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The Stepanov Differentiability Theorem in
Metric Measure Spaces

By Zoltdan M. Balogh, Kevin Rogovin, and Thomas Ziircher

ABSTRACT.  We extend Cheeger’s theorem on differentiability of Lipschitz functions in metric measure
spaces to the class of functions satisfying Stepanov’s condition. As a consequence, we obtain the analogue
of Calderon’s differentiability theorem of Sobolev functions in metric measure spaces satisfying a Poincaré
inequality.

1. Introduction

The classical result of Rademacher (see e.g., [7], 3.1.2) states that a Lipschitz function
f : R* — R is differentiable almost everywhere (in the sense of the Lebesgue measure). There
are at least two important generalizations of Rademacher’s theorem. The first one is due to
Stepanov (see e.g., [81, 3.1.8) and states that f : R* — R is differentiable at a.e. x € S(f),
where

S(f)=1xeR": limsupw < o0
y—>rx ly — x|

The second generalization is the theorem of Calderon (see e.g., [13], 6.17) which claims the
a.e. differentiability of Sobolev functions f € WLP(R™) for p > n. These results are major
cornerstones of analysis in Euclidean spaces with applications in geometric measure theory [8]
and differentiability of quasiconformal and quasiregular mappings [23].

Recent years have seen an intense ongoing research activity in extending classical results of
analysis in Euclidean spaces to the setting of general metric-measure spaces. We do not intend
to present a full list of achievements in this area, but we mention the works [12, 15, 21, 11, 9],
and [10] for results on Sobolev spaces; and works of [14] and [19] for results on quasiconformal
mappings in this general framework. We refer to the monograph of Heinonen [13] for an overview
of this development.

A major advance in this area of research was marked by the work of Cheeger [5] who extended
Rademacher’s differentiability theorem to the fairly large class of metric-measure spaces which
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satisfy a doubling condition and admit a Poincaré inequality. Cheeger’s work has been recently
extended to even more general spaces by Keith [16, 17].

The main result of the present article is a Cheeger—Stepanov type differentiability theorem
in metric-measure spaces. Roughly speaking, we prove that in the presence of a doubling condi-
tion the Cheeger—Rademacher differentiability theorem implies a Stepanov-type differentiability
result. As applications we obtain statements on differentiability of quasiconformal mappings and
Sobolev functions in various general metric space settings.

This article is organized as follows. In the second section we recall some terminology and
preliminary results. In Section 3 we state and prove the Cheeger—Stepanov differentiability theo-
rem. In Section 4 we present results on differentiability of Sobolev functions and quasiconformal
mappings as applications.

2. Preliminaries

Definition 2.1. Let (X, d) be a metric space. Forx € Xandr > Owelet B(x,r) = {y e
X | d(x,y) < r}be the open ball of radius r around x. We will write tTB(x, r) to mean B(x, tr).
A function f : (X, d) — (Y, p) between metric spaces is called K-Lipschitz ifforeachx, y € X,
p(f(x)f(¥)) < Kd(x,y). Welet LIP(f) be the infimum of such K. We let LIP(X) be the set
of real valued Lipschitz function on X where R is considered with the usual Euclidean metric.

Definition 2.2. A triple (X, d, u) is called a metric measure space if (X, d) is a metric space
and p is a Radon measure on X.

Following Cheeger [5], it is possible to define the notion of a differentiable structure in
metric-measure spaces as follows.

Definition 2.3 (Strong measurable differentiable structure). Let (X, d, ) be a metric
measure space, let C C LIP (X) be a vector space of functions, and let {(X,, ¢,)} be a countable
collection such that each set X, C X is measurable with positive measure, and such that each

o = ((p;,...,(pév(")) i X - RV®

is a function for some N («) € NU {0}, where (p(’;t € Cforevery 1 <i < N (a). (Here ¢, will be
viewed to be the empty function if N (a) = 0.) Then {(X,, ¢, )} is said to be a strong measurable
differentiable structure for (X, d, u) with respect to C if the following conditions are true.

(1) The sets X, are pairwise disjoint and

;L(X\LQJXQ,)=O.

(ii) There exists anumber N > 0 such that N (&) < N for every coordinate patch (X4, ¢q)-

(iii) Forevery f € C and coordinate patch (X, ¢,), there exists a unique (up to a set of zero
measure) measurable function d® f : X, — R¥@) such that for p-almost every x € Xq,

. If ) = fx)=d®f(x), 0a (¥) — @a (x))]
m
yy;; d(y,x)

=0 2.1

where (-, -) is the usual Euclidean inner-product on RV (@),
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For those x for which a d” f(x) exists so that the relation (2.1) holds, we say that f is differen-
tiable at x.

Note that the existence of a strong measurable differentiable structure on a space X with
C = LIP (X) contains in the definition itself a Rademacher-type differentiability in the sense
of (2.1). If X = R”, d is the standard Euclidean metric and u is the Lebesgue measure on X,
then the classical Rademacher’s theorem implies that X = R” and ¢1(x) = x defines a strong
measurable differentiable structure for LIP(R"). The problem arises to find sufficient conditions
to guarantee the existence of a strong measurable differentiable structure for LIP(X). The first
result in this direction was given by Cheeger in his seminal article, [S]. To formulate Cheeger’s
result we introduce the following concepts.

Definition 2.4. A measure p on a mefric measure space (X, d, i) is said to be doubling if 1
is non trivial and there exists a constant C > 0 such that

n(2B) < Cu(B),

whenever B is a ball in X.

