Simulation of Semi-Solid Material Mechanical Behavior
Using a Combined Discrete/Finite Element Method
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As a necessary step toward the quantitative prediction of hot tearing defects, a three-dimensional
stress—strain simulation based on a combined finite element (FE)/discrete element method
(DEM) has been developed that is capable of predicting the mechanical behavior of semisolid
metallic alloys during solidification. The solidification model used for generating the initial
solid-liquid structure is based on a Voronoi tessellation of randomly distributed nucleation
centers and a solute diffusion model for each element of this tessellation. At a given fraction of
solid, the deformation is then simulated with the solid grains being modeled using an elastovi-
scoplastic constitutive law, whereas the remaining liquid layers at grain boundaries are
approximated by flexible connectors, each consisting of a spring element and a damper element
acting in parallel. The model predictions have been validated against Al-Cu alloy experimental
data from the literature. The results show that a combined FE/DEM approach is able to express
the overall mechanical behavior of semisolid alloys at the macroscale based on the morphology
of the grain structure. For the first time, the localization of strain in the intergranular regions is
taken into account. Thus, this approach constitutes an indispensible step towards the develop-
ment of a comprehensive model of hot tearing.
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I. INTRODUCTION

Hot tearing is a spontaneous failure of semisolid
metallic alloys that results in an intergranular fracture
profile. This defect occurs during casting, near the end
of solidification, especially in low-solute-content alloys.
Hot tearing can be partially controlled by process
changes such as mold design and/or cooling condition
during solidification. However, a prerequisite to making
such process changes efficiently is the development of a
fundamental understanding of hot tearing formation
and an ability to model its occurrence.

There are two main phenomena that lead to hot
tearing: (1) a lack of liquid feeding at high fraction of
solid (gs) and (2) tensile or shear deformation transmit-
ted through the partially coherent mushy zone.!" 7 The
formation of hot tears is similar to porosity formation in
the sense that it is linked to a lack of liquid feeding in the
mushy zone, but requires additionally shear or tensile
deformation in order to separate, or pull apart, the solid
network. These deformations occur because of the
thermal gradients, solidification shrinkage, solid con-
traction, and mechanical constraints. Concurrently, the
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distribution and amount of intergranular fluid control
the feeding of localized regions within the mushy zone.

As grain morphology and size are characterized by a
length scale much smaller than the process dimension, it
is not surprising that most prior researchers have
focused on macroscale averaging methods for modeling
the interaction between a deforming solid skeleton and
the intergranular fluid movement.® ' In these works, a
representative volume element (RVE) is assumed to
contain a mixture of solid and liquid with local volume
fractions g5 and g, respectively, interacting through the
averaged conservation equations.'? Unfortunately,
such approaches are unable to describe any strain
inhomogeneity at the grain level, particularly at grain
boundaries where hot tears form. Furthermore, crack
initiation and propagation involve the creation of local
discontinuities, which are difficult to consider when
using an averaging approach.

In order to account for this granular nature of
semisolids and strain inhomogeneity at the grain level,
a number of so-called granular solidification models
have been developed. Early models of this type consid-
ered a regular arrangement of grains that describe the
ductility of the two-phase semisolid!"®! and liquid
feeding.!'¥ However, such regular arrangements of
grains do not approximate the microstructure very well
because all the solid grains percolate at the same time
(i.e., when g, reaches unity). Recently, Vernéde and
Rappaz!'” developed a two-dimensional (2D) solidifica-
tion model proposed originally by Mathier et al.,'®
which does not have this shortcoming. In this model,
grains are approximated by polyhedra based on the
Voronoi diagram of a random set of nuclei, resulting in
irregular grain arrangements. It has been shown that the
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solidification predictions of this model are close to those
of more refined approaches such as the pseudofront
tracking but at a much lower computational cost.!'>) The
model is therefore ideally suited for granular simulations
linking the behavior of a microscopic model to macro-
scopic properties of the material. Vernéde et al.l'”!®!
have used this 2D granular approach to simulate the
fluid flow caused by grain movement and solidification
shrinkage in an Al-Cu alloy. Phillion ez al.,'”* using a
similar approach based on 2D granular geometry,
predicted the mechanical behavior of an equiaxed
granular semisolid Al-Mg alloy.

Despite the novelty introduced by these granular
models, it is clear that the behavior of the mushy zone
cannot be modeled properly using 2D approaches
because both semisolid deformation and fluid flow
through a granular domain are inherently three-
dimensional (3D) problems. For example, although
simultaneous continuity of both the solid and the liquid
phases can exist in 3D, a topological feature of the 2D
geometry is that, for a given g, only one of the two
phases can be percolated through the domain.

In the present study, a 3D granular model based on
the discrete element method (DEM) has been developed
to predict the stress—strain behavior of a collection of
equiaxed-granular grains in the semisolid state at a given
g, DEM is a numerical method for computing the
motion and deformation of numerous particles. It was
proposed in the 1970s by Cundall and Strack®!! for rock
mechanics problems in which the continuity between the
entities does not exist. It has proven to be useful for
enhancing the understanding of %ranular and discontin-
uous materials in food science!”**! and mining applica-
21241 Moreover, DEM is becoming widely
accepted as an effective method for explaining2 experi-
mentally observed facts in multiphase media.*>>% At
present, DEM has evolved from various disciplines
including geomechanics, particle physics, and structural
engineering.

