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Abstract
Purpose Substance P is the main ligand of neurokinin type 1
(NK-1) receptors, which are consistently overexpressed in
malignant gliomas. The peptidic vector 111In/90Y-DOTAGA-
substance P binds to these receptors and can be used for
local treatment of brain tumours. Dosimetry for this
interstitial brachytherapy has mainly been done using
geometrical models; however, they often do not faithfully
reproduce the in vivo biodistribution of radiopharmaceuti-
cals, which is indispensable to correlate the deposited energy
with clinical response. The aim of this study was to establish
a reproducible dosimetry protocol for intratumoural radio-
peptide therapy.

Methods For test and therapeutic injections, 2 MBq of
111In-substance P and 370–3,330 MBq of 90Y-substance P,
respectively, were applied in 12 patients with malignant
gliomas. Over a period of 24 h, serial SPECT scans were
performed on a dual-head SPECT camera. The scans were
acquired in a double-energy window technique together
with 99mTc-ECD in order to co-register the dose distribu-
tions with a separately acquired, contrast-enhanced CT
scan. Quantitative voxelwise dose distribution maps (in Gy/
GBq) were computed from these data using a mono-
exponential decay approach. Pre- and post-therapeutic
values were compared.
Results Agreement between pre- and post-therapeutic do-
simetry was very good and delivered absolute dose values
in Gy per injected GBq. In all patients, the pretherapeutic
test injection together with the CT overlay technique could
predict the precise localisation of dose deposition in an
anatomical context.
Conclusion This protocol allows a precise pretherapeutic
computation of the expected three-dimensional dose distri-
bution and is clearly superior to the previously used
dosimetry based on planar scintigraphic images. It has
become an indispensable tool for planning intratumoural
radiopeptide therapy in glioma patients.
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Introduction

For targeted radiotherapy, we have developed a protocol for
malignant gliomas using the radiolabelled somatostatin
analogue 90Y-DOTATOC [1] for local intratumoural injec-
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tion. First promising results have been obtained [2]. A
drawback of this targeting system is the inconsistent
expression of somatostatin receptors, especially in prevalent
glioblastoma. However, neurokinin type 1 (NK-1) receptors,
which can be targeted with their native ligand substance P
[3], are consistently overexpressed in all malignant gliomas
[4], including glioblastomas. We have constructed a peptidic
vector consisting of the natural sequence of substance P,
which is conjugated with DOTAGA, a chelator for metallic
radionuclides [5, 6]. The β emitter 90Y was used for therapy,
and the γ emitter 111In for diagnostic test injections. First
clinical results are encouraging and have been published
recently [7]; only transient local toxicity (radiogenic oedema)
was seen as a side-effect, whereas neurological improvement
could be observed in 65% of the patients.

An accurate method to calculate tumour dose is required in
order to correlate the deposited energy with clinical response.
Geometrical tumour models, at present mostly used for dose
estimation, depend upon the assumption of a simple, non-
biological three-dimensional tumour geometry, enhancing
small one-dimensional inaccuracies to large error ranges
[8–10]. Inhomogeneous biodistribution of the radiopharma-
ceutical and inconstant biological half-lives further limit the
reliability of dose estimates based on such models. Dosim-
etry based on planar scintigraphic images and tumour
volumetries derived from MRI has proven to be unsatisfac-
tory owing to large error ranges of at least ±20% [1].

In order to overcome these limitations, we have developed
a new method to compute individual in vivo doses based on
SPECT measurements to account for variance in activity
distribution and biological half-life of the radiopharmaceuti-
cal. The aim of the present study was to implement a
dosimetry protocol that allows accurate assessment of the
dose using the diagnostic radionuclide 111In prior to the actual
therapeutic administration of 90Y-labelled substance P.

Mathematical background

We assumed that the pharmacokinetics of radiolabelled
substance P follows a mono-exponential decay model. Thus
the activity concentration dependent on the location and the
time t can be described by the following equation:

C x; y; z; tð Þ ¼ C x; y; z; 0ð Þ � e�lt ð1Þ
with C(x, y, z, t) denoting the activity concentration depen-
dent on three spatial coordinates x, y, z and the time t, and λ1
denoting the effective decay constant, consisting of its two
components λ1phys (physical half life, equal to ln2/Thalf-life)
and λ1biol (biological half-life):

l ¼ lphys þ lbiol ð2Þ

Equation (1) can be written in logarithmic form:

lnC x; y; z; tð Þ ¼ lnC x; y; z; 0ð Þ � lt ð3Þ
from which the effective decay constant λ1 for each voxel
element can be estimated from the three measurement
points C(x,y,z, t) by linear regression analysis.