It turns out that for doubling measures the Lebesgue differentiation theorem holds, see [13],
1.8. More precisely, let us recall that for a given set A € X, we call x € A a point of density of
Aif
u(ANB(x,r))
im ————————— =
r>0  pu(B(x,r))

When p is a doubling measure, p-a.e. x € A is a point of density of A. Moreover, for f € L?(u),
we call xg a Lebesgue point of f if

limsupr( ) |f(x) — f(xo)|Pdu(x) =0,
X0,T

r—0

where for any set S, the average of f over S is defined as

When y is doubling, if f € LP(u) then p-ae. x is a Lebesgue point of f.

In addition to the doubling condition the following general version of the Poincaré inequality
is a crucial property of a metric measure space.

Definition 2.5. Letp > 1. A metric measure space (X, d, y) is said to satisfy a (1, p)-Poincaré
inequality if there exist constants C > 0 and T > 1 so that

1/p
][ |u — ug|dp < C diam(B) (][ of du) 2.2)
B B

whenever u is a continuous function with upper gradient p and B is a ball in X. We say p is an
upper gradient of u if for each rectifiable curve y : [0, T] — X,

lu(y (1)) — uly (O)i S/pd?il

Y

where #, is the Hausdorff 1-measure in X.
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When a pair of function (u, p) satisfies Equation (2.2) for all balls B of X, we say that the
pair (u, p) satisfies a (1, p)-Poincaré inequality.

The class of metric-measure spaces that satisfy the doubling condition and a Poincaré in-
equality are the ones on which a considerable part of analysis from the Euclidean theory still
holds [14, 15, 19, 21]. According to Cheeger’s result [5], these conditions are also sufficient for
the existence of a strong measurable differentiable structure.

Theorem 2.6. Let (X, d, 1) be a metric measure space with y. doubling that satisfies a (1, p)
Poincaré inequality for some p > 1. Then (X, d, u) admits a strong measurable differentiable
structure for LIP(X).

Moreover, according to Keith [16] the condition on the Poincaré inequality can be substan-
tially relaxed. For his generalization, let us recall the definition of a chunky measure.

Definition 2.7. A measure u on a metric space (X, d) is called chunky if for u-ae. x € X,
there exists a positive decreasing sequence {r,} converging to zero so that for each ¢ > 0 there
exists N € N for which

uB(y,ern)) 1

nBx,rm)) N
whenever n > N and y € B(x, rp,).

Theorem 2.8. Let (X, d, i) be a locally compact metric measure space with X doubling and
the measure (1 is Radon and chunky. Let K > 1, and let C C LIP(X) be a vector space of
functions which satisfies the condition that for every f € C,

Lip f (x) < Klip f (x) , (23)

for almost every x € X. Then (X, d, u) admits a strong measurable differentiable structure with
respect to C. Moreover, if (X, d, i) satisfies a Poincaré inequality, then there exists a constant
K > 0 so that each f € LIP(X) satisfies (2.3) at p-a.e. x € X.

Here, the upper- and lower-scaled oscillations of f, Lip f and lip f are defined by Keith as

lip f (x) = liminf sup M i
>0 yeB(x,r) r

Lip f (x) = limsup sup If& =l ‘
r—0 yeB(x,r) r

Note that Lip f (xo) = limsup, _, %(;L)I and thus Stepanov’s theorem could be stated
as f : R" — R is differentiable for a.e. x € §( _)? }, where

S(f) = {x e R": Lip f(x) < o0} .

It is an important observation to note that the above quantities do not change under restriction
to positive measure sets. To be more precise, for a given subset K of X, define the scaled
oscillations of f restricted to K as

lf ) - f O
r b
lLf &) = fF O

r

lipg f (x) = liminf, ¢ SUPye K AB(x,r)

LipK f (x) = lim Sup, ¢ SupyeKﬂB(x,r)
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Proposition 2.9. Let (X, d, ) be a metric-measure space where . is a2 doubling measure. Let
K € X and f € LIP(X). Then for each point of density xp of K,

Lipg f(x0) = Lip f(x0)
lipg f(x0) = lip f(xo) .

In particular, for p-a.e. x € f~1(0), Lip f(x) = 0.

Proof.  Let us start by the following direct consequence of the doubling condition for the
measure i (see e.g., [15], 14.6) according to which there exist constants C > O and Q > 0
depending only on the doubling constant for w such that

o
w(B(x,r) o 1 (r) 2.4)

(B (x0,70)) — C \ro

whenever x € B (xg, rg) and r < rg.

The proof of the proposition is based on the following claim. If xo € K C X is a point of
density of K, then for each € > 0 there exists r > 0 so that for each x € B(xg, r), there exists
y € K sothatd(y, x) < ed(x, xqg).

To prove the claim we assume by contradiction that there exists a sequence of points (x,,) so
that x,, = xg and B (x,,, &d (x5, x0)) N K = @.

This implies

0—1i w (B (x0,7) N K€)
= lim
r—0  u(B(xp,r))
— lim w (B (xo, (1 4 &) d (xn, x0)) N K€)
n—>oo (B (xg, (1 + ¢&)d (xn, X0)))
im X B (xn, &d (xn, x0)) N K°)
~ n>o0 1 (B (x0, (1 + &) d (x5, X0)))
lim — (B (xn, &d (xn, x0))) '
n—o0 i (B (xg, (1 + &) d (xp, x0)))

Since u is a doubling measure we can use (2.4) to conclude that

Q
0 Z llm l ( Ed (xn,xo)
n—>00 C \ (1 + ) d (xn, X0)

1 £ 0
=— 0,
C ( 1+ e) g
which is a contradiction.

