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ABSTRACT. In the general context of complex data processing, this article reviews a recent
practical approach to the continuous wavelet formalism on the sphere. This formalism notably
yields a correspondence principle which relates wavelets on the plane and on the sphere. Two fast
algorithms are also presented for the analysis of signals on the sphere with steerable wavelets.

1. Introduction

In many fields of science, from computer vision, to biomedical imaging, geophysics, or
astrophysics and cosmology, experiments are set up releasing more and more complex
data to process. A first complexity of the data lies in their large volume, related to the
always increasing resolution of technological devices. Moreover, data are not necessarily
distributed on the real line (audio signals, . . . ), or on the plane (images, . . . ), but can live
on higher-dimensional or nontrivial manifolds (Rn, sphere, hyperboloid, . . . ). Finally, the
data may correspond not only to scalar fields (local intensity), but also to tensor fields on
those manifolds (local diffusion matrix, local polarization, . . . ).

In this new era of complex data processing, powerful tools always need to be developed
for the precise analysis of the signals under scrutiny. In this article, we review recent formal
and algorithmic advances for the continuous wavelet analysis of signals on the sphere. This
scale-space formalism goes well beyond the spectral analysis, as it enables one to probe the
localization, scale, and orientation of the features of the signals analyzed. An exhaustive
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review on wavelets on the sphere and related manifolds is presented in another article of
the present issue [5].

For the sake of the illustration we choose the example of the cosmic microwave back-
ground (CMB) data from cosmology. The CMB is a polarized electromagnetic blackbody
radiation observed today in all directions of the sky, which emerged some 380.000 years
after the Big Bang. This snapshot of the early universe bears a wealth of information for
the study of its structure and evolution, i.e., for cosmology. The present NASA WMAP
(Wilkinson Microwave Anisotropy Probe) satellite experiment [6] releases maps of the celes-
tial sphere of 3 megapixels at each detection frequency, while the forthcoming ESA Planck
Surveyor satellite experiment [24] will increase the resolution to 50 megapixels. The CMB
therefore crystallises the previously quoted potential data complexities. Its temperature (in-
tensity) and polarization, respectively, define scalar and tensor fields on the sphere, and the
corresponding experimental data already appear in large volumes. Various applications of
the continuous wavelet formalism on the sphere for the analysis of the CMB are presented
in another article of the present issue [23].

The structure of the article goes as follows. We only focus on the formalism for the
continuous wavelet transform on the sphere introduced in [2], as recently further developed
in a practical approach by [29]. This formalism is explicitly reviewed in Section 2. The
wavelet decomposition of a signal on the sphere S2 is defined by its projection coefficients
on translated, rotated, and dilated versions of a mother wavelet, i.e., a directional correlation
at each analysis scale. These wavelet coefficients therefore live on the rotation group in
three dimensions SO(3). The wavelet must satisfy an admissibility condition ensuring that
the signal may be explicitly reconstructed from its wavelet coefficients. A correspondence
principle is also recalled stating that wavelets on the sphere may be built from an inverse
stereographic projection of wavelets on the plane. This principle enables one to transfer
onto the sphere some properties of wavelets on the plane, such as the notion of steerability.
We explicitly describe major examples of axisymmetric, directional, and steerable wavelets.
In Section 3, we give the generic definition of directional correlation, and the definition of
standard correlation, to which reduce the wavelet coefficients of a signal with a steerable or
axisymmetric wavelet. We discuss their a priori computation cost on any pixelization of S2

and of SO(3), which is prohibitive for high resolution data. We emphasize the existence
of a directional and standard correlation relation in harmonic space. In Section 4, we first
discuss the band-limitation of signals and filters. We then review two fast algorithms for
the directional correlation of band-limited signals and filters on iso-latitude pixelizations
on the sphere. The first one is based on a technique of separation of variables in the
Wigner D-functions on SO(3) [18, 30]. The second one relies on the factorization of the
three-dimensional rotation operators to interpret the result of the directional correlation as a
function on the three-torus T3, and applies the separation of variables to three-dimensional
imaginary exponentials [25, 28, 22]. The a priori O(L5) asymptotic complexity is thereby
reduced to O(L4), where 2L roughly stands for the square-root of the number of pixels on
the sphere, i.e., for band-limited signals and filters with band-limitL ∈ N. For steerable and
axisymmetric wavelets, the directional correlation resumes to standard correlations, and the
asymptotic complexity drops to O(L3). The typical computation time for the directional
correlation of megapixels maps (L � 103) correspondingly drops from years to tens of
seconds on a standard computer. This easily allows the analysis of multiple signals at
such high resolutions, and at multiple scales. These developments finally lead us to our
conclusions in Section 5.
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2. Continuous Wavelets on the Sphere

2.1 Practical Approach

Among other approaches [17, 11, 12], a satisfactory formalism for the continuous wavelet
transform of signals on the sphere S2 was originally established in a group-theoretical
framework [2, 3, 4, 9, 7]. The aim of the present article is to review a more practical but
completely equivalent approach, recently proposed by [29]. In that framework, a “mother
wavelet” �(ω) is defined as a localized square-integrable function on the unit sphere, on
which continuous affine transformations (translations, rotations, and dilations) may be ap-
plied. The wavelet transform of a square-integrable signal on the sphere is then defined
as the directional correlation of the signal with the dilated versions of the mother wavelet.
At each scale, the corresponding wavelet coefficients are square-integrable functions on
the rotation group in three dimensions SO(3). Finally, an admissibility condition is im-
posed on the wavelet which ensures an exact reconstruction formula of the signal from its
wavelet coefficients.1

The real and harmonic structures of the unit sphere S2 are concisely summarized
as follows. Any point ω on the sphere is given in spherical coordinates as ω = (θ, ϕ),
in terms of a polar angle, or co-latitude θ ∈ [0, π ], and an azimuthal, or longitudinal
angle ϕ ∈ [0, 2π [. Let G(ω) be a square-integrable function on the sphere, i.e., G(ω) in
L2(S2, d�), with the invariant measure d� = d cos θdϕ. The spherical harmonics form
an orthonormal basis for the decomposition of functions inL2(S2, d�). They are explicitly
given in a factorized form in terms of the associated Legendre polynomials Pml (cos θ) and
the complex exponentials eimϕ as

Ylm (θ, ϕ) =
[

2l + 1

4π

(l −m)!
(l +m)!