The model presented in this work has been developed
for a binary Al-2 wt pct Cu alloy because of its long
freezing range, propensity for hot tear formation, and
availability of experimental semisolid constitutive

tions.|

data.®'” The mechanical behavior of the solid grains
is modeled using a simple viscoplastic law, while the
intergranular liquid has been replaced by connector
elements. First, the methodology for generating the
granular grain structure based on a solidification model
is briefly described.®!! Second, a description of the
semisolid deformation model is provided with particular
attention given to the link between the output of the
solidification model and the input necessary for the
mechanical calculation. The simulations are carried out
using the finite element (FE) software Abaqus 6.8.1°”
Third, the deformation results from the FE/DEM
simulation are discussed and validated against experi-
mental data from the literature.[®!%’

II. MODEL DEVELOPMENT

A. Generation of Discrete Elements Using
a Solidification Model

The geometry for a FE/DEM simulation of semisolid
deformation is assumed to consist of equiaxed granular
solid grains surrounded by liquid films or channels. The
grains are meshed as solid elements. The liquid channels
are not meshed but are replaced by connector elements.
Generation of this geometry requires a methodology for
simulating the solidification of numerous grains. Previ-
ous work by the authors!"> %33 has resulted in the
development of a 3D granular solidification model
known as GMS-3D.P! which is able to generate the
required solid-liquid two-phase geometry at a fixed g.
In this model, the grain structure is derived from a
Voronoi tessellation of random nucleation centers. After
construction of a 3D Voronoi diagram, shown in
Figure 1(a), each Voronoi region or grain (Figure 1(b))
is subdivided into polyhedral volume elements with the
nucleation center as the summit and the Voronoi facet
as the base (Figure 1(c)). These pyramids are divided
further into tetrahedral elements to model solidifica-
tion by subdividing each Voronoi facet into triangles
(Figure 1(d)). As in the previous model designed for
2D geometries,!'> ¥ the solute exchange between

(a) (b)

(c) (d)

Fig. 1—A breakdown of the geometry describing the 3D granular solidification model, depicting (a) the entire model domain, (b) a polyhedral
grain, (¢) a pentahedral volume element, and (d) a single tetrahedral element showing both the solid portion (gray) and the liquid portion

(clear).B!
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tetrahedral pyramids is neglected to reduce the micro-
segregation model to a 1D problem in spherical coor-
dinates. Complete, or infinite, diffusion is assumed in the
liquid, with some back-diffusion assumed in the solid.
Thus, although all tetrahedral elements within a small
pyramid solidify at the same speed because they have the
same perpendicular length L and hence the same Fourier
number in the 1D solidification simulation, elements
from different pyramids solidify at different rates (i.e.,
different Fourier numbers). It also should be noted that
the facets of the solid polyhedral volume elements are
not exactly continuous at edges. Such approximations
are necessary to speed up the computation to predict
solidification and percolation of a large number of
grains.

As in the previous 2D solidification model,">'®! the
master diffusion equation controlling the evolution of
the solid—liquid interface in a tetrahedron can be derived
from a solute balance integrated over the solid and
liquid phases. This equation is given as follows?":

% %2 1 3 3 T «2 8C5 o
v x* (k, UQ+3(L x Lm+x<max —0 [1]

where Cs and Cj are the solid and liquid composition,
v¥ is the velocity of the interface, x* its actual posi-
tion, k, is the partition coefficient, Ds is the diffusion
coefficient in the solid, 7" is the cooling rate, and my is
the sl%pe of the liquidus line. The evolution of the
term gT . 1s determined by solving the diffusion equa-
tion in the solid phase using a finite difference scheme
with a Landau transformation to follow the inter-

face,*¥ and the boundary conditions
0C, *
axs o 0 and Cj,_.=C; =k,C\.

At the beginning of the solidification, the liquid
channels are very wide, whereas near the end, they are
narrow. Because small elements result in convergence

\¥Solid Phase

Liquid Phase
(@)

issues during FE analysis, coalescence between two
grains is assumed to occur when the thickness of the
liquid channel between two elements is less than 0.4 pct
of the average diameter of the grains. Although this
hypothesis is not physically accurate, because the
presence of thin liquid films of a few nanometers in size
have been previously observed near the end of solidifi-
cation,®¥ these small films are highly viscous and also
tend to stick two surfaces together. Thus, for hot
tearing, thin liquid channels act similar to solid—solid
bonds.

As g, increases, and the width of liquid channels is
reduced, coalescence of two neighbor grains occurs
(typically once g > 0.9).*% This behavior creates clus-
ters of increasing size, which ultimately percolate
throughout the domain (i.e., spread over the entire
domain width). In Section III, it will be shown that the
percolated solid at high g, controls the mechanical
resistance of the mushy zone.