Let f € LIP(X), clearly Lip, f(x) < Lip f(x) and lipg f(x) < lip f(x) forall x € K.
Let xp € K be a point of density of K and € > 0. For each r > 0 let x, € B(xg, r) so that

IfGer) — fxo)| = —er + sup | f(x) — f(xo)l.

x€B(xp,r)

Then from the above claim, for r sufficiently small, there exists y, € K so that d(y,, x,) <
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ed(x,, xo). Hence,

sup |f () — f (x0)]

(1 +Or yegnBex,(+e)r)

> lim inf | f (x0) = f (r)l
r—0 (1+er

. 0) = FOe)| =1 f(xr) — f(yr)l
m inf

r—0 1+e)r

lipg f(x0) =lim i(r)lf
r—

>1i

> liminf !
1
T =0 (1+ée)r

(—Gr + sup [f(x)— fO) —er LIP(f))

y€B(xgp,r)

1 . €
=1 lip f(xo0) — m(l + LIP(f))

which when we let € — 0 implies that lipg f(xg) > lip f(x0). The same reasoning as above (by
replacing lim inf with lim sup) gives us that Lipg f(xo) > Lip f(xg).

The second statement of the proposition is obtained from the first one by setting K =
£~ (0) and observing that Lipg f(x) = O for all points x € K. d

Corollary 2.10. Let (X, d, 1) be a doubling metric measure space. Assume that there is a
strong measurable differentiable structure {(X, 9o )} supported by (X, d, u). Let f: X — R be
a Lipschitz function. Then at j1-a.e. point x where f (x) = 0 we haved” f (x) = 0.

Proof. Set K := f~1(0). By Proposition 2.9 we know that at y-a.e. point of K we have
Lip f (x) = 0. Take such a point and assume that x € X,. It follows that

n SO -F®N lim sup Lf ) = f O

y—ox d(y,x) T yox d(y,x)
y#EX y#x

=Lipf(x)=0.

By Definition 2.3 the differential is unique up to a set of measure zero and therefore it follows
that at p-a.e. point in K the differential of f is 0. O

Proposition 2.9 together with Keith’s theorem, Theorem 2.8, imply the following.

Theorem 2.11. Let (X, d, u) be a complete metric measure space with j. doubling on X so
that there exists a constant C > 0 so that for each f € LIP(X), and for p-a.e. x, Lip f(x) <
Clip f(x). Then for each closed subset A of X with u{A) > 0, the metric measure space
(A, d, u) admits a strong measurable differentiable structure with respect to LIP(A).

Proof. Fix a measurable differentiable structure on X. For each f € LIP(A), there exists
F e LIP(X) so that F|4 = f. For points of density xo of A we have by Proposition 2.9
that Lip f(xo) = Lip, F(xo) = Lip F(xo) and lip f(xp) = lip, F(xo) = lip F(xp). Since X
is complete and A is closed it follows that A is locally compact. One can adapt the proof of
Proposition 2.9 to show that p restricted to K is chunky. Hence, we can now apply Keith’s
theorem, Theorem 2.8, to the locally compact set A, which completes the proof.

Remark 2.12. Theorem 2.11 is useful even if (X, d, u) admits a Poincaré inequality. Indeed,
an arbitrary closed, positive measure subset of X need not admit a Poincaré inequality. As an
example one can consider the so-called Cantor-diamond set of Koskela and MacManus [19]. This
is a connected, compact 2-regular planar set which does not admit any Poincaré inequality. In
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contrast to this, the Lip-lip condition of Theorem 2.8 is inherited by all subsets of X when given
the measure .

3. Stepanov’s theorem in metric measure spaces

Theorem 3.1. Let (X,d, u) be a metric measure space. Let the measure y be a doubling
Borel measure. Assume that there is a strong measurable differentiable structure {(Xy, ¢u)}
for (X, d, u) with respect to LIP(X). Then a function f: X — R is u-a.e. differentiable in
S(f):={x | Lip f(x) < oo} with respect to the structure {(X,, ¢q)}.

Proof. The proof is based upon Maly’s proof of the Euclidean version of Stepanov’s theorem,
see [20]. By the definition of S(f), for each x € S(f), there is a neighborhood of x for which
f is bounded on. Since (X, d) is separable we can find a countable, dense subset D of X. We
consider the countable collection of balls {B j} which have their centers in D, rational radius and
the property that f is bounded on B;. The definition of S (f) guarantees that it is covered by
the union of all such balls. Next we define for every ball B; two functions «;: B; — R and
vj: B; — R (the upper and lower Lipschitz envelopes of f) as follows

uj(x) :=inf {u (x): u> fanduis j-Lipschitz on Bj} ,
vj(x) = sup{v(x) : v < fand v is j-Lipschitz on Bj} .

Since u; is an infimum of j-Lipschitz functions that are bounded from below by f which is
bounded on B;, we can see that u is j-Lipschitz on B;. Similarly, v; is j-Lipschitz on B; as
well.

We now identify the bad subsets of X in terms of u; and v; as follows:

o0
Dy = U {x € Bj N X, : uj or vj is not differentiable atx}
j=1
o0
M, = U {x eBjNXe: (uj —v;) (x) =0butd® (u; — v;) (x) # 0}
i=1

N:=|JDaUM,) .

Note that for each a, the set D, is by Definition 2.3 a null set and the same holds for M, by
Corollary 2.10. Thus, N is a countable union of null sets, i.e., N has measure zero as well.

