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Abstract In former articles we have given a formula for the error committed when
interpolating a several times differentiable function by the sinc interpolant on a fixed
finite interval. In the present work we demonstrate the relevance of the formula through
several applications: correction of the interpolant through the insertion of derivatives
to increase its order of convergence, improvement of the barycentric formula, rational
sinc interpolants (with and without replacement of the (usually unknown) derivatives
with finite differences), convergence acceleration through extrapolation and improve-
ment of one-sided interpolants.

Mathematics Subject Classification (2000) Primary 65D05 · 41A80;
Secondary 65B05 · 65B15

1 Introduction

This paper is devoted to the interpolation of a several times differentiable func-
tion between equidistant nodes of a fixed finite interval. To be specific, let f ∈
C2K+1[−X, X ] with f (2K+2) absolutely integrable on [−X, X ], K ∈ N, K ≥ 2.
Assume that f has been sampled at the equidistant points xn = nh, n = −N , . . . , N ,
h = X/N and consider as in [7] the finite sinc interpolant

CN ( f, h)(x) =
N∑

n=−N

′′ fn sinc
(π

h
(x − xn)

)
, fn := f (xn), (1.1)
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342 J.-P. Berrut

where the double prime signals that the first and last terms of the sum should be halved,
and where the sinc function is given by

sinc(x) := sin x

x
.

If f is defined everywhere on (−∞,∞) (1.1) is a truncation of its cardinal series.
To such a function and to a interval length h ∈ R, one indeed associates the sinc
interpolant or cardinal series

C( f, h)(x) :=
∞∑

n=−∞
sinc

(π

h
(x − xn)

)
fn . (1.2)

(1.2) is known to be an excellent approximant of f if the latter is very smooth and
decays rapidly enough as |x | → ∞. For example, one has C( f, h)(x) = f (x) ∀ x
when f belongs to the Paley–Wiener class with exponent π/h [19,21]; also, C( f, h)(x)

converges exponentially toward f (x) when f is analytic in a symmetric strip about
the real axis and decays fast enough on the lines that make up the boundary of the
strip [19,21]. One obviously has [7]

CN ( f, h)(x) = C( f ∗, h)(x),

where

f ∗(x) =
⎧
⎨

⎩

f (x), |x | < X,

f (x)/2, |x | = X,

0, |x | > X.

f ∗ usually has jumps at x = ±X .
In the article [8], we have given the following formula for the error CN ( f, h) − f

on the interval.

Theorem 1.1 Let f and CN ( f, h) be defined as above. Then the difference CN ( f, h)−
f is given by

CN ( f, h)(x) = f (x) + (−1)N

2π
sin

(π

h
x
) K∑

k=1

b2k(x)(2h)2k + O(h2K+2),

(1.3)

b2k(x) := 2(1 − 4−k)
B2k

(2k)!

[(
f (y)

x − y

)(2k−1)

(X) −
(

f (y)

x − y

)(2k−1)

(−X)

]
,

where the derivatives are taken with respect to y.

One may write
∑

b2k(x)h2k and replace 1 − 4−k with 4k − 1 in b2k , but the above
notation will have advantages, e.g., for Theorem 7.1. In [8], we give a precise expres-
sion for the remainder term as well as the corresponding formula for an even number
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First applications of a formula for the error of finite sinc interpolation 343

of interpolation points. The present paper discusses first uses of the formula which
occurred to the author after its discovery.

Section 2 demonstrates the most obvious use of the formula, namely the successive
subtraction from CN of the terms corresponding to increasing powers of h to acceler-
ate convergence. A formula for the derivatives of the Cauchy kernel as a function of
those of f greatly simplifies the process. In view of the singularity of the kernel, the
formula is merely efficient far enough from the extremities X and −X . In Sect. 3, we
precise this fact by deriving that the evaluation point should not be closer to ±X than
half the steplength.

Section 4 improves upon the barycentric formula for the full sinc interpolant through
the application of (1.3) to accelerate the convergence of the denominator toward 1. In
Sect. 5, we extend this division process to finite interpolants. The result is impressive,
with a rest error close to machine precision with about 50 points for Runge’s function
and a complete elimination of the distance restriction to the extremities and of the
Gibbs phenomenon. Section 6 treats the realistic case in which no formula for the
derivatives of f at ±X is known and divided differences are used for their approxima-
tion. The results are perfect with centered differences while one-sided differences, as
they are based on polynomial interpolation between equidistant points, are unstable
for high orders, as expected. This leads to the conclusion that, whenever possible,
some values of the sample should be sacrified at the extremities when using (1.3) to
improve the approximation.

A formula such as (1.3) cries out for extrapolation. Section 7 gives the correspond-
ing formulae; their application in the example of a steep function yields machine
precision in the immediate vicinity of the extremities with 513 sample points. A last
section on one-sided interpolants gives the formula corresponding to (1.3) in that case
and an example where its use again leads to an excellent approximation.

2 Direct use of the formula for improving upon CN

The use of (1.3) that immediately comes to mind is the approximation of f with an
improved error of O(h2K+2) instead of O(h2) by subtracting from CN ( f, h) the term
consisting of the sum times the sine. The first issue to address then is the computation
of the derivatives of f (y)/(x − y) at the extremities as functions of the derivatives
of f , for which we assume here that formulae are known, a hypothesis which will
be lifted in subsequent sections. A useful formula for these derivatives is given in the
following lemma.