B. FEM Mechanical Calculation

The output of the solidification calculation at a given
value of g is a set of solid tetrahedral elements, with
each one being in solid contact with three other solid
elements belonging to the same grain. The fourth facet is
either in solid contact with the symmetric element of the
neighbor grain or is separated from it by a liquid
channel if coalescence has not yet occurred at that
location (Figure 1). This output is then translated into a
finite element mesh using a C+ + subroutine within
GMS-3D, which also automatically creates the Abaqus
control file. As is shown in Figure 2, the following types
of elements are involved in the finite element mesh of
this geometry: (1) solid elements for the grains, (2)
multipoint constraint (MPC) elements for the continuity
between the facets of the same grain, (3) contact
elements, and (4) flexible connector elements for the
connectivity at grain boundaries. These last elements

Solid
Wedge

Solid
Tetrahedral

(b) (c)

Fig. 2—The different elements involved in the FE model together with the connections between them, depicting (a) one volume element
(Fig. 1(c)) decomposed into a set of tetrahedrons, (b) the MPC constraint between two nodes belonging to the same grain, and (¢) a connector

element between two nodes across a grain boundary.

METALLURGICAL AND MATERIALS TRANSACTIONS A

VOLUME 42A, JANUARY 2011—241



replace the liquid channels and are fitted to experimental
data as explained below in more detail.

In the present simulations of semisolid deformation,
the distribution of strain between the grains and in the
intergranular region is of interest, whereas the detailed
strain inhomogeneity within each grain is less relevant.
Therefore, a coarse mesh for each grain has been used to
simulate a 3D RVE that contains numerous grains.

1. Solid elements

Each solid tetrahedral element from the solidification
calculation is split into two solid elements, a tetrahedron
and a pentahedron, as shown in Figure 2(c). This split is
made on a plane parallel to the solid-liquid interface or
grain boundary. As a result, approximately 100 solid
elements are present per grain for the FEM mechanical
calculation. The mechanical behavior of these solid
elements is assumed to be elastoviscoplastic. For the
simulations at low g (i.e., g5 < 0.94), no solid bridges
have formed between the grains,***” and the mechanical
behavior of the free solid grains is relatively unimportant
because most deformation is concentrated in the liquid
films and because the stresses in the solid rarely exceed
the yield stress. However, for simulations at high g, the
mechanical behavior of a domain containing numerous
grain clusters is dictated increasingly by the behavior of
the percolated grains. Physically, the mechanical behav-
ior of each individual solid grain is anisotropic due to
orientation dynamics (glide and climb) along preferred
planes. Although such behavior is taken into account in
detailed forming process models of solid materials,** %!
an idealized isotropic and elastoviscoplastic model is
considered for the solid phase owing to the high number
of randomly oriented grains in each cluster of the RVE.
This simplified constitutive description has been used
previously for examining the mechanical behavior of
Al-Cu alloys.P#4142] The isotropic elastic modulus
E = 10 GPa and isotropic Poisson coefficient vy = 0.30
are taken from Reference 8. As no hardening is observed
in the experimental results of the AI-Cu alloy at high
temperature,*'*?! the flow stress behavior of each grain
beyond the elastic limit is assumed to be perfectly plastic
and based on the following Norton-Hoff law:

() = k- 2]

where o is the stress, ¢ is the strain rate, k is a flow stress
coeflicient, and m is the strain-rate sensitivity coefficient
of the material. Since the model is applied only over the
range 0.9 < g, < 1 and since the m and k do not change
significantly over the corresponding range of tempera-
ture,*!! constant values of m and k have been used. The
values of k = 54.4 MPa s and m = 0.195 are taken from
Reference 41. Please note that when g, = 1, Eq. [2] must
predict the mechanical behavior measured in a fully
solid specimen.

2. MPC elements

As explained previously, each tetrahedron shown in
Figure 2 solidifies independently from its neighbors
within any given grain without exchanging solute. Thus,
the continuity between the facets of each grain is not
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conserved along the solid—liquid interface. In order to
conserve continuity within a grain, MPC elements are
used to tie the facets of each grain to its own neighbors.
The MPC element joining two nodes provides a
universal connection between their degrees of freedom,
ensuring that the displacement of one node is identical
to that of its neighbor.

3. Contact elements

To prevent penectration between grains, contact
elements are placed at the solid-liquid boundary of
each grain. For this contact surface, a frictionless hard
contact pressure—overclosure relationship is used. Thus,
when surfaces are in contact, the pressure resulting from
this interaction is transmitted, whereas the surfaces
separate if the contact pressure reaches a value of zero.
Computational cost is decreased using a finite-sliding,
surface-to-surface contact formulation.*” In Abaqus,
this formulation uses a path-based tracking algorithm
that carefully considers the relative paths of points on
the slave surface with respect to the master surface,
within each increment, in order to determine the contact
zone.??

4. Flexible connector elements

The connectivity between two neighbor grains prior
to coalescence is modeled using connector elements. As
shown in Figure 2, each connector consists of one link-
spring element and one axial damper element that act in
parallel to approximate the effects of the intergranular
liquid phase. The link-spring simulates the effect of the
hydrostatic pressure within the liquid and thus controls
the tensile forces required to separate two grains in a
direction normal to the grain facets. This is because only
the normal displacement leads to a volume change
within the liquid and consequently to a change in
hydrostatic pressure. The damper operates on the
relative velocities of the grains, acting as a dashpot
between the grains, which simulates the viscosity effects
of the intergranular liquid and thus controls the shear
forces between two grains.