Take a point xop € S (f) \ N and choose « so that xo € X,. Since Lip f(xp) is finite, there
exist r > 0 and [ > 0 such that

[f (x) — f (x0)] <1-d(x,x0) forall x € B(xo,r).
Using the separability of X we can find an element B; of the sequence {B;} with j > I
satisfying
x0€Bj CB(xp,7) .
It follows that for x € B; we have

f(x0) — jd (x,x0) < f(x) < f (x0) + jd (x, x0) .
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By the definition of u; and v; we obtain that for each x € B;

f(x0) — jd (x,x0) <vj(x) < f(x) Suj(x) < f(x0)+ jd (x, x0) G.1

in particular, u; (xo) = f (x0) = v; (xo). Since xo ¢ My we know that d*v; (xo) = d*u; (xo).
Using (3.1), we build the chain of inequalities

vj (x) = vj (x0) — {d*v; (x0) , P (x) — @ (x0))

0= h;m d (x, x0)
< lim f&x)—=fxo)— (da”j (x0) , Pa () — @q (xo))
xX—>Xx0 d (x’ xO)
XF#X0
< lim uj (x) — uj (xo) — {du; (x0) , ga (x) — @ (x0)) —0.
J;;;fg d (x, xo)

In conclusion

g L) = f o) — {d*vj (x0), a (x) — @ (x0))
i;;g d (x, x9)

=0.

Since d* f = d*u; p-a.e. in B; and the balls {B i }j cover the whole set S () \ N the uniqueness
and the measurability of d* f follow. L]

Remark 3.2. Motivated by Keith’s Lip-lip condition from Theorem 2.8 it is natural to ask
whether a function f : X — R is differentiable p-a.e. in the set

s(fl={xe X:lip f(x) <o0}.

Examples constructed in [3] show that the answer to this question is negative already for X =
[0, 1]. However, the a.e. differentiability holds true for functions in R” if we assume that f is
continuous, lip f is finite outside a set of o -finite Hausdorff n — 1 measure and lip f € L? for
p > n.

4. Applications

The first part of following statement follows from Theorem 5.1 in [15]. Its proof uses Riesz
potentials and maximal functions. For the convenience of the reader we present a direct proof,
based on the method of ball-chaining which has been employed in {14, 15, 21].

Theorem 4.1. Let (X,d, u) be a doubling metric measure space. Let f : X — R be a
measurable function and p € Lf;c with p > Q and p > 1 where Q is as in (2.4). If (f, p)
is a pair which satisfies (1, p)-Poincaré-inequality, then f has a representative which is locally
(1 — Q/ p)-Hélder continuous which is j1-a.e. differentiable with respect to the strong measurable
differentiable structure {(Xy, @)} whenever X admits such structure on all of LIP(X).

Proof. 1Lletz e X, R > 0andx € B(z, R/2) be a Lebesgue point of f. Let By = B(z, R)

and for i € N, let B; = B(x, R/4"). Then foreachi € N, B; C B;_; and rad B; = %radBi_l.
Since x is a Lebesgue point of f

fx)= .limf fdu.
1—=>00 Bi
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In the following chain of estimates C > 0 is a generic constant whose value can vary from
line to line.

|f(-x) - fB0| S Z |fB,’ - fBi+1|

i=0

o0
<3 ][B \f — fa]
1/p
<C Z T (J[ ) (Poincaré-inequality)
Bz
B\? / 1/p
<<xi(bw)  (Far)
im0 wu (By) By
o0 1-Q/p 1/p
1
ey () ([, ) (by (2.4)
i=0 By
1/p 2/ 1\1-€¢/p
cer([,) £
( TB() g 4l
Yp
=CR (7[ pp> .
Bg

Hence, for Lebesgue points x, y € B(z, R/2) we have that

c 1 1/p ) 1/p
— <CR| ——M— . 4.1
[f&x)—fOI =< (M(B @ tR))) (/B(“R)P ) 4.1

Fix p € X and let r < diam X. Then for x, y € B(p, }‘r) we have that B(x, 2d(x, y)) C
B(p, r). By setting z = x and R = 2d(x, y) we see that for each pair of Lebesgue points x and
y in B(p, §r), that

1 l/p » /p
— Cd(x, d R
7~ f)l = Cd(. 5) (u(B(x, 2rd(x, y)))) (/m,,,m pran )

Using (2.4) allows us to conclude that for each pair of Lebesgue points x and y in the ball

B(p, r/4) that
i/p
ppdu)

which implies that f is locally Holder continuous on the set of Lebesgue points of f. Hence,
there exists a representative of f which is locally (1 — Q/p)-Holder continuous. By choosing
this representative, every point is a Lebesgue point of f. Now using this representative of f, we
will show that Lip f(x) is finite for p-a.e. x.

Indeed, for each x € X, and R > 0 we have by (4.1) that

_ 1/p
sup (M> <C (7[ o? du) 4.2)
yeB(x,R) d(x, y) B(x,2tR)

If(x) = FO)| < Cd(x, y)'2/P (7[

B(p,tr)
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which implies that

1/p

Lip f(x) < Climsup (f o? du)
R—0 B(x,2tR)

which is finite whenever x is a Lebesgue point of p. Hence, for p-a.e. x, Lip f(x) is finite. By

Theorem 3.1 the proof is complete. ]

In the following we will place the above theorem in the context of Sobolev spaces defined on
metric measure spaces. The interested reader is encouraged to consult the overview article [11]
by Hajtasz for an introduction to Sobolev spaces in metric measure spaces. The interested reader
should also consult [10] for another approach to creating Sobolev spaces in abstract metric measure
spaces.

For the record we first recall the notion Newtonian space (as introduced by N. Shanmu-
galingam in [21]).