Lemma 2.1 Assume that f is � times differentiable at y �= x. Then

(
f (y)

x − y

)(�)

=
�∑

k=0

�!
k!

f (k)(y)

(x − y)�+1−k
. (2.1)

Proof By induction or with Leibniz’ rule of differentiation. 	
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344 J.-P. Berrut

Table 1 Interpolation errors for f (x) = cos(x) + sinh(5x) on [−1, 1] with N = 100

x 0 1 2 3 14

5.2632e-02 3.4790e-03 −5.3608e-07 1.0718e-10 −2.5979e-14 −3.3307e-15

1.5789e-01 2.9344e-03 −4.4994e-07 8.9756e-11 5.1070e-14 6.9944e-14

2.6316e-01 −4.0832e-03 6.1953e-07 −1.2248e-10 4.6629e-14 2.1760e-14

3.6842e-01 −2.3903e-03 3.5625e-07 −6.8813e-11 −8.8818e-15 −2.1316e-14

4.7368e-01 4.7508e-03 −6.8413e-07 1.1817e-10 1.2434e-14 9.7700e-15

5.7895e-01 1.7145e-03 −2.2127e-07 4.9631e-12 1.3678e-13 3.9080e-14

6.8421e-01 −4.7646e-03 1.9285e-07 1.0892e-09 −5.2616e-12 −7.1054e-15

7.8947e-01 −3.3723e-04 −7.3733e-07 3.9360e-09 −3.7744e-11 0

8.9474e-01 −2.4071e-02 1.4016e-04 −2.4982e-06 9.3449e-08 4.9738e-14

Inserted into (1.3), the formula shows that when f ∈ C∞[−X, X ] and all deriva-
tives at the extremities vanish, the convergence is spectral, i.e., faster than any power
of h. If X is large enough that they are all smaller than, say, machine precision ν, then
that holds in practice too. We will concentrate here on examples for which that is not
the case.

Example 1 We started with an entire function whose derivatives of all orders are very
simple, f (x) = cos(x) + sinh(5x), and approximated f on the interval [−1, 1]. We
interpolated with 2N + 1 = 201 nodes (h = 0.01) and evaluated all functions at 20
equidistant points, with none of them a node.

Table 1 contains numerical values: the first column displays x , the second the error
CN ( f, h)(x) − f (x), the third the error with CN ( f, h) corrected with the first term of
the sum in (1.3), i.e., CN ( f, h)(x) − (sin((π/h)x)b2(x)(2h)2)/2π − f (x), and the
remaining columns the error with the number K of terms given as the column heading.
We give the results for the x on one side of 0 only since those on the other side lie
qualitatively very close by.

The numbers show that the formula is very efficient with this relatively high number
of nodes and they confirm that the error decreases like the even powers of h̃ := 2h—
despite the presence of the sine factor containing h. They also reveal that the conver-
gence is the slower the closer one comes to the extremities.

This behaviour becomes more dramatic if we decrease N to 25, see Table 2: we
still have the decay as the powers of h̃2 in the center, while the improvement is much
slower close to the endpoints, if there is one at all. The reason for this diverse behav-
ior is the denominator present in the derivatives, recall Lemma 2.1. Not a problem
when x is far from the extremities, it becomes very small close to them, pushing the
derivatives of f (y)/(x − y) to larger and larger values as their order grows. If h is not
small enough, the increase in the derivatives may largely overcompensate the decay
in the powers of h̃, in which case the last term of the sum and the remainder term in
(1.3) dominate all others, making it impossible to extract f (x). This effect is even
reinforced by the Bernoulli numbers B2k , which are at most 1 up to k = 6, but then
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First applications of a formula for the error of finite sinc interpolation 345

Table 2 Interpolation errors for f (x) = cos(x) + sinh(5x) on [−1, 1] with N = 25

x 0 1 2 3 14

5.2632e-02 −6.3193e-02 1.5569e-04 −4.9800e-07 1.6833e-09 −5.9952e-15

1.5789e-01 −1.2553e-02 3.0775e-05 −9.8133e-08 3.2991e-10 9.3259e-15

2.6316e-01 7.5479e-02 −1.8311e-04 5.7923e-07 −1.9047e-09 −3.5527e-15

3.6842e-01 −4.9246e-02 1.1736e-04 −3.6265e-07 1.0499e-09 −1.5987e-14

4.7368e-01 −3.9421e-02 9.0786e-05 −2.5162e-07 −7.6173e-11 8.8818e-15

5.7895e-01 8.4033e-02 −1.7378e-04 7.9275e-08 1.8601e-08 −5.3291e-15

6.8421e-01 −2.5517e-02 1.7840e-05 1.3970e-06 −1.0447e-07 1.7906e-11

7.8947e-01 −2.4850e-02 −7.8455e-04 6.3689e-05 −9.0653e-06 7.5776e-06

8.9474e-01 −3.2892e-01 2.7046e-02 −6.5139e-03 3.2409e-03 −5.3035e+03

start growing rapidly, asymptotically as |B2k | ∼ 2 · (2π)−2k · (2k)! [3, p. 38; 20,
p. 380].

Remark In the genuine case where none of the derivatives of f at X or −X vanishes,
the algorithm given in [15] might be more efficient than (2.1). This would be only
marginal, though, and speed is not our concern here.

It should be noted that all the corrected approximants calculated above interpolate
in the xn for, at the nodes, the sine factor annihilates the influence of the sum in (1.3).

3 A relation between the sampling interval h and the evaluation point x

In order to avoid the effect mentioned at the end of the preceding section, namely that
the last terms of our formula dominate f (x), it is natural to require that the terms at
least do not grow with k. The factor 1 − 4−k in b2k(x) indeed grows, but is bounded
by 1, while the sequence of the B2k first decreases, but then increases very rapidly. In
order for the error to become small with a reasonable number of terms, x should be
far enough from the extremities for the factors

c2k(x, h) := 1

(2k)!

[(
f (y)

x − y

)(2k−1)

(X) −
(

f (y)

x − y

)(2k−1)

(−X)

]
(2h)2k (3.1)

to decrease with k. To determine how far x should stay away from the endpoints, let
us assume that it comes close to X . Then the first term in the brackets will become
much larger than the second and, with Lemma 2.1, (3.1) will be about

c2k(x, h) ≈ (2h)2k

(2k)!
2k−1∑

j=0

(2k − 1)!
j !

f ( j)(X)

(x − X)2k−1+1− j

= 1

2k

(
2h

x − X

)2k 2k−1∑

j=0

f ( j)(X)

j ! (x − X) j .
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346 J.-P. Berrut

The sum on the right is the head of a Taylor sum of f at x about X ; if f ∈ C∞[−X, X ]
it will approach f (x) with increasing k, rapidly as we assume that x ≈ X , and

c2k(x, h) ≈ 1

2k

(
2h

X − x

)2k

f (x).

Since the factor 1/k ensures decay, a sufficient condition for the decrease of the c2k

is h ≤ X−x
2 : the interval length h should be at most half the distance from x to the

boundary.