The result of the link-spring and the axial damper
replacing the liquid is a surface force vector between
grains that contains the following components: a normal
component (¢,) and two shear tractions (#, f,). The
nominal strain thus can be defined as follows:

Up Uy _ Ue

=% a=’ 3

where u,, u,, and u, are the three corresponding dis-
placement components and /, is the original thickness
of the liquid channel between the two grains. Further-
more, the corresponding force exerted by the spring-
damper connector can be written as follows:

t, K 0 0 &n cl(m\.
t]=(0 0 0 & | + ik / [4]
to 0 0 0 &e e

where (n, s, e) are the components of the unit vector
along the damper, / is the increasing rate of the length of
the damper, A4 is the area of the facet covered by each
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damper, K is the elastic modulus of the spring, and C is
the damping coefficient of the damper. The damping
coefficient can be thought of as a force per relative
velocity. Although several types of elements in Abaqus
allow the user to define a flexible joint, the cohesive
element COH3D6 with nil shear modulus was used for
the spring in this simulation, and the CONN3D2
element was used for the damper.

At present, constant values of C and K have been
used, as the model is applied only over the range
0.9 < gs < 1, which corresponds to the vulnerable range
for hot tears formation and thus the interesting range
for hot tearing simulations. The values of C and K were
determined as follows. First, stress—strain curves
obtained from a series of tensile deformation simula-
tions were generated for a given g, strain rate, and
different values of C and K. Second, these stress—strain
curves were compared with semisolid tensile test exper-
imental results.”® The values of C and K giving the best
fit were determined and then used for all other
simulation results. More details on this fitting proce-
dure are provided in Section III. Although constant
values of C and K have been used for the present work,
it is clear that the liquid film resistance to separation
and shear actually depends on its ability to be fed and
thus on its location within the domain, as shown in 2D
by Vernéde er all'™ This type of feeding calculation is
currently being developed and will be coupled itera-
tively, in a future work, to the present model so that the
C and K values of each flexible connector can be varied
during the simulation.

C. Domain Size and Boundary Conditions

As shown in Reference 43, the FE/DEM granular
model requires a domain containing a minimum of 700
grains in order to accurately model semisolid deforma-
tion. Above this number, the behavior of the domain
does not depend on the number and/or distribution of
grains (i.e., the domain can be considered as a RVE of
the mushy zone). In the simulations described below, the
number of grains within the RVE is 864, with an average
grain size of 100 um. Symmetry boundary conditions
are imposed on the surfaces x =0, y =0, and z =0,
while the surfaces y = L, and z = L. are free to move
and the surface x = L, is connected to a reference node.
The variables L., L,, and L. refer to the length of the
RVE along the x, y, and z directions, respectively. To
deform the RVE, an imposed displacement is applied to
the reference node linked to the surface x = L, (i.e., a
Dirichlet condition with fixed displacement is imposed
on this boundary). The use of a reference node enables
the bulk semisolid mechanical behavior to be obtained
directly from the calculated force—displacement curve at
this location.

III. RESULTS AND DISCUSSION
A. Determination of C and K

The damping coefficient C and spring constant K for
the flexible connectors are determined via a fitting
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Fig. 3—A comparison between tensile test experimental results for
Al-2 wt pet Cu®! and the results of the model for g = 0.94 and for
each (@) spring moduli K and (b) damping coefficients C.

exercise and comparison with experimental data
obtained for an Al-2 wt pct Cu semisolid specimen.™
First, it must be noted that in order to deform the RVE
at a uniform strain rate &, the velocity of the reference
point is increased abruptly from zero to a uniform
velocity given by (& x Ly). As the bulk stress of a
semisolid material resulting from its viscosity (average
“viscosity’’ of the solid and liquid) is a function of the
velocity, the initial simulated stress—strain behavior
presents a sharp stress increase. A similar initial stress
increase is also actually observed in experimentallﬁy
measured semisolid tensile stress—strain curves.®*¥
According to this initial increase, the damping coeffi-
cient C can be estimated, while K can be estimated from
the slope of the stress—strain curve after this initial
transient.

The fitting exercise is shown in Figure 3, in which the
simulated bulk stress—strain curves obtained at g; = 0.94
and &= 0.001s~! for various values of K (Figure 3(a))
and C (Figure 3(b)) are compared with tensile test
experimental results at the same g..!*! In this figure, the
experimental curve is shown as a solid line, while the
simulated curves are shown as dashed lines with
symbols. As is shown when comparing the curves of
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Figures 3(a) and 3(b), the initial stress increase is a
function of C but not of K. However, the slope of these
curves after the primary increase depends only on K but
not on C. Using this series of simulations, a value of
C =2 x 10° N s/m for the damping coefficient and a
value of K = 2.3 MPa for the elastic modulus of the
spring were chosen. These values will be used in all
simulation results presented hereafter. Note also that,
since there is no failure model included in the numerical
computations, the stress—strain curves do not exhibit the
maximum observed in the experimental data.