]1/2

Pml (cos θ) eimϕ , (2.1)

with l ∈ N, m ∈ Z, and |m| ≤ l [1, 27]. While the index l represents an overall fre-
quency on the sphere, |m| represents the frequency associated with the azimuthal variable ϕ.
Any G(ω) is thus uniquely given as a linear combination of scalar spherical harmonics
G(ω) = ∑

l∈N

∑
|m|≤l ĜlmYlm (ω) (inverse transform), for the scalar spherical harmonics

coefficients Ĝlm = ∫
S2 d�Y

∗
lm (ω)G (ω) (direct transform), with |m| ≤ l.

The continuous affine transformations on functions on the sphere are defined as fol-
lows. The operator R(ω0) for the motion, or translation, of amplitude ω0 = (θ0, ϕ0) of a
function reads

[R (ω0)G] (ω) = G
(
R−1
ω0
ω
)
, (2.2)

where Rω0(θ, ϕ) = [Rẑϕ0
R
ŷ
θ0

](θ, ϕ) is defined by the three-dimensional rotation matrices

R
ŷ
θ0

and Rẑϕ0
, acting on the Cartesian coordinates (x, y, z) in three dimensions centered

1Notice that the signals and filters considered by the formalism are scalar functions, i.e., invariant under
local rotations in the tangent plane at each point on the sphere. In the general context of complex
data processing, one might want to generalize the wavelet formalism presented here to the analysis of
rank n tensor functions. However, tensor fields may equivalently be expressed in terms of scalar fields.
In particular, polarization data on the sphere constitute a rank 2 tensor field. It can be equivalently
described in terms of its so-called electric and magnetic parts, which actually constitute two separate
functions on the sphere, with a purely scalar behavior. The present formalism for the scale-space wavelet
decomposition of scalar functions on the sphere may therefore be applied to the analysis of both scalar
fields, and tensor fields such as polarization data [30, 31].
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on the sphere and associated with ω = (θ, ϕ). The rotation operator Rẑ(χ) of a function
around itself, by an angle χ ∈ [0, 2π [, is given as[

Rẑ (χ)G
]
(ω) = G

(
Rẑχ

−1
ω
)
, (2.3)

whereRẑχ (θ, ϕ) = (θ, ϕ+χ) also follows from the action of the three-dimensional rotation

matrix Rẑχ on the Cartesian coordinates (x, y, z) associated with ω = (θ, ϕ). The dilation

operatorD(a) on functions in L2(S2, d�), for a dilation factor a ∈ R∗+, is defined in terms
of the inverse of the corresponding dilation Da on points in S2 as

[D (a)G] (ω) = λ1/2 (a, θ)G
(
D−1
a ω

)
, (2.4)

with λ1/2(a, θ) = a−1[1 + tan2(θ/2)]/[1 + a−2 tan2(θ/2)]. The dilated point is given by
Da(θ, ϕ) = (θa(θ), ϕ) with the linear relation tan(θa(θ)/2) = a tan(θ/2). The dilation
operator therefore maps the sphere without its South pole on itself: θa(θ) : θ ∈ [0, π [→
θa ∈ [0, π [. This dilation operator is uniquely defined by the requirement of the following
natural properties [29]. The dilationDa of points on S2 must be a radial (i.e., only affecting
the radial variable θ independently of ϕ, and leaving ϕ invariant) and conformal (i.e.,
preserving the measure of angles in the tangent plane at each point of S2) diffeomorphism
(i.e., a continuously differentiable bijection on S2). The factor λ(a, θ) explicitly appears
in the conformal transformation of the metric through the dilation Da . The normalization
by λ1/2(a, θ) in (2.4) is uniquely determined by the requirement that the dilation D(a)
of functions in L2(S2, d�) be a unitary operator (i.e., preserving the scalar product in
L2(S2, d�), and specifically the norm of functions).

The analysis of signals goes as follows. The wavelet transform of a signal F(ω) in
L2(S2, d�) on the sphere, with the wavelet �(ω), localized analysis function in L2(S2,
d�), is defined as the directional correlation between F(ω) and the dilated wavelet �a =
D(a)�, i.e., as the scalar product:

WF
� (ρ, a) = 〈�ρ,a|F 〉 =

∫
S2
d��∗

ρ,a (ω) F (ω) , (2.5)

with �ρ,a = R(ρ)�a , and ρ = (θ0, ϕ0, χ). At each scale, the wavelet coefficients
WF
� (ρ, a) are therefore square-integrable functions on the rotation group in three dimen-

sions SO(3). They represent the characteristics of the signal for each analysis scale a,
direction χ , and position ω0. This defines the scale-space nature of the wavelet decompo-
sition on the sphere.

The real and harmonic structures of the rotation group in three dimensions SO(3) are
concisely summarized as follows. Any rotation ρ on SO(3) is given in terms of the three
Euler angles ρ = (θ, ϕ, χ), with θ ∈ [0, π ], and ϕ, χ ∈ [0, 2π [. Let H(ρ) be a square-
integrable function on SO(3), i.e., H(ρ) in L2(SO(3), dρ), with the invariant measure
dρ = dϕd cos θdχ . The Wigner D-functions are the matrix elements of the irreducible
unitary representations of weight l of the group in L2(SO(3), dρ). By the Peter-Weyl
theorem on compact groups, the matrix elements Dl∗mn also form an orthogonal basis in
L2(SO(3), dρ). They are explicitly given in a factorized form in terms of the real Wigner
d-functions dlmn(θ) and the complex exponentials, e−imϕ and e−inχ , as

Dlmn (ϕ, θ, χ) = e−imϕdlmn (θ) e−inχ , (2.6)
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with l ∈ N, m, n ∈ Z, and |m|, |n| ≤ l [27, 8]. Again, l represents an overall fre-
quency on SO(3), and |m| and |n| the frequencies associated with the variables ϕ and
χ , respectively. Any H(ρ), such as the wavelet coefficients at each scale of a signal on
S2, is thus uniquely given as a linear combination of Wigner D-functions as H (ρ) =∑
l∈N
(2l + 1)/8π2∑|m|,|n|≤l Ĥ l

mnD
l∗
mn (ρ) (inverse transform), with, for |m|, |n| ≤ l, the

Wigner D-functions coefficients Ĥ l
mn = ∫

SO(3) dρ D
l
mn (ρ)H (ρ) (direct transform).