4 Correction of the barycentric formula

To evaluate the (full) sinc interpolant (1.2), one will have to truncate the series, for
example by replacing it with CN ( f, h)(x), which in turn requires the calculation of
2N + 1 sines. This may be avoided by writing C( f, h) in the alternate form [5,18,23]

C( f, h)(x) = h

π
sin

π

h
x

∞∑

n=−∞
(−1)n fn

x − xn
(4.1)

and similarly for CN . Both may then be evaluated using only one sine. However, these
formulae may be unstable in the vicinity of large multiples of h [5]. This flaw has
been recently fixed by Gautschi [16] who replaces the factor sin π

h x in front of the
sum by sin π

h (x − x0), with x0 the node closest to x , and modifies the terms of the sum
accordingly. This works perfectly well, but requires the determination of x0 for every
evaluation point x .

In [5], we have suggested to eliminate the unstable factor by dividing C( f, h) by
1 ≡ C(1, h), both written as in (4.1), to obtain the barycentric formula

C( f, h)(x) =
∑∞

n=−∞
(−1)n

x − xn
fn

∑∞
n=−∞

(−1)n

x − xn

(4.2)

(The reader may consult [10] for a recent discussion of such formulae which puts
(4.2) into a wider context.) Proceeding in the same way for CN yields the rational
interpolant

R(x) =
N∑

n=−N

′′ (−1)n

x − xn
fn

/
N∑

n=−N

′′ (−1)n

x − xn
(4.3)

suggested in [4] for arbitrary sets of interpolation nodes {xk}. R has since had sev-
eral applications, e.g., for the exponentially fast converging approximation of func-
tions given at conformally shifted Chebyshev points [2] and its use in the solution of
differential equations [1,22]. For the equidistant nodes considered here, it has been
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First applications of a formula for the error of finite sinc interpolation 347

conjectured in [4] and proved recently in the much more general paper [12] that its
convergence is O(h2) even when f is very smooth.

The big drawback of (4.2) is that the terms in its denominator decrease merely as
1/(x − xn) as n → ∞, so that a precise computation of the sum requires an extremely
large number of them. To avoid this difficulty, we have suggested in [5] to divide
(4.1) by the corresponding interpolant of a fast decreasing function (and to multiply
the quotient again by the same function or to premultiply f with it), which led to
speedups of up to a factor of 10 in comparison with the direct evaluation of (4.1).
The drawback of this approach is that the function used to construct the barycentric
formula depends on f .

Our formula (1.3) for the finite sinc interpolant offers another approach: we may
cut the sinc interpolant of the denominator 1 after a finite number of terms (about the
same number as considered in the evaluation of CN , see below) and correct the error
with the formula to get an approximation of 1 with machine precision.

We assume in this section that f decreases fast enough so that (1.1) gives C( f, h)

with the desired accuracy and write [−X, X ] for the corresponding interval, X = Nh.
To avoid the problem at the extremities studied in Sects. 2 and 3, we will enlarge the
interval from [−X, X ] to [−Z , Z ], Z = Mh, M > N . With Lemma 2.1 for f ≡ 1,
and neglecting the O(h2K+2)-term, formula (1.3) reads

CM (1, h)(x)

≈ 1 + (−1)M

2π
sin

(π

h
x
) K∑

k=1

(1 − 4−k)
B2k

k

[
1

(x − Z)2k
− 1

(x + Z)2k

]
(2h)2k

or with CM written as in (4.1)

1 ≈ h

π
sin

π

h
x

[ M∑

n=−M

′′ (−1)n

x − xn

+ (−1)M
K∑

k=1

(1 − 4−k)
B2k

k

(
1

(x + Z)2k
− 1

(x − Z)2k

)
(2h)2k−1

]
. (4.4)

Dividing CN written as in (4.1) by (4.4) and cancelling the common factor h
π

sin π
h x

we obtain the following approximation for C( f, h)(x):

CN ,M ( f, h)(x)

:=
∑N

n=−N
′′ (−1)n

x − xn
fn

∑M

n=−M
′′ (−1)n

x − xn
+ (−1)M

∑K

k=1
(1 − 4−k)

B2k

k

(
1

(x + Z)2k
− 1

(x − Z)2k

)
(2h)2k−1

.

(4.5)

Note that this formula does not contain any derivative.
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348 J.-P. Berrut

It remains to determine Z or, equivalently, M . In the same spirit as in the preceding
section, we shall first assume that K is small enough for B2k

k (1 − 4−k) < 1 ∀ k ≤
K + 1—which holds up to K = 7—find a condition on k such that h times the
remaining factors in the terms of the k-sum is less than machine precision ν and so
derive a condition for the minimal distance (M − N )h from x to the boundary. (The
factor h comes from the fact that numerator and denominator have been multiplied
by π

h and for h < π are therefore that much too large in comparison with the com-
puted sinc interpolant.) If N is large enough, and since x ∈ [−X, X ], there holds
|x ± Z | > Z − X = (M − N )h so that we want h 2

(Z−X)2(K+1) (2h)2K+1 < ν or

M − N > 2 · 2(K+1)
√

1/ν.

To minimize this number, one should take the largest possible K , K = 7, which leads
to M = N + 20 for the usual double precision of ν = 10−16. (This application is the
only one in this paper where we impose such a limitation upon K .) As a result of the
crude approximation |(x + Z)−2(K+1) − (x − Z)−2(K+1)| < 2(Z − X)−2(K+1) and
the factor sin π

h x , a significantly smaller M suffices in practice.

Example 2 We have tested the rapidly decreasing function f (x) = e−x2 [cos x +
sinh x] on the interval [−7, 7] (which contains its numerical support) and evaluated
its sinc interpolant in points approaching the node b = 0.7, namely x = b − d for
d = 5 × 10−2, 10−2, 10−5, 10−10, 10−14. We took 21 points on the interval [−7, 7],
added M − N = 10 points on each side for the approximation of the function 1 and
corrected the error with K = 7 terms. In Table 3 the first block gives the results
with the classical definition (1.1) of the interpolant, the second with the finite for-
mula corresponding to (4.1) and the last with (4.5). The first column of every block
gives the evaluation abscissa x , the second the computed value C10( f, h)(x), resp.
C10,20( f, h)(x), the third the true value f (x) and the last the error (without its sign,
which is everywhere positive but for the last value). Comparing the errors for the sec-
ond block with those obtained with the first formula documents the hard time of the
cheap formula in the vicinity of the node, whereas the values obtained with (4.5) are
practically identical to those computed with (1.1).