Definition 4.2. Let (X, d, ) be a metric measure space with u doubling that satisfies a (1, p)-
Poincaré inequality. We define the vector space of functions, N!:? as the set of all p-integrable
functions f so that there exists a non negative p-integrable Borel function p which is a weak
p-uppergradient of f, i.e., for mod,-a.e. curve y : [0, T] — X,

1f (@) - FO)] < f pdH!
Y
where H! is the 1-Hausdorff measure. Here, mod p(I) of a curve family I" is defined as
mod,,(T") := inf {/p" du| foreachcurve y € T, /pdyl >1 } ]
Y

The Newtonian space N Lpr(X) is the set of equivalence classes of the relation f ~ g iff
I|f — gllytr = 0 where

e = 111l +inf {10l | o is a weak p-uppergradient of f} .

We also define Nllo’cp (X) as the space of functions in Lf;c which have a weak p-uppergradient
peLp.

Since N!'P(X) = WL-P(R") when X = R", the following statement is a direct generalization
of Calderon’s theorem.

Corollary 4.3. Let 1 be a doubling measure that satisfies a (1, p)-Poincaré inequality with
p > 1. If p > Q where Q is the exponent as in (2.4), then each function f € NV“P(X) has a
Iocally Holder continuous representative which is differentiable pi-a.e.

Proof. Let f € N17(X) and p be a weak p-upper gradient of f. Then the pair (f, p) satisfies
the Poincar€ inequality, see [21]. Apply Theorem 4.1 to finish. ]

In R”, Calderon’s Theorem gives that if f € W1-P(R") with p > n, then f is differentiable
a.e. and the pointwise gradient of f is equal to the weak gradient of f a.e. In the following we
will show that when one extends the differential operator d to N'!:7, then the extension D agrees
with the d as calculated by Theorem 3.1. In the following we first show how to use a result of
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Franchi, Hajtasz, and Koskela to extend d to N L.P_ This extension is the only extension which is
stable under limits in N1-7.

Let (X, d, 1) be a metric measure space for which u is doubling that satisfies a Poincaré
inequality. Fix a strong measurable differentiable structure on X, {(X4, ¢4)} created by Theo-
rem 2.6. For u-a.e. x, let «(x) denote the unique « so that x € X,. By [5, Theorem 4.38], for
each x € X, the semi-norm

[Allx = Lip({(A, @a))(x)
is a norm on R¥N@®_ We see that for each A € RN @)

HAllx = Lip({X, @a))(x)
< |{AMlgve - LIP(@q)

where || - [|gv@ is the Euclidean norm on RN@ | Letting C, = LIP(¢,) we see that for u-a.e.
x € X,

[IM]x < Ca)lIM IgN@o -
Moreover, since || - ||, is a norm on R¥ @ for each x € X,, there exists a constant C(x) so that
[Allgvaen < COOlA] -

By partitioning X, into
Upn=xeXyin=C(x)>n—-1}

we have that for each x € Uy,

1

p A llgrveen < My < nllAlipyee - 4.3)
For each locally Lipschitz function #, d*u is measurable and so is the function x — Lip(u)(x).

Let u be differentiable at xg € X, and set f(x) = (d*u(xg), ¢u (x) — @a{x0)). The definition of
differentiability of u at xq gives that Lip(# — f)(xp) = 0. Hence, we see that

Lip(u)(x0) < Lip(u — f)(x0) + Lip(f)(x0)
=0+W”mem

and
|d*u(x0},, = Lip(f)(x0)
< Lip(f — u)(x0) + Lip(u)(x0)
= Lip(u)(xo) ,
i.e., Lip(u)(xo) = {[d*u(xo)ll5, Whenever u is differentiable at xg € X4. To simplify notation

we will write du(x) for d**®u(x). The above implies that for each locally Lipschitz function u,
x — ||du(x)||, is measurable. Moreover, from the algebraic nature of Equation (2.1) we see that
for each pair of locally Lipschitz functions u and v, that d(uv)(x) = v(x) du(x) + u(x) dv(x).
Together with Proposition 2.9 we see that the mapping d satisfies the following:

(1) |ldu(x)||x = Lip(u)(x) < LIP(x) provided that du(x) exists.
(2) Foreach A € R, d(Au)(x) = A du(x) provided that du(x) exists.
(3) du+v)(x) = du(x) + dv(x) provided that both du(x) and duv(x) exist.
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4) d(uv)(x) = v(x) du(x) + u(x) dv(x) provided that both du(x) and dv(x) exist.

Now let N = sup, N («), which is finite by Cheeger’s theorem, Theorem 2.6. By Keith [18,
Lemma 6.10 and 6.16], for u-a.e. x € X, there exists an inner product on RN@, (. .}  so that
for each v € RN@,

1 2
eyl = (v, o)y < C)lvlly -
In contrast to (4.3), C(N) does not depend on . Moreover, the mapping x — (-, -}, is measurable
as amap from X, to the space of positive definite matrices. Foreachx € X, let e}, e e,lcV @ pe

an orthonormal basis of RY® with respect to the inner product (-, -), so that the functions x — ¢,
are measurable (such a choice exists because the mapping x — (-, -), is measurable). Writing
du(x) = Z a; (x)e we see that the function du(x) (a1 (x), ar(x), ...) is a measurable
function which satisfies the following.

) ng(x)ll < Clldu(x)||x < CLIP(u)(x) where || - || is the Euclidean norm on RN@),
(2) Foreach A € R, d(Au)(x) = Adu(x).

3) du+v)(x) = dux) + dv(x).

@) dv)(x) = v(x)dux) + ulx) dv(x).