The synthesis of a signal F(ω) from its wavelet coefficients reads as:

F (ω) =
∫ +∞

0

da

a3

∫
SO(3)

dρWF
� (ρ, a) [R (ρ)L��a] (ω) . (2.7)

In this relation, the operator L� in L2(S2, d�) is defined 2 by the following action on the
spherical harmonics coefficients of functions: L̂�Glm = Ĝlm/C

l
� , with |m| ≤ l. This

exact reconstruction formula holds if and only if the spherical harmonics transform �̂lm of
the wavelet �(ω) satisfies the following admissibility condition [29]:

0 < Cl� = 8π2

2l + 1

∑
|m|≤l

∫ +∞

0

da

a3

∣∣(̂�a)lm∣∣2 < ∞ , (2.8)

for all l ∈ N. This condition intuitively requires that the whole wavelet family �a(ω), for
a ∈ R∗+, covers each frequency index l with a finite and non-zero amplitude. As explicitly
expressed in Section 3, the direct WignerD-functions transform of the wavelet coefficients
of a signalF with� is given as the pointwise product of the spherical harmonics coefficients
F̂lm and (̂�a)

∗
ln. The admissibility condition consequently requires that the wavelet family

as a whole preserves the signal information at each frequency l.

2.2 Correspondence Principle

Wavelets on the plane are well-known, and may be easily constructed as the corresponding
admissibility condition reduces to a zero-mean condition for a function both integrable and
square-integrable. On the contrary, the admissibility condition (2.8) for wavelets on the
sphere is difficult to check in practice. In that context, a correspondence principle was
proved in [29], stating that the inverse stereographic projection of a wavelet on the plane
leads to a wavelet on the sphere.

The stereographic projection is the unique radial conformal diffeomorphism mapping
the sphere S2 onto the plane R2. The unitary stereographic projection operator between
functions G in L2(S2, d�) and g in L2(R2, d2 	x), and its inverse, respectively read

[
G] (	x) =
(

1 +
( r

2

)2
)−1

G
(
π−1 	x

)
[

−1g

]
(ω) =

(
1 + tan2 θ

2

)
g (πω) , (2.9)

in spherical coordinates on the sphere ω = (θ, ϕ), and polar coordinates on the plane 	x =
(r, ϕ). The azimuthal coordinates on the plane and on the sphere are identified to one

2The operator L� in our notations coincides with the inverse of the standard frame operator A� defined
in [5].
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another: ϕ. The radial conformal diffeomorphism between points is given as π(θ, ϕ) =
(r(θ), ϕ) for r(θ) = 2 tan(θ/2), and its inverse reads π−1(r, ϕ) = (θ(r), ϕ) for θ(r) =
2 arctan(r/2). The diffeomorphism r(θ) and its inverse θ(r) explicitly define the stereo-
graphic projection and its inverse. This stereographic projection maps the sphere, without
its South pole, on the entire plane: r(θ) : θ ∈ [0, π [→ [0,∞[. Geometrically, it projects a
pointω = (θ, ϕ) on the sphere onto a point 	x = (r, ϕ) on the tangent plane at the North pole,
co-linear with ω and the South pole (see Figure 1). The pre-factors in (2.9) are required to
ensure the unitarity of the projection operators 
 and 
−1.
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ϕ(r,  )

x̂

ẑ

x̂

ŷ

ŷ

Π −1

S

χ

θ

ϕ o

Π

θ/2

θ ϕ(  ,  )

FIGURE 1 Stereographic projection π and its inverse π−1, relating points (θ, ϕ) on the sphere and (r, ϕ) on
its tangent plane at the North pole. The same relation holds through
 and
−1 between functions living on each
of the two manifolds, as illustrated by the shadow on the sphere and the localized region on the plane [29].

In this framework, the correspondence principle established states that, if the func-
tion ψ(r, ϕ) in L2(R2, d2 	x) satisfies the wavelet admissibility condition on the plane, i.e.,
essentially a zero-mean condition, then the function

� (θ, ϕ) =
[

−1ψ

]
(θ, ϕ) , (2.10)

inL2(S2, d�), satisfies the wavelet admissibility condition (2.8) on the sphere. This enables
the construction of wavelets on the sphere by projection of wavelets on the plane. It also
transfers wavelet properties from the plane onto the sphere, such as the steerability discussed
in the next subsection.

2.3 Axisymmetric, Directional, and Steerable Wavelets

We present here axisymmetric, directional, and steerable wavelets on the sphere, built as
inverse stereographic projections of wavelets on the plane.

An axisymmetric filter is by definition invariant under rotation around itself. That
is, when located at the North pole, an axisymmetric filter is defined by a function A(θ)
independent of the azimuthal angle ϕ. On the plane, the Mexican hat wavelet is defined
as the normalized (negative) Laplacian of a Gaussian e(x

2+y2)/2. Its inverse stereographic
projection defines the Mexican hat wavelet on the sphere (see Figure 2).
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ŷx̂

ẑ ẑ

ŷx̂

ẑ

ŷx̂

FIGURE 2 Mexican hat wavelet on the sphere for a dilation factor a = 0.4 and different eccentricities. On the
left, the axisymmetric Mexican hat: r = 1 (ε = 0) and s = 2 (left). At the center and on the right, respectively,
the elliptical Mexican hat for r = 0.5 (ε � 0.96825) and s = 2, and r = 0.1 (ε = 0.99995) and s = 2. Dark and
light regions, respectively, identify negative and positive values.

Any non-axisymmetric filter is said to be directional, and is given as a general function
�(θ, ϕ) in L2(S2, d�). The elliptical Mexican hat wavelet is a directional modification
of the axisymmetric Mexican hat, obtained by considering different widths σx and σy ,

respectively in the x̂ and ŷ directions on the plane for the original Gaussian: e(x
2+y2)/2 →

e(x
2/σ 2

x+y2/σ 2
y )/2 [21]. The wavelet obtained as inverse stereographic projection of the

normalized (negative) Laplacian of this Gaussian reads (see Figure 2) as:

�(mex) (ω) =
√

2

π
N
(
σx, σy

) (
1 + tan2 θ

2

)[
1 − 4 tan2 θ/2

σ 2
x + σ 2

y(
σ 2
y

σ 2
x

cos2 ϕ + σ 2
x

σ 2
y

sin2 ϕ

)]
e
−2 tan2 θ

2

(
cos2 ϕ/σ 2

x+sin2 ϕ/σ 2
y

)
. (2.11)

The constant N(σx, σy) = (σ 2
x + σ 2

y )[σxσy(3σ 4
x + 3σ 4

y + 2σ 2
x σ

2
y )/2]−1/2 stands for the

normalization. One can identify the wavelet parameters through the eccentricity of the
ellipse defined by the points where the wavelet has zero value (zero-crossing), ε = (1 −
(σx/σy)

4)1/2 (for σy ≥ σx), and the sum s = σ 2
x + σ 2

y . It is alternatively described by
the ratio of the semi-major and semi-minor axes of the Gaussian r = σx/σy , and the sum
s = σ 2

x + σ 2
y . The axisymmetric Mexican hat is recovered for σx = σy = 1, in which case

r = 1 (ε = 0), and s = 2, and the normalization constant is unity, N(σx, σy) = 1.
On the plane, the real Morlet wavelet is a typical example of a directional wavelet.