It should be mentioned that if one is willing to use an “if”-statement, then one may
simply take M = N whenever x is not near one of the endpoints ±Z . Note finally
that CN ,M is just a generalization of R in (4.3): letting M = N and K = 0 recovers
the latter.

5 Quotient of corrected sinc interpolants

The above assumed that f decreased so rapidly that it was zero close to the extremities
and x therefore never close enough to ±X for the terms of the sum in (1.3) to increase.
Suppose now that this is not the case, that x is so close to X or −X that the condition
given in Sect. 3 is not satisfied and the terms in (1.3) grow rapidly. Then the corrected
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First applications of a formula for the error of finite sinc interpolation 349

Table 3 Interpolation errors for e−x2 [cos x + sinh x] on [−7, 7] with N = 10

x Approximation f (x) Absolute error

Original sinc formula

0.6499999999999999 0.9787308391072040 0.9784109868473423 3.198522598617526e-04

0.6899999999999999 0.9426325359376126 0.9425586041299581 7.393180765458141e-05

0.6999900000000000 0.9333003087102524 0.9333002324304758 7.627977660629170e-08

0.6999999998999999 0.9332909093552330 0.9332909093544698 7.631673071273326e-13

0.6999999999999900 0.9332909092612472 0.9332909092612469 3.330669073875470e-16

Cheap formula (4.1)

0.6499999999999999 0.9787308391072180 0.9784109868473423 3.198522598757414e-04

0.6899999999999999 0.9426325359376866 0.9425586041299581 7.393180772852226e-05

0.6999900000000000 0.9333003087820606 0.9333002324304758 7.635158483232374e-08

0.6999999998999999 0.9332978642423857 0.9332909093544698 6.954887915910923e-06

0.6999999999999900 1.002885713349400 0.9332909092612469 6.959480408815311e-02

Corrected barycentric formula

0.6499999999999999 0.9787308391072037 0.9784109868473423 3.198522598614195e-04

0.6899999999999999 0.9426325359376129 0.9425586041299581 7.393180765480345e-05

0.6999900000000000 0.9333003087102519 0.9333002324304758 7.627977616220250e-08

0.6999999998999999 0.9332909093552328 0.9332909093544698 7.630562848248701e-13

0.6999999999999900 0.9332909092612465 0.9332909092612469 4.440892098500626e-16

sinc interpolant

CN ( f, h)(x) − (−1)N

2π
sin

(π

h
x
) K∑

k=1

b2k(x)(2h)2k (5.1)

will be about

− (−1)N

2π
sin

(π

h
x
)

b2K (x)(2h)2K , (5.2)

an expression without obvious connection to f (x). On closer inspection, and using
the same Taylor series argument as in Sect. 3, one however realizes that, as x comes
close to X , (5.2) approaches

− (−1)N

2π
2(1 − 4−k)

B2K

2K
sin

(π

h
x
) (

2h

X − x

)2K

f (x);

for a given x this approximation to (5.1) is the better, the larger K (which deter-
mines the number of terms in the Taylor series). This leads quite naturally to recover
f (x) close to the extremities by dividing the corrected sinc interpolant to f by the
interpolant with the same number of correcting terms for a known function, which
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350 J.-P. Berrut

Table 4 Errors with the quotient of corrected sinc interpolants for f (x) = cos(x) + sinh(5x) on [−1, 1]
with N = 25

x 0 1 2 3 14

5.2632e-02 −6.3193e-02 1.5574e-04 −4.9822e-07 1.6853e-09 −6.2172e-15

1.5789e-01 −1.2553e-02 3.0819e-05 −9.8369e-08 3.3234e-10 2.2204e-16

2.6316e-01 7.5479e-02 −1.8390e-04 5.8428e-07 −1.9691e-09 −1.7764e-15

3.6842e-01 −4.9246e-02 1.1885e-04 −3.7496e-07 1.2589e-09 −4.4409e-15

4.7368e-01 −3.9421e-02 9.4585e-05 −2.9559e-07 9.8745e-10 1.4211e-14

5.7895e-01 8.4033e-02 −2.0488e-04 6.3252e-07 −2.0994e-09 −1.7764e-15

6.8421e-01 −2.5517e-02 6.9575e-05 −2.1160e-07 6.9677e-10 −3.5527e-14

7.8947e-01 −2.4850e-02 1.6563e-04 −4.9471e-07 1.6138e-09 1.7764e-14

8.9474e-01 −3.2892e-01 −2.1830e-04 6.3873e-07 −2.0601e-09 −7.1054e-15

we naturally take as the constant 1. We therefore suggest to approximate f by the
following interpolant:

QN ,K ( f, h)(x) :=
CN ( f, h)(x) − (−1)N

2π
sin

(π

h
x
) ∑K

k=1
b2k(x)(2h)2k

CN (1, h)(x) − (−1)N

2π
sin

(π

h
x
) ∑K

k=1
d2k(x)(2h)2k

,

where the d2k denote the b2k of the function 1. After inserting (4.1) for CN and can-
celling the common factor h

π
sin

(
π
h x

)
, this becomes

QN ,K ( f, h)(x)

=
∑N

n=−N
′′ (−1)n

x − xn
fn − (−1)N

∑K

k=1
b2k(x)(2h)2k−1

∑N

n=−N
′′ (−1)n

x − xn
+ (−1)N

∑K

k=1
(1 − 4−k)

B2k

k

(
1

(x + X)2k
− 1

(x − X)2k

)
(2h)2k−1

. (5.3)

Notice that the division cancels the factors 1/2 at the extremities and gives the values
f (±X) back.

Example 3 We have re-computed Example 1 with N = 25 that led to Table 2. As
displayed in Table 4, the interpolation is now accurate up to machine precision and
this on the whole interval, not only far away from and very close to the extremities.
The interpolation scheme is still perfectly stable and with N = 100 machine precision
is already attained with K = 4. Note also the regularity of the error along the whole
interval. (We might add that in one example the maximal error was midway between
0 and ±X ; more tests are needed here).