B. Tensile Deformation

In Figure 4, a comparison is made between the
simulated stress—strain predictions and the experimental
results for the same Al-2 wt pct Cu alloy from!™® over a
range of fractions of solid between 0.92 and 0.98 at a
strain rate of é = 0.001 s~'. Beginning with the exper-
imental data, it is shown that, for all tests, the stress
increases with increasing strain as expected and reaches
a maximum value o,,,, before failure occurs. However,
two different types of behavior are observed. For
gs = 0.92, 0.94, and 0.96, the stress gradually increases
until it reaches the maximum value o,,,,, Whereas at
gs = 0.98, the stress increase is larger because more
grains have percolated, thus increasing the stiffness of
the semisolid material. Some hardening is also visible in
all four curves. During the initial stages of deformation,
the role of the percolated solid is dominant, but once the
percolated solid yields, the behavior is dictated mainly
by the contact and deformation of the free grains.
Hence, although the behavior of the solid grains is
actually elastic—perfectly plastic, the behavior of the
entire semisolid material is not, as is shown in Figure 4.
Instead, it undergoes geometric strain hardening!'”
during deformation. An initial stress increase can also
be observed in the results for g; = 0.94 and g, = 0.98.
In the same figure, the results of the FE/DEM model
are also presented. As is shown, they correctly reproduce

3.5

2.5 1

Stress [MPa]

/ = =
0 0.002 0.004 0.006 0.008 0.01
Strain

Fig. 4—A comparison between the tensile experimental results of
partially solidified Al-2 wt pct Cu alloys® (continuous curves) and
simulation results (dashed line curves) for the following fractions of
solid: x g = 0.92 (T = 883 K (610 °C)); O g; = 0.94; O g, = 0.96
(T = 858 K (585 °C)); A g5 = 0.98 (T' = 824 K (551 °Q)).
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the general trends of the experimental curves for the
four values of g, with gy = 0.94 showing the best
agreement since it was used in Figure 3 for the calibra-
tion of C and K.

To investigate the tensile mechanical behavior of the
model at different strain rates, the simulated results are
compared with experimental results of Reference 10,
which also used an Al-2 wt pct Cu alloy. As is shown in
Figure 5, the results of the model accurately reproduce
the general trends of the experimental curves obtained
at 0.001 and 0.004 s ' strain rates. The values for C and
K were identical in both cases and were taken from
Section III-A. The results from two other simulations,
using strain rates of 10 * and 10 % s ', also are shown.
Although these results could have been produced using
an averaging constitutive model (e.g., The one by
Mathier containing an internal variable related to the
evolution of coherency)!'” containing an internal var-
iable related to the evolution of coherency, such
alternative approaches cannot give access to stress
and strain inhomogeneities such as those shown in
Figures 6 and 7.

Figure 6 shows strain contours from cross sections
within the RVE for three values of gg (gs = 0.92, 0.96,
and 0.98), outlined in Figure 4, when the overall or bulk
strain is 1 pct. The deformation is horizontal and to the
right. As is shown, strain localization is concentrated
within the liquid films located between the grains (i.e., is
accommodated by the dampers and springs). For the
two images at lower g, Figures 6(a) and (b), the strain is
fairly well distributed in the liquid channels perpendic-
ular to the tension direction. However, when g, = 0.98
(Figure 6(c)), the strain appears to be localized along
few preferential paths. Also, the maximum local strain
for g, = 0.98 is predicted to be about four times larger
than the maximum local strain for g = 0.92 and is two
orders of magnitude larger than the bulk strain of the
RVE.

Figure 7 shows the contour plots of the Von Mises
stress in (MPa) for g = 0.98 at (1) the boundary surface
and (2) a slice inside the RVE. In this figure, it is shown

8
-+=1e-2[1/S] e
71 =2=4e3[1/9] PR
6] —=-1e3 (18] e
—_ =%=1e-4[1/S] _A4~
c - =1
= 54 A7 -l
[
(7]
(]
:
(/2]
o ¥ , . ,
0 0.002 0.004 0.006 0.008

Strain

Fig. 5—A comparison between the tensile experimental results of
partially solidified Al-2 wt pct Cu alloys!'” (continuous curves) and
simulation results (dashed line curves) for gs = 0.99 (T = 813 K
(540 °C)) and different strain rates.
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(b)

E, Max. Prin
(Avg: 75%)

(c)

Fig. 6—Finite-element simulation showing strain localization
through an isothermal mushy zone volume element (1.2 x 1.2 x
6 mm”) under tensile deformation for (a) go = 0.92, (b) g, = 0.96,
and (¢) g; = 0.98.

that percolated grains transmit the load from the left to
the right face of the RVE. In this case, solid bridges act
as the main obstacles to the fracture of the semisolid
material in tension.
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Fig. 7—Contour plot of the Von Mises stress in MPa for tensile
deformation at gg = 0.98 on (a) outer surface (b) a cross section
inside the domain.