Its inverse stereographic projection on the sphere (see Figure 3) reads as (see also [9, 21]
for similar projections):

�(mor) (ω) =
√

2

π
N (k)

(
1 + tan2 θ

2

)[
cos

( 	k · (π−1 	x)√
2

)
− e−	k2/4

]
e−2 tan2(θ/2) , (2.12)

with π−1 	x = (2 tan(θ/2) cosϕ, 2 tan(θ/2) sin ϕ) in Cartesian coordinates. The arbitrary
wave-vector 	k = (kx, ky) controls the direction and the frequency of oscillation of the

wavelet (	k2 = k2
x + k2

y). The constant N(k) = (1 + 3e−	k2/2 − 4e−3	k2/8)−1/2 stands for

the normalization. Notice that for 	|k| = 2, the real Morlet wavelet closely approximates at
large scales to the second Gaussian derivative described in the following.

The notion of filter steerability was first introduced on the plane [13, 26], and more
recently defined on the sphere [29]. Just as on the plane, a directional filter� inL2(S2, d�)
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ŷx̂

ẑ ẑ

ŷx̂

FIGURE 3 Real Morlet wavelet on the sphere for a dilation factor a = 0.4 and a wave-vector 	k = (6, 0) on
the left, and for a dilation factor a = 0.4 and a wave-vector 	k = (2, 0) on the right. Dark and light regions,
respectively, identify negative and positive values.

on the sphere is steerable if any rotation by χ ∈ [0, 2π [ of the filter around itself Rẑ(χ)�
may be expressed as a linear combination of a finite number of basis filters �m:

[
Rẑ (χ)�

]
(ω) =

M∑
m=1

km (χ)�m (ω) . (2.13)

The weights km(χ), with 1 ≤ m ≤ M , and M ∈ N, are called interpolation functions. In
particular cases, the basis filters may be specific rotations by angles χm of the original filter:
�m = Rẑ(χm)�. Steerable filters have a nonzero angular width in the azimuthal angle ϕ
which makes them sensitive to a whole range of directions and enables them to satisfy the
relation (2.13). In the spherical harmonics space, this nonzero angular width corresponds
to an azimuthal angular band limit N ∈ N in the frequency index n associated with the
azimuthal variable ϕ:

�̂ln = 0 for |n| ≥ N . (2.14)

Typically, the number M of interpolating functions is of the same order as the azimuthal
band limit N .

The derivatives of orderNd in direction x̂ of radial functions on the plane are steerable
wavelets. The transfer of the steerability property (2.13) from the plane to the sphere is
obvious since the inverse stereographic projection is a radial operation, while the steerabil-
ity only affects the azimuthal variable. The inverse stereographic projection of Gaussian
derivatives therefore give steerable wavelets on the sphere. They may be rotated in terms
ofM = Nd + 1 basis filters, and are band-limited in ϕ atN = Nd + 1. We give the explicit
examples of the normalized first and second Gaussian derivatives. A first derivative has a
band limit N = 2, and only contains the frequencies n = {±1}. It may be rotated in terms
of two specific rotations at χ = 0 and χ = π/2, corresponding to the inverse projection of
the first derivatives in directions x̂ and ŷ, �∂x̂ and �∂ŷ , respectively:[

Rẑ (χ)�∂x̂
]
(ω) = �∂x̂ (ω) cosχ +�∂ŷ (ω) sin χ . (2.15)

The normalized first derivatives of a Gaussian (see Figure 4) in directions x̂ and
ŷ read:

�∂x̂(gau) (θ, ϕ) =
√

8

π

(
1 + tan2 θ

2

)
tan

θ

2
cosϕe−2 tan2(θ/2)

�∂ŷ(gau) (θ, ϕ) =
√

8

π

(
1 + tan2 θ

2

)
tan

θ

2
sin ϕe−2 tan2(θ/2) . (2.16)
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x^

z^

y^ x^

z^

y^ , x^

z^

y^

FIGURE 4 First Gaussian derivative wavelet on the sphere for a dilation factor a = 0.4: From left to right,

�∂x̂ (gau), �∂ŷ (gau), and rotation by χ = π/4 of �∂x̂ (gau). Dark and light regions, respectively, identify negative
and positive values [29].

A second derivative has a band limitN = 3, and contains the frequenciesn = {0,±2}.
It may be rotated in terms of three basis filters. It reads indeed in terms of the inverse

projection of the second derivatives in directions x̂ and ŷ, �∂
2
x̂ and �∂

2
ŷ , respectively, and

the cross derivative �∂x̂∂ŷ as:[
Rẑ (χ)�∂

2
x̂

]
(ω) = �∂

2
x̂ (ω) cos2 χ +�

∂2
ŷ (ω) sin2 χ +�∂x̂∂ŷ (ω) sin 2χ . (2.17)

The correctly normalized second derivatives of a Gaussian (see Figure 5) in directions
x̂ and ŷ read:

�∂
2
x̂
(gau) (θ, ϕ) =

√
4

3π

(
1 + tan2 θ

2

)(
1 − 4 tan2 θ

2
cos2 ϕ

)
e−2 tan2(θ/2)

�
∂2
ŷ
(gau)

(θ, ϕ) =
√

4

3π

(
1 + tan2 θ

2

)(
1 − 4 tan2 θ

2
sin2 ϕ

)
e−2 tan2(θ/2)

�∂x̂∂ŷ (gau) (θ, ϕ) = − 4√
3π

(
1 + tan2 θ

2

)(
tan2 θ

2
sin 2ϕ

)
e−2 tan2(θ/2) . (2.18)
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FIGURE 5 Second Gaussian derivative wavelet on the sphere for a dilation factor a = 0.4: From left to right,
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(gau). Dark and light regions, respectively,

identify negative and positive values [29].