In fact, the interpolant (5.3) is much better than might be expected from a sepa-
rate look at its numerator and denominator: with K = 14 one might decrease N to
8 before leaving the machine precision regime! Why this? In contrast to a division
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Table 5 Same as Table 4 but for f (x) = x + 1/(1 + 25x2) and N = 30

x 0 1 2 3 14

5.2632e-02 −2.3206e-06 −1.8452e-08 −3.0648e-09 −3.1077e-09 −3.1075e-09

1.5789e-01 1.0031e-05 2.7674e-08 4.5965e-09 4.6608e-09 4.6605e-09

2.6316e-01 −1.1705e-05 −1.2098e-08 −2.0094e-09 −2.0375e-09 −2.0374e-09

3.6842e-01 −1.2577e-05 −5.3376e-09 −8.8654e-10 −8.9895e-10 −8.9889e-10

4.7368e-01 9.2284e-05 1.7023e-08 2.8274e-09 2.8669e-09 2.8667e-09

5.7895e-01 −2.7143e-04 −2.1859e-08 −3.6306e-09 −3.6814e-09 −3.6812e-09

6.8421e-01 6.2924e-04 2.0757e-08 3.4476e-09 3.4958e-09 3.4956e-09

7.8947e-01 −1.3696e-03 −1.5413e-08 −2.5601e-09 −2.5959e-09 −2.5957e-09

8.9474e-01 3.4083e-03 7.8380e-09 1.3016e-09 1.3198e-09 9.6871e-10

such as that used in Sect. 4, which divided by 1 computed as accurately as possible
in [−X, X ], here we divided two functions that are imprecise close to the extremities.
There, intuitively, the interpolants to all functions have the tendency to oscillate in
the same (multiplicative) manner between the nodes and their quotient eliminates this
common multiplicative factor.

Remark Gibbs’ phenomenon is another instance of a multiplicative phenomenon.
Dividing by the approximation of the same complexity of a known function often
practically eliminates it, as we will document in [9]. The step from the approximation
(1.1) to (4.5) and its generalization in the passage from (5.1) to (5.3) are examples of
such an alleviation of the phenomenon.

Example 4 The function used up to this point is entire. We have also experimented
with the meromorphic f (x) = x + 1/(1 + a2x2) and have let the poles ±i/a come
down from infinity along the imaginary axis by increasing a, still interpolating on the
interval [−1, 1]. We have evaluated the derivatives with MATLAB’s symbolic tool-
box. With a = 1, we retain machine precision with N = 11 (23 points), whereas
a = 5 (asymmetric Runge’s example) requires about N = 50. It is instructive to
study the numbers when such a high precision is not attained. In Table 5 we give
the same numbers as in Table 4 for the asymmetric Runge function and N = 30.
As above, the plain sinc interpolant is much better in the center of the interval than
close to its boundary. The first correcting term improves the approximation to a very
regular one and brings a gain of five orders of magnitude and the second term brings
another order. Then the procedure gets stuck, extra terms do not bring much improve-
ment.

6 Fully discrete interpolation

Except in special cases such as the barycentric formula (Sect. 4), the correction
methods presented in earlier sections require knowledge of the precise (continuous)

123



352 J.-P. Berrut

derivatives of f at the extremities, which evidently greatly limits their applicability.
Automatic differentiation will be of great help here. Another obvious cure to this
drawback is to (try to) replace the derivatives in the coefficients b2k(x) with finite
differences (FD) of sufficiently high order to essentially obtain the same accuracy.
Finite differences are especially suited here since f is sampled at equispaced points.
One should thereby distinguish two cases: the genuine one occurs when one wishes to
approximate up to the boundary and no extra value may be obtained outside [−X, X ],
the other where one does not need to approximate up to the boundary and the last
values at both extremities may be used to compute derivatives.

In the first case one will replace the derivatives with one-sided FD. We computed
their weights as well as those of the centered formulae used below with an algorithm
by Fornberg, who notes in [13, p. 19], that “the best polynomial-based approximation
to dk f/dxk at some point ξ is obtained by differentiating Lagrange’s interpolating
polynomial”. Fornberg’s algorithms have the advantage that the same program cal-
culates the weights for the derivatives at any gridpoint, in particular one-sided as
well as centered FD. We have coded in MATLAB the procedure given on page 168
of his book. (Fornberg has proposed another method of calculating the weights in
[14]).

As merely even powers of h arise in (1.3) it is natural to aim at a global error
O(h(2K+2)). In (1.3) the derivative (

f (y)
x−y )(2k−1) is multiplied by h2k and should there-

fore be calculated with an error O(h2(K−k+1)) to warrant that global error. On the
other hand, in the calculation of odd order derivatives for centered differences and
of derivatives of any order for one-sided ones, the number of abscissae equals the
sum of the orders of derivative and accuracy [13, p. 16–17], here 2K + 1, a number
independent of the order of the derivative! We have therefore evaluated all derivatives
on the right of (2.1) with that number of points; our experiments have confirmed the
efficiency of this choice. Note that for the left-hand derivative at the right extremity
the coefficients must be used backwards and a negative sign must be added to odd
order derivatives.

Example 5 We have again considered Example 1 with N = 25 and reconstructed
Table 4, this time using centered differences with 2K + 1 points, which requires val-
ues of f at abscissae outside of the interval of interpolation. All results are exactly the
same as in Table 4 up to the last one of the last column

(
error O(h30)

)
which is about

10−11.
The use of one-sided differences to avoid abscissae outside [−1, 1] is somewhat

less convincing. Table 5 (asymmetric Runge function) is practically duplicated, up
to the last entry which worsens to 1.9 × 10−6. But, as documented in Table 6 (steep
entire function) constructed with the same data as Table 4, while the elimination of
the first terms is always very efficient, the computation of the derivatives with one-
sided differences will often degrade to become useless: such approximations amount
to computing the derivatives of polynomial interpolants at the endpoints of the inter-
val of interpolation, and those become severely ill-conditioned if not divergent with a
growing number of equidistant nodes.
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Table 6 Same as Table 4, but with derivatives approximated by one-sided FD