(5) The pair (u, ngll) satisfies a (1, p)-Poincar€ inequality with constants independent of

u, i.e., there exists constants C > 0 and t > 1 so that for each locally Lipschitz function
u, and for each ball B,

- l/p
][ lu — ug|dp < C diam(B) (7[ ndu"p dp,)
B B

Now if we view du (x) as element of RV, via
du(x) = (@, (x), . .. AN (%), 0,...,0) € RN@®)  RN-N(x)

we then have produced a function d which maps the space of locally Lipschitz functions to RN
so that (1)—(5) from above are true. We now extend d to NP as follows.

In [9], Franchi, Hajlasz, and Koskela showed that if a metric measure space (X, d, ) admits
a Poincaré inequality with u doubling and if there is a function d as above acting on the space
of locally Lipschitz function, then d extends uniquely to all of N1:7(X) as follows: if f, is a
collection of locally Lipschitz functions so that f, — f in N1:P(X), then there exists a measurable
function v with v(x) € R¥N@®) 5o that h, (x) = ||d f»(x) — v(x)]| converges to 0 in LP(X) and
for any other sequence of locally Lipschitz functions g, that converges to f in N Lp(X) satisfies
dgn — vin L? as well. We will write D f for this v. In particular, if u is locally Lipschitz ,
then du(x) Du(x) for u-a.e. x. By passing to limits we see that the same properties of d are
inherited by D, i.e., for each pair of function u, v € NL7(X) and p-a.e. x

(1) Foreach » € R, D(wu)(x) = A Du(x).
(2) D + v)(x) = Du(x) + Dv(x).
3) Duv)(x) = v(x) Du (x) + u(x) 5v(x) provided that v is bounded and Lipschitz.

Moreover, we can extend D to the space N1 by multiplying such functions by Lipschitz bump

functions. Note that if N(a(x)) < N, then for each u € N'? and i > N(a(x)), the i-th
co-ordinate of Du(x) is zero. We now define Du(x) € R¥N@) a5

Du(x) = Zai (x)e;
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where Du (x) = (a1(x), az(x), ...). Inthis fashion we have extended d from the space of locally
Lipschitz functions to D acting on N1'?(X) so that d = D on the space of locally Lipschitz
functions so that if f, — f in NL? then f HDf(x) — Df(x)]1Z — 0.

Theorem 4.4. Let (X, d, 1) be a metric measure space with p doubling that admits a (1, p)-
Poincaré inequality. If f € N LP(X) with p > Q where Q as in (2.4) then df (x) = Df(x)
(-a.e. where D is the unique extension of d to N Lp(x).

Proof. Fix a strong measurable differentiable structure {(¢y, Xo)}aca On X. By inequal-
ity (4.3) and possibly reindexing the charts X, ,, to X, we can assume that for each o there exists
Cy > 0 so that for each » € R¥®@ and each x € X,

1
— A llgve < [IAllx < Callrllgye 4.4
Co
where || - ||gnvw is the Euclidean norm on RV@®). Let f, be a sequence of locally Lipschitz

functions that converge to f in N Lp(X), ie.,

/X lldf(x) = DFGIIE dpx) — 0

/X |[fa(x) = fOIPdu(x) > 0.

For each n, p,(x) = ||Dfa(x)||x is a weak p-upper gradient of f,. Letting p(x) = ||Df (x)||x
we see that since f, — f and p, — p in L7, the pair ( f, p) satisfies a (1,p)-Poincaré inequality.
Since x — ||Df (x){|x is L? integrable we see that for u-a.e. xo € Xy

1
lim sup ——— IDFWIIY du(y) =0. 4.5)
r—0 MB(x0,7)) JB(xo,r) \ Xa ’

For each « and x € Xg let D® f(x) = Df(x) which is an element in R @ We can view the
map x — D* f(x) as a function from X, to RN@_ Extend D* f as zero outside of X,. We now
define a good subset of X, as

Se = {x0 € X4 | xo is a Lebesgue point of D* f
x is a point of density of X, and (4.5) holds} .

Note that £ (X4 \ S¢) = 0. For each xg € S, consider the function g defined by
g(x) = f(x) — f(x0) — (A, pa(x) — @a(x0))

where A = Df(xp) viewing Df (xp) as an element of RMN@ . Note that for each ball B, g €
NLP(B). One sees that

Dg(x) = Df(x) — D((%, ¢a))(x)
N(a) .
=Df(x) = )_ M Dgl(x)
i=1
N(a) .
=Df(x) — Y _ hidol(x).

i=1



418 Zoltdn M. Balogh, Kevin Rogovin, and Thomas Ziircher

Moreover, for x € X4, dpl, = e; where ¢; is the vector in R¥(®) whose i-th co-ordinate is one
and all others are zero. In particular,

Dg(x) = Df (x) — Df (xo)
for x € X,. Since f, — f in N7, we see that for each ball B, g, — g in NL.P(B) where
gn(x) = fu(x) ~ f(x0) — (A, @a(x) — @alxo)} .