3. Directional Correlation

3.1 Directional and Standard Correlations

The directional correlation 〈R�|F 〉 of a function F with a filter� is generically defined as
the scalar product of the signal with all SO(3) rotations of the filter [30]. It therefore lives
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on SO(3), and explicitly reads in L2(SO(3), dρ) as:

〈R (ρ)�|F 〉 =
∫
S2
d��∗ (R−1

ρ ω
)
F (ω) . (3.1)

As discussed in Section 2.1, if� is the specific dilation of a wavelet on the sphere, the direc-
tional correlation coincides with the wavelet coefficients of the signal, at the corresponding
scale [see relation (2.5)].

The standard correlation 〈R0�|F 〉 of F with �, is generically defined by the scalar
product between the function F and the filter � translated at any point ω0 = (θ0, ϕ0) on
the sphere, but for a fixed direction, i.e., a fixed value χ = 0. The result of the standard
correlation explicitly gives a square-integrable function in L2(S2, d�) on the sphere:

〈R (ω0)�|F 〉 =
∫
S2
d��∗ (R−1

ω0
ω
)
F (ω) . (3.2)

The notationR0 simply denotes a three-dimensional rotation withχ = 0. It distinguishes the
standard correlation 〈R0�|F 〉 from the directional correlation 〈R�|F 〉 when the arguments
are not specified.

Let us remark that, from relation (2.13), it explicitly appears that the directional
correlation with a steerable filter � reduces to a M-terms linear combination of standard
correlations with the corresponding basis filters �m. In the particular case of an axisym-
metric filter, there is no dependence at all of the correlation in the filter rotation χ . The
directional correlation with an axisymmetric filter is therefore strictly equivalent to the
standard correlation.

3.2 Pixelization and a priori Computation Cost

The directional and standard correlations are defined for square-integrable functions on a
continuous variable ω = (θ, ϕ) on the sphere. The translations and rotations of the filter
also form a continuous variable ρ = (ϕ0, θ0, χ) ∈ SO(3). Practical implementations are
obviously based on a choice of discretization for each of these variables, i.e., a pixelization
of S2 and SO(3). Let Np � (2L)2 represent the number of sampling points ω in a given
pixelization of S2. The quantity 2L represents the mean number of sampling points in the
position variables θ and ϕ, or θ0 and ϕ0. A simple extrapolation of the Nyquist-Shannon
theorem on the line intuitively associatesL ∈ N with the band limit, or maximum frequency,
accessible on that pixelization in the “Fourier” indices conjugate to θ and ϕ for the signals
and filters considered. For a sampling on 2L points in the direction χ the same band limit
L is associated with the conjugate Fourier index. Notice that in the wavelet formalism, the
dilation parameter a ∈ R∗+ must also be discretized for practical purposes.

Considering a simple quadrature, i.e., a discretization of the directional correlation
integral, each scalar product on the sphere has an asymptotic complexity O(L2). The
overall asymptotic complexity for the directional correlation (3.1), taking into account all
discrete ρ = (ϕ0, θ0, χ) on SO(3), is therefore of order O(L5). We consider fine sam-
plings of several megapixels on the sphere. To fix ideas, let us notice that the present NASA
WMAP precision experiment on the CMB provides maps of the celestial sphere of around 3
megapixels. For a sampling associated with a band limit around L � 103, the typical com-
putation times for (2L)2 multiplications and (2L)2 additions are of order of 10−2 seconds
on a standard processor. We take this value as a fair estimation of the computation time
required for a scalar product. Consequently, a unique O(L5) directional correlation would
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take several years at that band limit on a single standard computer. Moreover, depending on
the application, the directional correlation of multiple signals might be required. Typically,
thousands of simulated signals are to be considered for a Monte Carlo statistical analysis.
And for a wavelet analysis, multiple scales are to be considered for the filter. In conclusion,
the directional correlation analysis of functions on the sphere is absolutely unaffordable for
fine samplings with a band limit around L � 103 in θ , ϕ, and χ . This conclusion remains
when the use of multiple computers is envisaged. It is even strongly reinforced in the per-
spective of an analysis from finer pixelizations on the sphere. In particular, the forthcoming
ESA Planck CMB experiment will provide 50 megapixels maps, i.e., L � 4 × 103.

The overall asymptotic complexity for the standard correlation, taking into account
all discrete ω0 = (ϕ0, θ0) on S2, is of order O(L4). On a single standard computer, the
corresponding computation time through simple quadrature, at a band limitL � 103, would
be of the order of days. Such a calculation still remains hardly affordable, particularly when
multiple signals and multiple scales are considered.

3.3 Directional and Standard Correlations in Harmonic Space

The Wigner D-functions coefficients ̂〈R�|F 〉lmn of the directional correlation 〈R(ρ)�|F 〉
living on SO(3) are given as the pointwise product of the spherical harmonics coefficients
F̂lm and �̂∗

ln. The following correlation relation holds:

〈R (ρ)�|F 〉 =
∑
l∈N

2l + 1

8π2

∑
|m|,|n|≤l

̂〈R�|F 〉l
mn
Dl∗mn (ρ) , (3.3)

with
̂〈R�|F 〉l

mn
= 8π2

2l + 1
�̂∗
lnF̂lm . (3.4)

Indeed, the orthonormality of scalar spherical harmonics implies the Plancherel relation
〈R�|F 〉 = ∑

l∈N

∑
|m|≤l R̂�

∗
lmF̂lm. The action of the operator R(ρ) on a function G(ω)

in L2(S2, d�) on the sphere reads in terms of its spherical harmonics coefficients as:
̂[R(ρ)G]lm = ∑

|n|≤l Dlmn(ρ)Ĝln. Inserting this last relation for� in the former Plancherel
relation finally gives the result.

The standard correlation 〈R(ω0)�|F 〉 lives on S2 and could be decomposed in its
spherical harmonics coefficients. However, for non-axisymmetric filters, these coefficients
do not appear as a simple pointwise product similar to (3.4). The easiest way to express the
standard correlation in harmonic space is therefore to simply consider the relations (3.3)
and (3.4) with χ = 0.

