor state function of arbitrary rank is
straightforward. However, we shall limit our discussion to
a vectorial state function F (t). The corresponding conti-
nuity equation in the local material frame is given by,

ḟ (x, t) + (∇ · v (x′, t)) f (x, t) + ∇ · jf (x, t) = ρf (x, t),
(A.23)

where f (x, t) is the state function density vector field,
jf (x, t) is the diffusive current density tensor field and
ρf (x, t) is the source density vector field. Note that the
vectorial divergence of the diffusive current density tensor
field ∇ · jf (x, t) is written explicitly in components as,

∇ · jf (x, t)i = ∂jj
ji
f (x, t) ,

using the Einstein implicit summation convention.

A.4 Galilean transformation relations

The coordinate systems of two inertial frames with a
non-relativistic relative velocity are related by a Galilean
transformation. The matter is non-relativistic and the spa-
tial frame is an inertial frame with space-time coordinates
(x′, t′). For every physical event (x, t) in the local material
frame, there exists an inertial frame with space-time coor-
dinates (x, t) that coincides with the local material frame.
The space-time coordinates of the two inertial frames are
related by the Galilean transformation,

x = x′ − vt′,

t = t′, (A.24)

where v is the non-relativistic relative velocity between
the coinciding inertial frame and the spatial frame. Al-
though we restrict our dynamical analysis to the non-
relativistic Galilean group, it is useful to introduce the
four-vector notation in order to determine the frame trans-
formation relations for vectors and tensors. In particular,
the four-vector position in the spatial frame is denoted
x′ = (x′0,x′) where the first coordinate, x′0 = ct′, is the
product of the time coordinate t′ with the dynamical con-
stant c representing the speed of light in the vacuum. In
the spatial frame, an arbitrary contravariant four-vector
is denoted A′ = (A′0,A′) and an arbitrary covariant four-
vector B′ = (B′

0,B
′). Under a general coordinate transfor-

mation, the components of a contravariant four-vector A′μ
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and a covariant four-vector B′
μ transform respectively ac-

cording to [38],

Aμ =
∂xμ

∂x′ν A′ν ,

Bμ =
∂x′ν

∂xμ
B′

ν ,

where we used the summation convention of Einstein for
the indices μ, ν = {0, . . . , 3}. Thus, in the particular case
of a Galilean transformation (A.24), a contravariant vec-
tor A′ and the associated scalar A′0 transform as,

A = A′ − 1
c
A′0v,

A0 = A′0, (A.25)

a covariant vector B′ and the associated scalar B′
0 trans-

form as,

B = B′,

B0 = B′
0 +

1
c
v · B′. (A.26)

Note that the terms A′0v/c and v·B′/c are not necessarily
negligible in the Galilean limit, i.e. |v|/c → 0, since A′0

and B′ can be proportional to c.
The gradient ∇′ is a covariant vector, and the time

component of the four-gradient covariant vector is the
differential operator c∂t′ . From the Galilean transforma-
tion relation for a covariant vector (A.26), we deduce the
Galilean transformation relation for this covariant vector
according to,

∇ = ∇′,

∂t = ∂t′ + v · ∇′, (A.27)

which explicitly shows that the gradient ∇′ is frame-
independent and the time derivative is frame-dependent.
From the first transformation in (A.27), it follows that the
divergence and curl operators are also frame-independent.

It is worth mentioning that since Galilean frame trans-
formations preserve lengths, volumes are Galilean invari-
ants. Thus, any contravariant vector density a or any
covariant vector density b transforms under a Galilean
transformation respectively like the corresponding con-
travariant vector A or covariant vector B.

The electric charge is a Galilean invariant, the elec-
tric charge density field q is a Galilean frame-independent
field, i.e. q = q′. The electric current density jq is a
contravariant vector, which transforms under a Galilean
transformation of velocity v as (A.25),

jq = j′q − q′v, (A.28)

where the time component of the electric current den-
sity contravariant four-vector is the charge density field,
j′q

0 = cq′.
In order to determine the Galilean frame transforma-

tions for the electromagnetic fields, we recast the electro-
magnetic fields D′, B′, E′ and H′ in the spatial frame into

two antisymmetric tensors of rank-2. The first tensor is
the covariant electromagnetic tensor F ′. The non-diagonal
components of this antisymmetric tensor, denoted F ′

μν , are
related to the components of the covariant electric field E′

i
and to the components of the contravariant magnetic in-
duction field, B′k respectively by [39],

F ′
i0 =

1
c
E′

i,

F ′
ij = εijkB′k, (A.29)

where μ = {0, . . . , 3}, i = {1, 2, 3}. The second tensor is
the contravariant dielectromagnetic tensor D′. Similarly,
the non-diagonal components of this antisymmetric ten-
sor, denoted D′μν , are related to the components of the
contravariant electric displacement field D′i and to the
components of the covariant magnetic field H ′

k, respec-
tively by [39],

D′0i = cD′i,

D′ij = εijkH ′
k. (A.30)

Under a general coordinate transformation, the covariant
components of the electromagnetic tensor Fμν and the
contravariant components of the dielectromagnetic ten-
sor Dμν transform respectively as [38],

Fμν =
∂x′ρ

∂xμ

∂x′σ

∂xν
F ′

ρσ,

Dμν =
∂xμ

∂x′ρ
∂xν

∂x′σ D′ρσ
. (A.31)

Thus, in the particular case of a Galilean transforma-
tion (A.24) of constant velocity v, the fields D′, E′, B′,
H′, transform as,

D = D′,

B = B′,

E = E′ + v × B′,

H = H′ − v × D′. (A.32)

The Galilean transformations (A.32) show explicitly that
the fields D and B are frame-independent fields whereas
the fields E and H are frame-dependent. It is worth men-
tioning that these Galilean transformation laws differ from
the ones obtained by de Groot and Mazur [40]. It is
straightforward to show that their relations lead to a con-
tradiction since they imply that the Lorentz force is not
Galilean frame-independent, which is physically unaccept-
able in a non-relativistic framework.
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