x 0 1 2 3 14

5.2632e-02 −6.3193e-02 1.5575e-04 −5.7002e-07 −4.2129e-08 −4.1991e-08

1.5789e-01 −1.2553e-02 3.0821e-05 −1.1282e-07 −9.0797e-09 −8.5281e-09

2.6316e-01 7.5479e-02 −1.8391e-04 6.7358e-07 5.9787e-08 5.2997e-08

3.6842e-01 −4.9246e-02 1.1885e-04 −4.3606e-07 −4.3361e-08 −3.6299e-08

4.7368e-01 −3.9421e-02 9.4590e-05 −3.4856e-07 −3.9627e-08 −3.1322e-08

5.7895e-01 8.4033e-02 −2.0489e-04 7.6269e-07 1.0190e-07 7.5983e-08

6.8421e-01 −2.5517e-02 6.9579e-05 −2.6513e-07 −4.3273e-08 −3.0570e-08

7.8947e-01 −2.4850e-02 1.6564e-04 −6.6929e-07 −1.4033e-07 −5.8585e-07

8.9474e-01 −3.2892e-01 −2.1832e-04 1.0755e-06 2.6490e-07 −3.1523e-03

7 Extrapolated sinc interpolation

Improved sinc interpolants were obtained in Sect. 6 by subtracting from them the lead-
ing terms of our error formula (1.3) with the derivatives replaced by FD of sufficiently
high order; this does not require knowledge of derivatives of f . While the results
were excellent if one may abandon sample values at the extremities to use them in
evaluating centered FD, the correction by one-sided FD was negatively influenced by
ill-conditioning and by the Runge phenomenon inherent to the interpolation between
equidistant points.

On the other hand, the very nature of (1.3) cries out for extrapolation along the lines
of Romberg quadrature. We treat here only the case of the doubling of the number of
nodes at each step. If we denote by I := ∫ X

0 f (x)dx an integral to be approximated

and by T (0)(h) := h
∑N

k=0
′′ f (xn), xn = nh, h = X

N , its trapezoidal approximation as
a function of h, i.e., of N , then the formula for the elements of the �th column of the
Romberg matrix reads

T (�)

(
h

2

)
:=

4�T (�−1)
(

h
2

)
− T (�−1)(h)

4� − 1

= I + 1
∏�

i=1(4
i − 1)

K∑

k=�+1

[
�∏

i=1

(4i − 4k)

]

× B2k

(2k)!
(

h

2

)2k

+ O(h2K+2).

(see [17], where the B2q seem to denote the absolute values of the usual Bernoulli num-
bers). By generalizing the steps leading to that formula, one obtains the corresponding
one for the sinc interpolant as follows.
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Theorem 7.1 Let the same assumptions as in Theorem 1.1 be valid and for a given x
define C (0)(h) := CN ( f, h)(x). Then

C (1)

(
h

2

)
:=

4C (0)
(

h
2

)
− 2(−1)N cos

(
π
h x

)
C (0)(h)

d(1)(h)

= f (x) + 1

2πd(1)(h)
sin

(
π

h/2
x

) K∑

k=2

[
4 − 4k

]
b2k(x)h2k

+O(h2K+2) (7.1a)

where

d(1)(h) = 4 − 2(−1)N cos
(π

h
x
)

(7.1b)

and for � = 2, . . . , K

C (�)

(
h

2

)
:=

4�C (�−1)
(

h
2

)
− 2 cos

(
π
h x

)
d(�−1)(2h)

d(�−1)(h)
C (�−1)(h)

4� − 2 cos
(
π
h x

)
d(�−1)(2h)

d(�−1)(h)

= f (x) + 1

2π

sin
(

π
h/2 x

)

d(�)(h)

K∑

k=�+1

[
�∏

i=1

(4i − 4k)

]
b2k(x)h2k

+O(h2K+2) (7.1c)

with

d(�)(h) = d(�−1)(h)

[
4� − 2 cos

(π

h
x
) d(�−1)(2h)

d(�−1)(h)

]
. (7.1d)

Proof By induction: one has from (1.3)

C (0)(h) = f (x) + (−1)N

2π
sin

(π

h
x
) K∑

k=1

b2k(x)4kh2k + O(h2K+2),

and

C (0)(h/2) = f (x) + (−1)2N

2π
sin

(
π

h/2
x

) K∑

k=1

b2k(x)h2k + O(h2K+2).
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Using sin( π
h/2 x) = 2 sin(π

h x) cos(π
h x) in the second formula, one is led to consider

4C (0)

(
h

2

)
− (−1)N 2 cos

(π

h
x
)

C (0)(h)

= d(1)(h) f (x) + 1

2π
sin

(
π

h/2
x

) K∑

k=2

[4 − 4k]b2k(x)h2k + O(h2K+2)

to eliminate the term in O(h2). Dividing by d(1)(h) yields (7.1a).
In the induction step, the numerator of the left hand side of (7.1a) yields

4�

⎧
⎨

⎩ f (x) + 1

2π

sin
(

π
h/2 x

)

d(�−1)(h)

K∑

k=�

[
�−1∏

i=1

(4i − 4k)

]
b2k(x)h2k

⎫
⎬

⎭

−2 cos
(π

h
x
) d(�−1)(2h)

d(�−1)(h)

·
{

f (x) + 1

2π

sin
(

π
h x

)

d(�−1)(2h)

K∑

k=�

[
�−1∏

i=1

(4i − 4k)

]
b2k(x)(2h)2k

}
+ O(h2K+2)

so that the quotient becomes

C (�)

(
h

2

)
= f (x) + 1

2π

1

d(�)(h)

K∑

k=�

[
�−1∏

i=1

(4i − 4k)

]

·
(

4� sin

(
π

h/2
x

)
− 2 cos

(π

h
x
)

sin
(π

h
x
)

4k
)

b2k(x)h2k + O(h2K+2),

where d(�)(h) is defined in (7.1d). It remains to notice that sin( π
h/2 x) is a common

factor and that the term corresponding to k = � vanishes to obtain (7.1c). 	