4. Fast Algorithms

4.1 Band-Limitation

The wavelet formalism defined in Section 2 holds for any signal and any wavelet satisfy-
ing the admissibility condition (2.8), irrespectively of any band-limitation consideration.
However, the band-limitation represents a necessary condition for obtaining precise numer-
ical implementations. We therefore consider band-limited functions G at some band limit
L ∈ N on the sphere S2, i.e., Ĝlm = 0 for l ≥ L. From (3.4), the directional correlation of
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a band-limited signal F by a band-limited filter �, both with a band limit L on the sphere

is thus also band-limited, with the same band limit: ̂〈R�|F 〉lmn = 0 for l ≥ L.
In practice, the signals F may generally be very precisely approximated as band-

limited, through considerations relative to the physical data acquisition process. For the
typical wavelets described in Section 2, �a is also essentially band-limited, to very good
approximation, provided that not too fine scales are considered (a � 0). Under these
conditions, the wavelet coefficients ofWF

� (ρ, a) can therefore be calculated very precisely,
or even exactly on equi-angular pixelizations, at suitable analysis scales. This is the scope
of the fast directional correlational algorithms discussed in the next two subsections.

We do not consider here the question of the signal reconstruction from its wavelet
coefficients through formula (2.7). The corresponding numerical implementation would
require an explicit discretization of both the scales a and the SO(3) variable ρ. First steps
in that direction have been undertaken in [7].

4.2 Separation of Variables

The algorithm presented here for the directional correlation is based on the technique of
separation of variables.

The factorized form (2.1) of the spherical harmonics naturally enables one to compute
a direct spherical harmonics transform by separation of the integrations on the variables
θ and ϕ. Conversely, an inverse transform may be computed as successive summations
on the indices l and m, up to the band-limit L. Correctly ordering the corresponding
operations provides a calculation of direct and inverse spherical harmonics transforms in
O(L3) operations [10]. This separation of variables for the spherical harmonics transforms
may be performed on iso-latitude pixelizations on the sphere, i.e., pixelizations for which the
sampling in θ is independent of ϕ, but where the sampling in ϕmay conversely depend on θ .
This is the case for equi-angular pixelizations on the sphere. At a resolutionL ∈ N, 2L×2L
equi-angular pixelizations are defined by a uniform discretization in 2L samples both for
the angles θ and ϕ. Such a pixelization scheme defines pixels with areas varying drastically
with the co-latitude [31]. In particular, on a 2L× 2L equi-angular grid, a sampling result
on the sphere states that the spherical harmonics coefficients of a band-limited function
with band-limit L may be computed exactly as a finite weighted sum, i.e., a quadrature, of
the sampled values of that function [10]. HEALPix pixelizations (Hierarchical Equal Area
iso-Latitude Pixelization) are also iso-latitude pixelizations, but where the sampling in ϕ
explicitly depends on θ . Such a pixelization scheme defines 12N2

side pixels of exactly equal
areas, for a resolution parameter Nside = 2k with k ∈ N. The computation of the spherical
harmonics coefficients of a band-limited function is not theoretically exact on HEALPix
grids, but can be made extremely precise by an iteration process [14]. These grids are notably
used for the NASA WMAP CMB experiment and the ESA Planck CMB experiment.

The very same reasoning based on the factorized form (2.6) of the Wigner D-
functions enables the calculation the inverse Wigner D-functions transform on SO(3)
required by (3.3) in O(L4) operations [19, 20]. Considering an iso-latitude pixelization
for the angles θ and ϕ on the sphere, the separation of variables for the WignerD-functions
transforms may be performed for any structure of the sampling in the third Euler angle χ ,
potentially depending on θ and ϕ. In particular, at a resolution parameter L ∈ N, one may
consider a uniform discretization in 2L samples for χ . Combined, for example, with an
equi-angular pixelization at the same resolution for the angles θ and ϕ on the sphere, this
defines a 2L× 2L× 2L equi-angular sampling in ρ = (ϕ, θ, χ) on SO(3).
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Consequently, the algorithmic structure based on the separation of variables on iso-
latitude pixelizations on the sphere may be summarized as follows. [18, 30] (a) Direct

spherical harmonics transforms, �̂ln and F̂lm: O(L3). (b) Correlation ̂〈R�|F 〉lmn in har-
monic space through (3.4): O(L3). (c) Inverse WignerD-functions transform 〈R(ρ)�|F 〉
on SO(3) through (3.3): O(L4). The global asymptotic complexity associated with the
directional correlation is thus reduced from O(L5) to O(L4) thanks to the separation of
variables. For band-limited signals and filters, the numerical precision of the algorithm
is simply driven by the precision of computation of the spherical harmonics coefficients.
It is therefore very precise on HEALPix grids notably, and theoretically exact on equi-
angular pixelizations.

4.3 Factorization of Rotations

The following algorithm for the directional correlation is based on the technique of factor-
ization of the three-dimensional rotations.

The three-dimensional rotation operators R(ρ) on functions in L2(S2, d�) on the
sphere may be factorized as [25, 28, 22]

R (ϕ0, θ0, χ) = R
(
ϕ0 − π

2
,−π

2
, θ0

)
R
(

0,
π

2
, χ + π

2

)
. (4.1)

The directional correlation relation (3.3) and the expression (2.6) of the WignerD-functions,
matrix elements of the operators R(ρ), therefore give an alternative expression for the
directional correlation of arbitrary signals F and filters � on the sphere. We get indeed

〈R (ρ)�|F 〉 =
∑

m,m′,n∈Z

̂〈R�|F 〉
mm′ne

i(mϕ0+m′θ0+nχ) , (4.2)

with the Fourier coefficients given by

̂〈R�|F 〉
mm′n = ei(n−m)π/2

∑
l≥C

dlm′m

(π
2

)
dlm′n

(π
2

)
�̂∗
lnF̂lm , (4.3)

where C = max(|m|, |m′|, |n|), and with the symmetry relation dl
m′m(θ) = dl

mm′(−θ) [27].
For a band-limited signal F and a band-limited filter� with band limit L ∈ N on the

sphere one has |m|, |m′|, |n| ≤ l < L. The factorized form of the imaginary exponentials
enables the calculation of the inverse three-dimensional imaginary exponentials transform
required by (4.2) in O(L4) operations. Just as for the Wigner D-functions transforms,
considering an iso-latitude pixelization for the angles θ and ϕ on the sphere, the separation
of variables for the three-dimensional imaginary exponentials may be performed for any
structure of the sampling in the third Euler angle χ . In these terms, the directional cor-
relation algorithm implemented on iso-latitude pixelizations for the angles θ and ϕ on the
sphere through the factorization of rotations is structured as follows. (a) Direct spherical
harmonics transforms, �̂ln and F̂lm: O(L3). (b) Correlation ̂〈R�|F 〉mm′n in harmonic
space through (4.3): O(L4). (c) Inverse transform 〈R(ρ)�|F 〉 through (4.2): O(L4). The
global asymptotic complexity associated with the directional correlation is thus also reduced
from O(L5) to O(L4) thanks to the factorization of rotations. 3 Again, for band-limited
signals and filters, the numerical precision of the algorithm is simply driven by the precision
of computation of the spherical harmonics coefficients.