C. Compression Deformation

It is well known that the tensile and compressive
behavior of semisolid materials are drastically differ-
ent.B*%% In the mushy zone, compressive deformation
is similar to the squeezing of a sponge, causing the
intergranular liquid to flow out and the pressure within
this liquid to increase. Figure 8 shows the simulated
mechanical behavior of the mushy zone in compression
as a function of g, for the same parameters C and K used
in tension. Although at low strain, the behavior of the
semisolid in tension and compression is similar, the
compressibility of the mush decreases and approaches
the incompressibility of a fully solid structure (g; = 1) as
soon as the liquid between the grains has been removed
and the grains come into contact with each other. The
start of incompressibility is defined as the inflection
point in a stress—strain curve (i.e., d°o/de* = 0) and is
the point in the model when the contact eclements
activate at the grain boundaries. As is shown by the
large black circles in Figure 8, the start of incompress-
ibility occurs at ¢ = 0.003 for g, = 0.98 but increases to
e =0.011 and then ¢ = 0.016 when g, decreases to 0.96
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Fig. 8—Compression behavior of Al-2 wt pct Cu alloys. Stress vs
strain curves from the model for the following fractions of so-
lid: x g¢ = 0.92; 0 g = 094; + g = 0.96; A g¢ = 0.98. The large
black circles represent the beginning of incompressibility.

and 0.94, respectively, and more liquid is present
between grains. However, please note that the maximum
stress that can be modeled is limited because of contact-
convergence difficulties.

D. Shear Deformation

Figure 9 shows the simulated mechanical behavior of
the RVE under shear deformation and the experimental
results of an Al-2 wt pct Cu alloy being sheared in the
semisolid state between two coaxial cylinders.®! The
experimental test consists of imposing a constant veloc-
ity to the inner cylinder along the longitudinal axis while
the experimental test specimen is held at a given
temperature. As the spacing between the two cylinders
remains constant, this test did not correspond to a
simple shear but rather to an in-plane shear with a small
tensile component along the cylinder radius. Although
this component is small at low strain, it becomes
important and leads to higher values of the Von Mises
stress with increasing strain.

As is shown in Figure 9, the agreement between the
simulated shear deformation curves and the experi-
mental results is satisfactory for low strain and low g
(gs = 0.92, i.e., prior to the formation of solid bridges).
At higher strain, however, the calculated stress for
gs = 0.92 is below the experimental curve. This result
can probably be attributed to the difference between
the simulated simple shear and the experimental in-
plane shear. At high g, (gs = 0.98), the model also
reproduces correctly the initial behavior of the mushy
zone but then overpredicts the stress beyond approx-
imately ¢ = 0.3. This deviation can be linked to the
rupture of the connections (bridges) between percolated
grains. Although thin films of liquid do not allow two
grains to be pulled apart in tension without liquid
feeding, these films do allow grains to slip across each
other because no volume change is involved. As
mentioned, this model assumes the thin liquid channels
to act similar to solid—solid bonds. To reproduce the

246—VOLUME 42A, JANUARY 2011

1.4 | =#-95=0.98,1x10-3 [1/5] L

) ——Experimental (a) P
T 4.2 | =9-95=0.96,1x103 [1/] V4
s | =magg=0.92, 1x10-4 [1/s]
et J | s
3 11 == Experimenta (b‘)ﬂ"{
£ o8] ’
7 2
8 0.6
®
= 04
5
> 0.2

0 : -
0 0.005 0.01 0.015 0.02
Strain

Fig. 9—Shear behavior of Al-2 wt pct Cu alloys. Stress vs strain
curves from experimental data (continuous curves) (¢) T = 823 K
(550°C), é=1x103s"" and () T=883K (610°C), é=1Ix
104 5718 and from the model (dashed line curves) for the following
fractions of solid: x g; = 0.92; O g = 0.96; and A g, = 0.98.
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Fig. 10—A comparison of the mechanical behavior of the mushy
zone under shear, compressive, and tensile loading at g = 0.98.

experimentally observed behavior of the mushy zone at
high g, under shear deformation, a failure criterion of
the solid—solid bonds in shear would need to be added
to the model.

E. Comparison of the Three Deformation Modes

The simulation results presented for tension, com-
pression, and shear show that the model can predict
different behavior for the different mechanical tests.
Figure 10 shows a comparison of the behavior of the
mushy zone under these three deformation modes. As is
shown, the deformability (i.e., the amount of strain for a
given stress) is lower in compression as compared with
tension because the intergranular liquid can flow out to
allow for solid contact between grains. The inflection
point and/or the beginning of incompressibility is the
starting point of the deviation of the compressive curve
from the tensile curve. Below this point, the mechanical
behavior of the mushy zone is controlled by the
deformation of the percolated grains and the connector
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elements and thus is the same. However, above the
inflection point, the mechanical behavior in compression
is affected by the solid contacts between the grains,
whereas in tension, the behavior remains controlled only
by the deformation of the percolated grains and the
connector elements.

Under shear deformation, the normal link-spring
behaves in a similar fashion to intergranular liquid
and allows the solid grains to slip over each other. In
this case, the semisolid deformability is higher as
compared with the tensile behavior. The experimental
results for aluminum alloys also demonstrate this
variability and show different semisolid tension, com-
pression, and shear mechanical behaviors.