Hence, by alimiting argument, the pair (g, x — ||Dg(x)||) satisfies a (1, p)-Poincaré inequality.
In particular, for each r > 0 and x € B(xp, r), inequality (4.2) gives

1g(x) — g(xo)| <c ][
d(x, xg) B(xp,2tr)

We claim that

N l/p

Df(y) = Y hidgl(y)

i=1

14
du(y)
y

1/p

p
du(y) =0.
y

N{a)

Df(y)— Y hidgh(y)
i=1

lim sup ]l
r—0 B(xp,7)

Indeed, since xg is a Lebesgue point of D® f and (4.4) we see that

N(@) p ip

Df(y)— Y hidgh| du(y)
i=1 y

1
limsup | ———
r—0  \ B0, 1)) JBxg.NXy

! 1p
= li - D% Fev) — D Fox 1 )
“ffé’p(ms(xo,r)) o NPT 0) = DGO du)

1 i/p
< limsup Co |~ D £(y) = D* £ (x0)|Poncey d )
0" (n(B(xo,r» oy, 125 SO = D2 F G0 [ dR(2)

1/p
< limsup Cy (7[3( )HD“f(y)—D“f(XO)"];N(a) du(y)) =0.
X0.r

r—>0

Since (4.5) holds and xg is a point of density of X,

N@) P e
lim sup 1 Df(y) — Z A;dg, d#()’))
r—0 w(B(xo, 1)) B(x0.7) \ Xo i=1 y
‘ 1 I/p
< llfrnj(l]lp (m I DfHIE dﬂ()’))

(M(B(xo, ) \xa))”” —0

LIP(¢a) - [IMlIgiee - i
+ LIP(¢gq) - ||Al|g¥@ - lim sup p(B(xo, r))

r—0

Thus, for A = Df (xg)

. 1g(x) — g(xo)l
0=Hmse = e, x0)
i |f(x) = f(x0) — (A 9a(x) — 9alxo))l
= lim sup
X->Xx0 d(x, xo)
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which by uniqueness property of the strong differentiable structure of {(Xy, @)} implies that
df (xo) = A = Df (xp), completing the proof.

Remark 4.5. With the additional hypothesis that X is complete, Df can be shown to be an
integral average pointwise differential, even if p < (. Indeed, Bjorn in [4] has shown that
if (X, d, p) is a complete metric measure space with u doubling and admits a (1, p)-Poincaré
inequality, then for each f € N1P(X) and p-ae. xg € X,

r>0 T

1
lim sup —fB( ) | f () = Fx0) = (A, Qagrg) (%) = Gazg) (¥0))| dt(x) =0 (4.6)
X0,T

where L = Df (xp).

Along similar lines, Keithin [17] has also shown that if (X, d, p) is a complete metric measure
space with . doubling and admits a (1, p)-Poincaré inequality, then for each f € N:P(X) and
u-a.e. xg € X, Df is an approximate differential of f at xg i.e.,

|f(x) = f(x0) = (Df (X0, Paixg) (X) — Paxy) (*0))|
d(x, xp)

aplim, _, =0 @.7

where L = aplim,_, ru(x) if and only if for each € > 0,

. py € B(x,r) : |[L—u(y)l >¢€})
m =
r—0 w(B(x, r))

Theorem 4.1 replaces aplim, _, », of the above with lim,_, ,, when p > Q.

0.

A weaker notion of differentiability is L7-differentiability. Namely a function f is L9-
differentiable at a point xg if there exists A € RY(®0)) o that

1 1/q
lim sup — (7[1;( ) [f(x) — f(x0) — (A, Paixg) () — Garg) (x0)) 17 du(x)) =0.
Xg.r

r—»0 T

Note that if f is differentiable at xq then for each 1 < ¢ < oo, f is L?-differentiable at x¢ with
A = Df(xp). One can readily see that (4.6) states that each f € N7 is L!-differentiable at
p-a.e. xg € X. From [22, Theorem VIIL1], when X = R”" with the Euclidean metric and p is
the Lebesgue measure, for f € WHP(R") with 1 < p < n, f is LP -differentiable a.e. where
pr = % (the Sobolev conjugate of p). For finer notions of the degree of smoothness of a

function we refer the reader to [6].

In the case when the function has bounded variation, f € BV(R") it follows that f is L AT
differentiable a.c., see [1, Theorem 3.83]. Recently the notion functions of bounded variation has
been extended to the class of metric measure spaces with doubling measure that admit a Poincaré
inequality, see [2]. It would be interesting to see whether under this setting functions of bounded
variation are L?-differentiable for some values of g.

Remark 4.6. Let us observe that if the space (X, d, u) does not support a Poincaré inequality
the space N7 could be quite nasty. For example, if X is a totally disconnected subset of R” then
NLP(X) simply coincides with L? and thus it could be thata f € N7 is nowhere differentiable
in such cases.

If we want to obtain differentiability results for Sobolev functions on spaces which do not
necessarily satisfy a Poincaré inequality it is useful to recall the definition of Sobolev space in the
sense of Hajtasz as follows.
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Definition 4.7. Let (X, d, p) be a metric measure space. For each p > 1 we let M7 (X) be
the Hajtasz space which is the space of functions f € L (u) for which there exists g € L?(u)
so that for y-a.e. x,y € X,

Ifx) — fO] <d(x, y)(g(x) +8(y)) . (4.8)

Corollary 4.8. Let u be a doubling measure. If p > Q and p > 1 where Q as in (2.4), then
each function f € MV“P has a locally Holder continuous representative. Moreover, if X admits
a strong measurable differentiable structure, then that representative is differentiable j1-a.e.

Proof. letfeM 1P and let g € L? so that (4.8) of Definition 4.7 is satisfied. To show that
(f, g) satisfy a (1, p)-Poincaré inequality , fix a ball B in X. We than have for u-ae.x,y € B
that

[f(xX) = fO) <d(x, y)(gx) +g()) .

If we integrate with respect to x € B and then with respect to y € B we obtain (see Theorem 3.1
in [15]):

][ If—fsldu52~diamB][ gdu
B B

i/p
<2-.diamB (J[ g”du)
B

which shows us that (£, g) satisfy the Poincaré inequality. Applying Theorem 4.1 finishes the
proof. L]

Corollary4.9. Let f: (X,d, u) — (¥, p, v) be a quasi-conformal homeomorphism between
metric measure spaces. If both y and v are Q-regular and if X admits a strong measurable
differentiable structure, then for each Lipschitz function ¢ : Y — R the function ¢ o f is
differentiable p-a.e. in X.