3Notice that, while the Euler angles ϕ0 and χ are in the range ϕ0, χ ∈ [0, 2π [, the original range for θ0
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4.4 Optimization with Steerable and Axisymmetric Filters

In terms of our rough estimations of Section 3.2, the separation of variables reduces the
computation times on a standard computer from years to days for the directional corre-
lation of band-limited signals and filters with band-limit L � 103, typically sampled on
megapixels maps. However, as already discussed, if a large number of simulations have to
be analyzed, and at various scales of the filter, O(L4) calculations remain hardly affordable
even through the use of multiple computers.

Steerable filters are typically considered with a small number of interpolating func-
tionsM [see relation (2.13)], that is also a small azimuthal band-limitN [see relation (2.14)]
relative toL. The use of such steerable filters further reduces the asymptotic complexity for
the directional correlation. On the one hand, the directional correlation with a steerable filter
� reduces to a M-terms linear combination of standard correlations with the correspond-
ing basis filters �m. For M  L, the asymptotic complexity of a directional correlation
reduces to that of a standard correlation, with an a priori O(L4) complexity, to which is
simply added the O(L3) linear combination which arises from (2.13). On the other hand,
on iso-latitude pixelizations on the sphere, either the technique of separation of variables, or
the factorization of three-dimensional rotations can be applied to the standard correlation,
by setting χ = 0 in the relations (3.3) or (4.2), respectively. For a steerable filter with a
small azimuthal band limit N  L, the Fourier index n, with |n| < N , can be excluded
from asymptotic complexity counts. It readily appears that the corresponding asymptotic
complexity for the two algorithms hence reduces to O(L3), on iso-latitude pixelizations on
the sphere.4 At L � 103, our rough estimation of computation times is reduced from years
to tens of seconds. This renders the computation easily affordable, even when multiple
signals and multiple scales are considered.

Details on the algorithmic structure, computation times, memory requirements, and
numerical stability of the corresponding implementations on HEALPix and equi-angular
grids on the sphere may be found in [22] for the factorization of rotations, and in [30] for the
technique of separation of variables and the optimization with steerable filters. Notice in that
regard that a further optimization of the algorithm based on the separation of variables and
with steerable filters may be achieved on equi-angular pixelizations on the sphere. It relies on
the fact that WignerD-functions transforms may be decomposed into linear combinations of
spherical harmonics transforms, which therefore drive the overall asymptotic complexity
for the directional correlation. On 2L × 2L equi-angular pixelizations, these spherical
harmonics transforms may be computed in O(L2 log2 L) operations through the Driscoll
and Healy algorithm [10, 15, 16], if the associated Legendre polynomials are pre-calculated.
As discussed above, the sampling theorem on equi-angular pixelizations on the sphere also
renders the calculation exact.

The axisymmetry of a filter A(θ) on the sphere is an extreme case of the steerability,
for an azimuthal band limit N = 1: Âln = 0 for |n| ≥ 1. In that case, we already

is θ0 ∈ [0, π ], in order to cover the parameter space of SO(3). Considering also θ0 ∈ [0, 2π [ puts the
result on the parameter space of the three-torus T3, which covers twice the parameter space of SO(3).
In that context, the relation (4.2) is understood as a three-dimensional inverse Fourier transform, which
can be calculated in O(L3 log2 L) operations on a 2L × 2L × 2L equi-angular grid on SO(3) by the
use of the standard Cooley-Tukey fast Fourier transform algorithm. This optimization however does not
reduce the overall asymptotic complexity for the directional correlation, still driven by the computation
of (4.3) in O(L4) operations.

4Let us remark that the issue of the sampling in χ is not relevant for steerable filters. The proper rotations
by χ ∈ [0, 2π [ are indeed analytically driven, and thus with infinite precision, by the relation (2.13).
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emphasized that the proper rotation by χ has no effect on the filter and the directional
correlation reduces to a standard correlation. At each scale, the wavelet coefficients of a
signal with an axisymmetric filter therefore live on the sphere S2 rather than on SO(3). The
directional correlation relation (3.4) consequently reduces to the following standard form,
giving the spherical harmonics coefficients ̂〈R0A|F 〉lm of the correlation of a signal F with
an axisymmetric filterA as the pointwise product between the filter’s Legendre coefficients
Âl , and the spherical harmonics coefficients of the signal F̂lm:

̂〈R0A|F 〉
lm

= 2πÂ∗
l F̂lm . (4.4)

The correlation of a band-limited signal with a band-limited axisymmetric filter (Âl = 0
for l ≥ L) is therefore readily computed in the harmonic space of S2. On iso-latitude
pixelizations on the sphere, the direct spherical harmonics transform of the signal, and
the inverse spherical harmonics transform of the correlation, can simply be computed by
separation of variables in the spherical harmonics. This provides an algorithmic structure
with O(L3) asymptotic complexity, which again can be reduced to O(L2 log2 L) on equi-
angular pixelizations.

5. Conclusion

A new field of complex data processing has emerged in many areas of science. Scalar and
tensor data, often distributed on nontrivial manifolds, come up at continually increasing res-
olutions. Powerful signal analysis techniques need to be developed to process such datasets.

In this article, we first reviewed recent formal developments for the continuous wavelet
decomposition of signals on the sphere. Second, we detailed advances in the definition of
the corresponding fast directional correlation algorithms.

These generic developments can find many applications in various fields such as
computer vision (omnidirectional cameras, . . . ), biomedical imaging (functional magnetic
resonance imaging, . . . ), geophysics (signals on the Earth’s surface, . . . ), or astrophysics
and cosmology (signals on the celestial sphere, . . . ). In that regard, the important results
already obtained in cosmology through the wavelet analysis of the cosmic microwave back-
ground strongly illustrate the fact that the formalism developed represents a powerful tool
for complex data processing on the sphere [23].

References
[1] Abramowitz, M. and Stegun, I. (1965). Handbook of Mathematical Functions, Dover Publications Inc.,

New York.

[2] Antoine, J.-P. and Vandergheynst, P. (1999). Wavelets on the 2-sphere: A group-theoretical approach, Appl.
Comput. Harmon. Anal. 7, 262.

[3] Antoine, J.-P. and Vandergheynst, P. (1998). Wavelets on the n-sphere and related manifolds, J. Math. Phys.
39, 3987.