IV. CONCLUSIONS

A 3D granular model has been developed based on
discrete elements to predict the mechanical behavior of
semisolid metallic alloys. The initial geometry of the
semisolid at a given volume fraction of solid was
obtained from a 3D granular model of solidification.*"
The elements making up the solid grains were modeled
using elastoviscoplastic behavior, along with contact
surfaces to limit intergrain penetration. The grain
interactions prior to complete solidification (i.e., the
behavior of the intergranular liquid) were simulated
through the use of connector elements. Each connector
consisted of one link-spring element and one damper
element acting in parallel to approximate the hydrostatic
and shear behavior of the liquid. The model predictions
have been validated successfully against prior literature
experimental results,™” using only two fixed parame-
ters. Both parameters C and K were held constant over
the range of g investigated.

In comparison with averaging methods using internal
variables and/or complex behavior, the combined FE/
DEM approach can predict the inhomogeneous strain
distribution in a semisolid RVE. This technique can be
used because the interest with respect to hot tearing and
other solidification defects lies in understanding the
mechanical behavior of a collection of grains with a
random distribution of nucleation centers, whereas the
detailed deformation within a single grain and/or the
fluid velocity within a single channel can be approxi-
mated. The limitations of this model are as follows:

1. The model can predict the behavior of the mushy
zone only in the range of g5 between 0.9 and 1. For
gs lower than 0.9, the mechanical properties of the
solid grains and the values used for C and K must
be reevaluated.

2. The model can predict the behavior of the mushy
zone only under small deformations and limited
strain rate.

3. The model cannot predict the behavior of the
mushy zone after damage initiation because such
prediction requires the consideration of the inter-
granular liquid flow induced by solidification
shrinkage and by the opening of wet grain bound-
aries. This limitation is the subject of current

METALLURGICAL AND MATERIALS TRANSACTIONS A

research by the authors to localize the pressure
drop in the remaining liquid and to propose a
defect nucleation criterion.

ACKNOWLEDGMENTS

The authors would like to thank the Swiss Compe-
tence Centre for Materials Science and Technology
(CCMX) and partner companies within the thematic
area ‘“Multi-scale, multi-phenomena modelling of
metallic systems” for funding this research.

REFERENCES

1. J. Campbell: Mater. Sci. Technol., 1991, vol. 7, pp. 885-94.

2. T.W. Clyne and G.J. Davies: ICME, 1975, vol. 68, pp. 238-44.

3. T.W. Clyne, M. Wolf, and W. Kurz: Metall. Trans. B, 1982,
vol. 13B, pp. 259-66.

4. J.A. Dantzig and M. Rappaz, eds.: Solidification, EPFL Press,
Lausanne, Switzerland, 2009.

5. J.M. Drezet, O. Ludwig, M. M’Hamdi, H.G. Fjaer, and C.L.
Martin: Light Metals, TMS, Warrendale, PA, 2004, pp. 655-60.

6. C.A. Monroe, C. Beckermann, and J. Klinkhammer: in Modeling
of Casting, Welding, and Advanced Solidification Processes—Xii,
S.L. Cockcroft and D.M. Maijer, eds., TMS, New York, NY,
2009.

7. M. Rappaz, J.M. Drezet, and M. Gremaud: Metall. Mater. Trans.
A, 1999, vol. 30A, pp. 449-55.

8. O. Ludwig, J.M. Drezet, C. Martin, and M. Suéry: Metall. Mater.
Trans. A, 2005, vol. 36A, pp. 1525-35.

9. V. Mathier, J.M. Drezet, and M. Rappaz: Model Simul. Mater.
Sci. Eng., 2007, vol. 15, pp. 121-34.

10. V. Mathier, S. Vernéde, P. Jarry, and M. Rappaz: Metall. Mater.
Trans. A, 2009, vol. 40A, pp. 943-57.

11. M. M’Hamdi, A. Mo, and C.L. Martin: Metall. Mater. Trans. A,
2002, vol. 33A, pp. 2081-93.

12. J. Ni and C. Beckermann: Metall. Trans. B, 1991, vol. 22B,
pp. 349-61.

13. D.J. Lahaie and M. Bouchard: Metall. Mater. Trans. A, 2001,
vol. 32A, pp. 697-705.

14. W.O. Dijkstra, C. Vuik, A.J. Dammers, and L. Katgerman: in
Solid Proc & Microst: Symp Hon, W. Kurz, M. Rappaz, C.
Beckerman, and R. Trivedi, eds., TMS, New York, NY, 2004,
pp. 151-56.

15. S. Vernéde and M. Rappaz: Acta Mater., 2007, vol. 55, pp. 1703—
10.

16. V. Mathier, A. Jacot, and M. Rappaz: Model Simul. Mater. Sci.
Eng., 2004, vol. 12, pp. 479-90.

17. S. Vernéde, J.A. Dantzig, and M. Rappaz: Acta Mater., 2009,
vol. 57, pp. 1554-69.

18. S. Vernéde, P. Jarry, and M. Rappaz: Acta Mater., 2006, vol. 54,
pp. 4023-34.

19. A.B. Phillion, S.L. Cockcroft, and P.D. Lee: Acta Mater., 2008,
vol. 56, pp. 4328-38.

20. A.B. Phillion, S.L. Cockcroft, and P.D. Lee: Model Simul. Mater.
Sci. Eng., 2009, vol. 17, pp. 366-75.

21. P.A. Cundall and O.D.L. Strack: Geotechnique, 1979, vol. 29,
pp. 47-65.

22. Y.J. Sun and W.L. Xu: I5th Int. Conf. on Mechatronics and
Machine Vision in Practice (M2vip), Auckland, New Zealand,
2008, pp. 201-07.