As with Romberg, but here for every x , the values C (�)( h

2 ) for a given h
2 may be

collected in the �th row of a tableau, which will be triangular since the calculation
of C (�)( h

2 ) requires knowledge of C (�−1)(h). For a given x and a given h, the ele-
ments Tk� := C (�−1)( h

2k ) of the tableau may be computed by means of the following
pseudocode.

h = X/N ;
T11 = C (0)(h) = CN ( f, h)(x);
g(1) = d(1)(2h) = 4 − 2(−1)N cos

(
π
2h x

)
;

i = 1; diff = 105;
while i < imax & diff > tol

i = i + 1;
hov2 = h/2;
Ti1 = C (0)

(
hov2

) = CN ( f, hov2)(x);
a = 2 ∗ cos

(
π
h x

)
;
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if i = 2 then a = (−1)N ∗ a;
e = 4 − a;
d(1) = 4 − e;
q = 4;
Ti2 = Ti1 + a ∗ (Ti1 − Ti−1,1)/e;
for � = 2 to i − 1

a = 2 ∗ cos
(

π
h x

) ∗ (g(� − 1)/d(� − 1));
q = 4 ∗ q;
e = q − a;
d(�) = d(� − 1) ∗ e;
Ti,�+1 = Ti� + a ∗ (

Ti� − Ti−1,�

)
/e;

end
diff = (Ti−1,i−1 − Tii )/Tii ;
h = hov2;
g = d;

end

Note that we have written every new approximation as a correction of that on
its left, as usual in such tableaux. The if-statement expresses the fact that the factor
(−1)N in a is present only for the original value of h. The last statement arises from
the observation that the d(�−1)(2h) are the denominators of the previous line of the
tableau.

In order to experimentally check the order, we have adapted the usual procedure
[11, p. 18], to formula (7.1c), in which the polynomial in h is multiplied by the function
sin( π

h/2 x)/d(�)(h) that depends on h. When the derivatives of f are such that for each

entry of the �th column the terms of the sum decay, the error in C (�)(h) is about

E (�)(h) := C (�)(h) − f (x) ≈ 1

2π

sin(π
h x)

d(�)(2h)

�∏

i=1

(4i − 4�+1)b2�+2(x)h2�+2.

Dividing this expression by the corresponding one for h
2 , we obtain

E (�)(h)

E (�)(h/2)
≈ sin(π

h x)/d(�)(2h)

sin( π
h/2 x)/d(�)(h)

(2h)2�+2

h2�+2 = 1

2 cos(π
h x)

d(�)(h)

d(�)(2h)
22�+2

and by taking the base 2 logarithm

2� + 2 ≈ log2

[
2

E (�)(h)

E (�)(h/2)
cos

(π

h
x
) d(�)(2h)

d(�)(h)

]
.

This formula holds for � = 0 too if one sets d(0)(h) = 1 ∀ h.

Example 6 In order to slow down convergence so that the experimental orders of con-
vergence are less subject to cancellation we have taken here f (x)=sinh(10x)/(1+x2),
with a small original number of nodes, 2N + 1 = 9, still on the interval [−1, 1]. We
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Table 7 Errors and experimental orders of convergence at x = √
2/4 for f (x) = sinh(10x)/(1 + x2) on

[−1, 1] starting from h = 1/4

� = 0 1 2 3 4 5 6

3.552e+02

−5.725e+01 −8.791e+00

2.604e+01 1.033e+00 2.635e-01

6.256e+00 1.257e-01 1.278e-02 4.022e-03

−1.735e+00 −5.326e-03 −1.252e-04 −1.241e-05 −3.913e-06

3.383e-01 2.788e-04 1.657e-06 4.444e-08 4.629e-09 1.495e-09

−1.178e-01 −2.154e-05 −3.144e-08 −2.138e-10 −5.792e-12 −3.836e-13 5.329e-14

1.7242

1.9158 3.8677

1.9777 2.9589 5.1901

1.9943 4.7055 6.0757 7.5146

1.9986 3.8959 5.9751 7.8466 9.4383

1.9996 4.1719 6.0240 7.9687 9.9034 12.187

used a single evaluation point, first x = √
2/4, to keep the results within a two-dimen-

sional array. The results with imax = 7 appear in Table 7: the first tableau displays
the interpolation errors, the second the experimental orders of convergence. (Since
two errors are required for the approximation of an order, the second tableau has one
fewer row and column.) The first column shows the h2-convergence of the original
sinc interpolant (1.1), the next columns the results after the extrapolation steps and
the corresponding orders.

With Runge’s denominator, f (x) = sinh(10x)/(1 + 25x2), the convergence of the
Romberg values is even faster (!) but the improvement ceases with an error of about
10−11 and the orders after 6 are not so nicely evaluated.

When one may increase the size of the sample at will, the difficulty in the vicin-
ity of the boundary mentioned in Sect. 2 does not arise: at x = √

0.99 ≈ 0.995
in our last example, starting with three nodes and extrapolating up to imax = 15
(2N + 1 = 32769) gives f (x) with about machine precision and the same experi-
ment with x = √

0.999 ≈ 0.9995 still yields a relative accuracy of about 10−10 with
imax = 17 (2N + 1 = 131073). One reason for this precision is the fact that one does
not improve upon the sinc interpolant by adding terms containing potentially large
derivatives, but rather computes the weighted means of sinc interpolants (which are
of the same order of magnitude as f ) given on the left of (7.1c).

The only remaining difficulty at the boundary is Gibbs’ phenomenon. As alluded
to already, we eliminate it along the lines of [9] by dividing every extrapolated value
by the corresponding one for the function 1. Since the numerator and the denominator
have the same behaviour close to the jumps at ±1, not only the phenomenon disappears,
but the quotient converges in general faster toward f (x) than the original extrapolated
interpolant. That way we introduce quotients of extrapolated sinc interpolants, which
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Table 8 Errors at x = √
0.999 with quotients of extrapolated sinc interpolants for f (x) = sinh(10x)/(1+

x2)

� = 0 1 2 3 4 5 6

4.0089e-03

3.3535e-03 2.6991e-03

2.3095e-03 1.2684e-03 1.0645e-03

1.3146e-03 3.2520e-04 1.9109e-04 1.6305e-04

6.8030e-04 5.2988e-05 1.4470e-05 8.8246e-06 7.6213e-06

3.3992e-04 7.0551e-06 6.1782e-07 1.7919e-07 1.1236e-07 9.7930e-08

1.6659e-04 8.7056e-07 2.0493e-08 1.9305e-09 5.8551e-10 3.7472e-10 3.2879e-10

we may as well call rational extrapolated sinc interpolants; we shall study them in
future work.

Example 7 As displayed in Table 8, about the same relative accuracy of 10−10 is
attained at x = √

0.999 in the last example with imax = 7 (2N + 1 = 129) instead of
imax = 17 above, and imax = 9 (2N + 1 = 513) yields machine precision.