[4] Antoine, J.-P., Demanet, L., Jacques, L., and Vandergheynst, P. (2002). Wavelets on the sphere: Implemen-
tation and approximations, Appl. Comput. Harmon. Anal. 13, 177.

[5] Antoine, J.-P. and Vandergheynst, P. (2007). Wavelets on the two-sphere and other conic sections, J. Fourier
Anal. Appl. 13(4), 369–386.



492 Y. Wiaux, J. D. McEwen, and P. Vielva

[6] Bennet, C. L., et al. (2003). First year Wilkinson Microwave Anisotropy Probe (WMAP) observations:
Preliminary maps and basic results, Astrophys. J. Suppl. 148, 1.

[7] Bogdanova, I., Vandergheynst, P., Antoine, J.-P., Jacques, L., and Morvidone, M. (2005). Stereographic
wavelet frames on the sphere, Appl. Comput. Harmon. Anal. 19, 223.

[8] Brink, D. M. and Satchler, G. R. (1993). Angular Momentum, 3rd ed., Oxford Clarendon Press.

[9] Demanet, L. and Vandergheynst, P. (2003). Gabor wavelets on the sphere in, Proc. SPIE Conference on
Wavelets (Applications) in, Signal and Image Processing 5207, Unser, M. A., Aldroubi, A., and Laine,
A. F., Eds., 208 Bellingham, SPIE.

[10] Driscoll, J. R. and Healy, D. M., Jr. (1994). Computing Fourier transforms and convolutions on the 2-sphere,
Adv. in Appl. Math. 15, 202.

[11] Freeden, W. and Windheuser, U. (1996). Spherical Wavelet Transform and its Discretization, Adv. Comput.
Math. 5, 51.

[12] Freeden, W., Gervens, T., and Schreiner, M. (1998). Constructive Approximation on the Sphere, with Ap-
plications to Geomathematics, Oxford Clarendon Press.

[13] Freeman, W. T. and Adelson, E. H. (1991). The design and use of steerable filters, IEEE Trans. Pattern
Anal. Machine Intell. 13, 891.

[14] Górski, K. M., Hivon, E., Banday, A. J., Wandelt, B. D., Hansen, F. K., Reinecke, M., and Bartelman, M.
(2005). HEALPix—a framework for high resolution discretization, and fast analysis of data distributed on
the sphere, Astrophys. J. 622, 759.

[15] Healy, D. M., Jr., Rockmore, D. N., Kostelec, P. J., and Moore, S. (2003). FFTs for the 2-sphere— improve-
ments and variations, J. Fourier Anal. Appl. 9(4), 341.

[16] Healy, D. M., Jr., Kostelec, P. J., and Rockmore, D. N. (2004). Towards safe and effective high-order Leg-
endre transforms with applications to FFTs for the 2-sphere, Adv. in Comput. Math. 21, 59.

[17] Holschneider, M. (1996). Continuous wavelet transforms on the sphere, J. Math. Phys. 37, 8.

[18] Kostelec, P. J. and Rockmore, D. N. (2003). FFTs on the rotation group, technical report (SFI-03-11-060).

[19] Maslen, D. K. and Rockmore, D. N. (1997). Separation of variables and the computation of Fourier trans-
forms on finite groups, I, J. Amer. Math. Soc. 10, 169.

[20] Maslen, D. K. and Rockmore, D. N. (1997). Generalized FFTs—a survey of some recent results in, Proc.
DIMACS Workshop on Groups and Computation 28 Finkelstein, L. and Kantor, W., Eds., 183, American
Math. Soc., Providence, RI.

[21] McEwen, J. D., Hobson, M. P., Lasenby, A. N., and Mortlock, D. J. (2005). A high-significance detection
of non-Gaussianity in the WMAP 1-year data using directional spherical wavelets, Monthly Not. Roy.
Astron. Soc. 359, 1583.

[22] McEwen, J. D., Hobson, M. P., Mortlock, D. J., and Lasenby, A. N. (2007). Fast directional continuous
spherical wavelet transform algorithm, IEEE Trans. Sign. Proc. 55, 520.

[23] McEwen, J. D., Vielva, P., Wiaux, Y., Barreiro, R. B, Cayùn, L., Hobson, M. P, Lasenby, A. N, and Martínez-
González, E. (2006). Cosmological applications of a wavelet analysis on the sphere, J. Fourier Anal. Appl.
13(4), 495–510

[24] The Planck collaboration (2005). Planck scientific programme (ESA Planck Blue book), technical report,
(ESA-SCI(2005)1, astro-ph/0604069).

[25] Risbo, T. (1996). Fourier transform summation of Legendre series and D-functions, J. Geodesy 70, 383.

[26] Simoncelli, E. P., Freeman, W. T., Adelson, E. H., and Heeger, D. J. (1992). Shiftable multiscale transforms,
IEEE Trans. Information Theory 38, 587.

[27] Varshalovich, D. A., Moskalev, A. N., and Khersonskii, V. K. (1989). Quantum Theory of Angular Momen-
tum, 1st ed., reprint, World Scientific, Singapore.

[28] Wandelt, B. D. and Górski, K. M. (2001). Fast convolution on the sphere, Phys. Rev. D 63, 123002.

[29] Wiaux, Y., Jacques, L., and Vandergheynst, P. (2005). Correspondence principle between spherical and Eu-
clidean wavelets, Astrophys. J. 632, 15.

[30] Wiaux, Y., Jacques, L., Vielva, P., and Vandergheynst, P. (2005). Fast directional correlation on the sphere
with steerable filters, Astrophys. J. 652, 820.

[31] Wiaux, Y., Jacques, L., and Vandergheynst, P. (2005). Fast spin ±2 spherical harmonics transforms and
application in cosmology, preprint (astro-ph/0508514).



Complex Data Processing: Fast Wavelet Analysis on the Sphere 493

Received October 06, 2006

Revision received March 14, 2007

Signal Processing Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)
CH-1015 Lausanne, Switzerland

e-mail: yves.wiaux@epfl.ch

Astrophysics Group, Cavendish Laboratory, University of Cambridge
CB3 0HE Cambridge, UK

e-mail: mcewen@mrao.cam.ac.uk

Instituto de Física de Cantabria (CSIC-UC), E-39005 Santander, Spain,
and

Astrophysics Group, Cavendish Laboratory, University of Cambridge, CB3 0HE Cambridge, UK
e-mail: vielva@ifca.unican.es