23. K.M. Wright, J. Sprunt, A.C. Smith, and B.P. Hills: Int. J. Food
Sci. Tech., 2003, vol. 38, pp. 351-60.

24. P.A. Cundall: Proc. of the Institution of Civil Engineers-Geotech-
nical Engineering, 2001, vol. 149, pp. 41-47.

25. M.A. Delele, E. Tijskens, Y.T. Atalay, Q.T. Ho, H. Ramon, B.M.
Nicolai, and P. Verboven: J. Food Eng., 2008, vol. 89, pp. 33-41.

26. G. Frenning: Comput. Meth. Appl. Mech. Eng., 2008, vol. 197,
pp. 4266-72.

VOLUME 42A, JANUARY 2011-—247



27

28.

29.

30.
31.

32.

33.

34.

35.

36.

37.

K. Han, D. Peric, A.J.L. Crook, and D.R.J. Owen: Eng. Compu-
tation, 2000, vol. 17, pp. 593-619.

A. Munjiza and K.R.F. Andrews: Int. J. Num. Meth. Eng., 2000,
vol. 49, pp. 1377-96.

H. Peron, J.Y. Delenne, L. Laloui, and M.S. El Youssoufi: Com-
puters Geotechnics, 2009, vol. 36, pp. 61-69.

T.G. Sitharam: Curr. Sci., 2000, vol. 78, pp. 876-86.

A.B. Phillion, J.L. Desbiolles, and M. Rappaz: in Modeling of

Casting, Welding, and Advanced Solidification Processes—Xii,
Vancouver, Canada, S. Cockcroft and D. Maijer, eds., TMS,
Warrendale, PA, 2009, pp. 353-60.

Abaqus: Abaqus Theory Manual Version 6.8-2, RI 02909-2499,
2008.

A.B. Phillion, S. Vernede, M. Rappaz, S.L. Cockcroft, and P.D.
Lee: Int. J. Cast Met. Res., 2009, vol. 22, pp. 240-43.

V.R. Voller and S. Sundarraj: Mater. Sci. Technol., 1993, vol. 9,
pp. 474-81.

I. Farup, J.M. Drezet, and M. Rappaz: Acta Mater., 2001, vol. 49,
pp. 1261-69.

M. Rappaz, A. Jacot, and W.J. Boettinger: Metall. Mater. Trans.
A, 2003, vol. 34A, pp. 467-79.

M. Rappaz, .M. Drezet, P.D. Grasso, and A. Jacot: in Modeling
of Casting, Welding and Advanced Solidification Processes-X,

248—VOLUME 42A, JANUARY 2011

38.

39.

40.

41.

42.

43.

44,

45.

46.

D. Stefanescu, J. Waren, M. Jolly, and M. Krane, eds., TMS,
Warrendale, PA, 2003, pp. 53-60.

P. Van Houtte, A. Van Bael, and S. He: Proc. Of the 9th Int. Conf.
on Numerical Methods in Industrial Forming Processes, 2007,
pp. 159-64.

P. Van Houtte, A. Van Bael, and M. Seefeldt: 5th Int. Conf. on
Processing & Manufacturing of Advanced Materials, Vancouver,
Canada, 2006, pp. 3454-59.

P. Van Houtte, A. Van Bael, and M. Seefeldt: Fund. Deform.
Anneal., 2007, vol. 550, pp. 13-22.

B. Magnin, L. Maenner, L. Katgerman, and S. Engler: Mater. Sci.
Forum, 1996, vols. 217-222, pp. 1209-14.

P. Wisniewski and H.D. Brody: in Modeling of Casting, Welding,
and Advanced Solidification Processes, M. Rappaz, M.R. Ozgu,
and K.W. Mabhin, eds., TMS, Warrendale, PA, 1991, pp. 273-78.
M. Sistaninia, A.B. Phillion, J.M. Drezet, and M. Rappaz: 49th
Annual Conf. of Metallurgists, Vancouver, Canada, 2010.

S. Vernéde: Ph.D. Dissertation, Ecole Polytechnique Federale de
Lausanne, Lausanne, Switzerland, 2007.

D.G. Eskin and S.L. Katgerman: Prog. Mater. Sci., 2004, vol. 49,
pp. 629-711.

W.M. van Haaften, W.H. Kool, and L. Katgerman: Mater. Sci.
Eng. A, 2002, vol. 336, pp. 1-6.

METALLURGICAL AND MATERIALS TRANSACTIONS A



	Simulation of Semi-Solid Material Mechanical Behavior Using a Combined Discrete/Finite Element Method
	Abstract
	Introduction
	Model Development
	Generation of Discrete Elements Using a Solidification Model
	FEM Mechanical Calculation
	Solid elements
	MPC elements
	Contact elements
	Flexible connector elements

	Domain Size and Boundary Conditions

	Results and Discussion
	Determination of C and K
	Tensile Deformation
	Compression Deformation
	Shear Deformation
	Comparison of the Three Deformation Modes

	Conclusions
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 149
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 149
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 599
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
    /DEU <>
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.276 841.890]
>> setpagedevice