8 One-sided sinc interpolants

In applications in which the sinc interpolant is used for approximating in the radial
direction (see [24] for a recent chemical example), i.e., on the one-sided infinite inter-
val [0,∞), f will seldom vanish at 0 along with all its derivatives and f extended
as zero to the interval (−∞, 0) will have a jump at the origin. The sinc interpolant
converges very slowly even when f decreases very rapidly with growing x . If f is
analytic, the now classical way of coping with this jump is to conformally map a
domain containing the interval (0,∞) onto a strip about (−∞,∞), to use the map
to transplant f to this strip, to interpolate the transplanted function and to take the
result back to (0,∞) [19,21]. The main disadvantage of this approach is that the map
squeezes the interpolation nodes exponentially in the vicinity of 0 which leads, e.g.,
to ill-conditioned derivatives.

To stick with equidistant nodes, one may use the finite sinc interpolant on an inter-
val [0, X ] which we define as CN ( f, h) from (1.1) with f (xn) = 0 for n < 0 and
f (x0) := f (x0)/2, i.e.,

CN ( f, h)(x) =
N∑

n=0

′′ f (xn) sinc
[π

h
(x − xn)

]
.

In the case of an odd number of points N + 1 = 2L + 1 on the interval [0, X ], the
formula for CN ( f, h)− f is even slightly simpler than (1.3). Indeed CN , rolled up on
the circle of diameter X

π
[6], starts and ends at 0 ≡ X and this leads to a positive sign
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of the trapezoidal approximations Th of the Cauchy principal value Ix underlying CN ,
independently of the parity of L:

CN ( f, h)(x) = 1

2π
sin

(π

h
x
)

(T2h(x) − M2h(x)) , Ix = PV

X∫

−X

f (y)

x − y
dy

(Mh := midpoint rule approximation to Ix with the steplength h [7,8]). The jump in
f on the circle now is at 0 ≡ X and the error formula is the same as (1.3) with (−1)M

replaced by 1 and −X by 0 as argument of the last derivative.
Also with an even number N +1 = 2L of points, the error formula is easier to obtain

than in the symmetric case given in [8]. Since one does not have to shift the interval
before extending f to an even function interpolated between an odd number of points,
the factor of the sum

∑
k remains a sine, but with a negative sign since CN is now a

difference M2h − T2h [8], leading to a negative sign in the error formula too, while the
difference of derivatives is again replaced by a sum as in [8], to finally yield the formula

CN ( f, h)(x) = f (x) + 1

2π
sin

(π

h
x
)

· 2
K∑

k=1

(1 − 4−k)
B2k

(2k)!

[(
f (y)

x − y

)(2k−1)

(X) +
(

f (y)

x − y

)(2k−1)

(0)

]

· (2h)2k + O(h2K+2). (8.1)

Table 9 Errors with the quotient of one-sided corrected sinc interpolants for f (x) = e−x2
/(1 + x2) on

[0, 6] with 90 points

x 0 1 2 3 14

3.1579e-01 −2.9852e-03 −1.5699e-06 −1.5450e-08 −3.0785e-10 0

6.3158e-01 8.2943e-04 1.3263e-06 1.3231e-08 2.6452e-10 4.4409e-16

9.4737e-01 −6.6463e-05 −1.7137e-07 −1.7426e-09 −3.5007e-11 4.1633e-16

1.2632e+00 −1.6729e-04 −5.4473e-07 −5.6555e-09 −1.1423e-10 −3.7470e-16

1.5789e+00 1.4115e-04 5.1955e-07 5.4998e-09 1.1168e-10 0

1.8947e+00 −3.2841e-05 −1.2949e-07 −1.3933e-09 −2.8428e-11 1.7521e-16

2.2105e+00 −4.5649e-05 −1.8755e-07 −2.0444e-09 −4.1881e-11 −9.0639e-17

2.5263e+00 5.6714e-05 2.3920e-07 2.6335e-09 5.4127e-11 5.5294e-18

2.8421e+00 −2.1402e-05 −9.1878e-08 −1.0192e-09 −2.1004e-11 −2.9341e-18

3.1579e+00 −1.7337e-05 −7.5358e-08 −8.4082e-10 −1.7364e-11 2.7090e-17

3.4737e+00 3.0002e-05 1.3161e-07 1.4750e-09 3.0512e-11 −1.8771e-17

3.7895e+00 −1.5538e-05 −6.8630e-08 −7.7187e-10 −1.5989e-11 2.4882e-16

4.1053e+00 −6.9991e-06 −3.1080e-08 −3.5053e-10 −7.2693e-12 −1.9863e-16

4.4211e+00 1.8018e-05 8.0347e-08 9.0820e-10 1.8851e-11 2.8853e-18

4.7368e+00 −1.1912e-05 −5.3300e-08 −6.0359e-10 −1.2538e-11 1.9521e-16

5.0526e+00 −2.3423e-06 −1.0509e-08 −1.1919e-10 −2.4776e-12 −1.6693e-16

5.3684e+00 1.1544e-05 5.1915e-08 5.8953e-10 1.2260e-11 1.2052e-16

5.6842e+00 −9.4134e-06 −4.2410e-08 −4.8215e-10 −1.0032e-11 1.6459e-17
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Example 8 We chose an even number of points and interpolated functions which decay
rapidly enough to be able to choose X sufficiently large that (2h)2k |( f (y)

x−y )(2k−1)(X)| ≤
ν in (8.1). Table 9 displays the results for f (x) = e−x2

/(1 + x2) and N + 1 = 90.
The various columns have the same meaning as in Table 1.

9 Conclusion

The various applications of our formula for the error of the sinc interpolant should have
convinced the reader of its usefulness for the infinitely smooth interpolation between
equidistant points on the interval. But they also demonstrate that a few things should
be taken into account when using it. The interpolant should be made rational, at least
when it is to be used in the last half intervals at the extremities. A nice example is the
correction of the barycentric formula that permits a perfectly accurate evaluation of
the interpolant without locating its argument. When the interpolated values are given
as a sample whose size cannot be chosen, so that the correction will be calculated with
finite differences, it is better to reserve some extra points on the left and the right of the
interval in order to use centered instead of one-sided differences. On the other hand,
rational extrapolated sinc interpolants will be a very good choice when one may take
the sample size as a large composite number. We intend to study them further in the
near future.
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