Proof.  Let us recall that a measure u is Q-regular if there exists a constant C > 0 such that

érQ < u@Bx,r) <cr?, 4.9)

forallx € X and 0 < r < diam(X).

Recall also from [14] the metric definition of quasiconformality of a homeomorphism
f 1 X — Y, according to which there exists a constant K > 1 such that for every x € X

. supd(x,y)fr ,O(f(X), f()’))
lim sup - <K.
r—0 mfd(x,y)zr o(fx), f(¥)

(4.10)

By Theorem 3.1, we need only check that Lip(¢ o f) is finite u-a.e. Indeed, foreachx € X
we have by (4.9) and (4.10)

Lip(é o £)(x) < LIP($) - lim sup SUPy(; yy<r AL (X), F(I))

r—0 r

1
) ] v(f(B(x, )\ 2
< C2K LIP(¢) - (hfrﬂjgp m) '




The Stepanov Theorem in Metric Measure Spaces 421

Since for general homeomorphisms and p doubling one has that the volume derivative

Iy 3 i VU B DY
du r—0 wu(B(x,r))

exists as a finite number for p-a.e. x we conclude that Lip(¢ o f)(x) < oo for p-a.e. x finishing
the proof. U

Remark 4.10. The assumption that both X and Y are Q-regular cannot be dropped. Indeed,
letg : R —> Rbe %-Hélder continuous function which is nowhere differentiable. Let X be R”

with the Euclidean metric dg and ¥ be R” with the metric dg’ 2. In this situation, X is n-regular
and Y is 2n-regular. Themap f : X — Y as f(x) = x is quasi-symmetricand ¢ : ¥ — Riis
Lipschitz on Y, but ¢ o f is nowhere differentiable on X.

References

[11 Ambrosio, L., Fusco, N., and Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems,
Clarendon Press, (2000).
[2] Ambrosio, L., Miranda, M., and Pallara, D. Special functions of bounded variation in doubling metric measure
spaces, preprint.
[3] Balogh, Z.M. and Csornyei, M. Scaled oscillation and regularity, preprint, (2004).
[4] Bjorn, J. Poincaré inequalities for powers and products of admissible weights, Ann. Acad. Sci. Fenn. Math., 26(1),
175-188, (2001).
[5]1 Cheeger, J. Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal., 9, 428-517,
(1999).
[6] DeVore, D.A. and Sharpley, R.C. Maximal functions measuring smoothness, Mem. Am. Math. Soc., 47(293), 1-115,
(1984).
[7] Evans, L.C. and Gariepy, R.F. Measure Theory and Fine Properties of Functions, CRC Press, Boca Raton, (1992).
[8] Federer, H. Geometric Measure Theorie, Die Grundlehren der mathematischen Wissenschaften in Einzeldarstel-
lungen, no. 153, Springer-Verlag, Berlin, Heidelberg, (1969).
(9] Franchi, B., Hajtasz, P, and Koskela, P. Definitions of Sobolev classes on metric spaces, Ann. Inst. Fourier,
(Grenoble), 49(6), 1903-1924, (1999).
[10] Gol'dshtein, V. and Troyanov, M. Axiomatic theory of Sobolev spaces, Expos. Math., 19(4), 289-336, (2001).
[11] Hajtasz, P. Sobolev spaces in metric-measure spaces, to appear.
[12] Hajtasz, P. Sobolev spaces on an arbitrary metric space, Potential Anal., 5, 403-415, (1996).
[13] Heinonen, J. Lectures on Analysis on Metric Spaces, Springer-Verlag, New York, (2001).
[14] Heinonen, J. and Koskela, P. Quasiconformal maps in metric spaces with controlled geometry, Acta Math., 181,
1-61, (1998).
[15] Hajtasz, P. and Koskela, P. Sobolev met Poincaré, Mem. Am. Math. Soc., 145(688), (2000).
[16] Keith, S. A differential structure for metric measure spaces, to appear.
[17] Keith, S. Measurable differentiable structures and the Poincaré inequality, to appear.
[18] Keith, S. A differentiable structure for metric measure spaces, PhD dissertation, University of Michigan at Ann
Arbor, Department of Mathematics, (2002).
[19] Koskela, P. and MacManus, P. Quasiconformal mappings and Sobolev spaces, Studia Math., 131, 1-17, (1998).
[20] Maly, J. A simple proof of the Stepanov theorem on differentiability almost everywhere, Exposition. Math., 17,
59-61, (1999).
{21] Shanmugalingam, N. Newtonian spaces: An extension of Sobolev spaces to metric measure spaces, Rev. Mat.
Iberoamericana, 16(2), 234-279, (2000).
[22] Stein, E. Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton,
(1970).
[23] Viisilg, J. Lectures on n-dimensional quasiconformal mappings, Lecture Notes in Mathematics, 229, Springer-
Verlag, Berlin, (1971).



422 Zoltdn M. Balogh, Kevin Rogovin, and Thomas Ziircher

Received April 13, 2004

Department of Mathematics, University of Bern, Sidlerstrasse 5, 3012 Bern Switzerland
e-mail: zoltan.balogh@math-stat.unibe.ch

Department of Mathematics, University of Bern, Sidlerstrasse 5, 3012 Bern Switzerland
e-mail: kevin.rogovin@math-stat.unibe.ch

Department of Mathematics, University of Bern, Sidlerstrasse 5, 3012 Bern Switzerland
e-mail: thomas.zuercher@math-stat.unibe.ch

Communicated by Steven Krantz