In the evaluation of pretherapeutic SPECT measure-
ments, the activity concentration of 90Y was estimated from
111In measurements by half-life correction:

CY x; y; z; tð Þ ¼ Cln x; y; z; tð Þ � e lphys lnð Þ�lphys Yð Þð Þ�t ð4Þ
where λ1phys(In) denotes the physical decay constant for 111In
and λ1phys(Y) the physical decay constant for 90Y.

The absorbed energy dose to a voxel can be obtained
from Eq. 1 by integrating over the concentration from
injection time until infinity:

D x; y; zð Þ ¼ k

Zþ1

0

C x; y; z; 0ð Þe�ltdt ¼ k

l
C x; y; z; 0ð Þ ð5Þ

with k denoting a constant based on the assumption of a
local energy deposition of 930.8 keV (i.e. the medium
energy deposition per 90Y decay).

We deliberately abstained from using Monte Carlo
simulation for the computation of dose deposition and
assumed a local energy deposition for β decay events. We
computed the dose kernel of a 90Y point source in water
using PENELOPE [11, 12] and got a full-width at half-
maximum (FWHM) of 3 mm (Fig. 1). Since by SPECT
scanning the true activity distribution is convoluted by a
point spread function with a surely larger FWHM, the
acquired activity distributions are already blurred, com-
pared with the true tissue distribution. As Monte Carlo
simulation can be approximated with dose kernels in a first
approximation, it would only enlarge the resulting convo-
lution kernel. Therefore, we decided to omit Monte Carlo
procedures and to assume a local decay.
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Fig. 1 Dose kernel of a 90Y point source in water
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Materials and methods

Twelve glioma patients, nine of male and three of female
gender, with a mean age of 47 years (range 31–64), were
included in a targeted radiotherapy study protocol or treated
accordingly [7]. The protocol was compliant with the
Helsinki Declaration and had been approved by the local
Ethics Committee. All patients gave their informed consent.
The following tumour histologies were included for
dosimetry: four glioblastomas (WHO grade IV), two
anaplastic gliomas (WHO grade III) and six low-grade
astrocytomas (WHO grade II). In all patients, the diagnosis
was proven by stereotactic biopsy. Following biopsy, a
ventricular catheter, connected to a subcutaneous cerebro-
spinal fluid reservoir, was inserted into the tumour mass.

Radiopeptide chemistry

The peptide was assembled on solid phase with a semi-
automatic peptide synthesiser (RinkCombichemTechnologies,
Bubendorf, Switzerland) using fluorenylmethoxycarbonyl-
polyamide solid phase peptide synthesis [13]. DOTAGA
(tBu)4 was introduced as a protected prochelator at the N-
terminal end of the undecapeptide [14]. After deprotection
and purification using reversed phase high-performance
liquid chromatography (RP-HPLC; Bischoff HPLC system,
Metrohm AG, Herisau, Switzerland), the chelator–peptide
conjugate was obtained in high purity (>95%). Identity was
confirmed by MALDI-TOF mass spectroscopy (Voyager-
DE STR, Applied Biosystems, Framingham, MA, USA).
The chelator–peptide conjugate was labelled with a specific
activity of 67.3 MBq/pmol of 90Y for therapeutic studies.
For diagnostic purposes, 2 MBq of 111In was used per
application. The chelator–peptide conjugate was dissolved
in 500 μl sterile filtered buffer containing 16.4 mg sodium
acetate, 18.5 mg (2,5)-dihydroxybenzoic acid and 0.1 g of L
(+)-ascorbic acid sodium salt. The radiometal was added
and incubated for 30 min at 95°C. Quality control was
performed using RP-HPLC (Macherey-Nagel CC 250/4
Nucleosil 120-3 C18, flow: 0.75 ml/min, eluents: A=aceto-
nitrile, B=0.1% trifluoroacetic acid in water; gradient:
0 min, 95% B; 30 min, 55% B; 32 min, 0% B; 34 min,
0% B; 37 min, 95% B; retention time 23 min). A
radiochemical purity of more than 99% for 90Y and more
than 90% for 111In was achieved. For injection, the solution
was prepared by dilution with 0.9% NaCl solution to a
volume of 1 ml.

Imaging techniques

We performed pretherapeutic dosimetry using 2 MBq of
111In-labelled substance P in every patient, followed by one

to four therapeutic injections of 370–3,330 MBq 90Y-
labelled substance P, depending on tumour size and
biodistribution aspects such as proximity to functionally
critical areas. Time between test injection and first therapy
cycle was 1 week. Other cycles followed with a time
distance of normally 2 weeks, which was adapted if clinical
symptoms required it. For anatomical correlation of SPECT
measurements, we co-injected 500 MBq of the brain
perfusion marker 99mTc-N,N′-1,2-ethylenediylbis-L-cysteine
diethyl ester hydrochloride (99mTc-ECD=99mTc-bicisate;
Neurolite, Bristol-Myers Squibb, Massachusetts, USA)
[15–17]. We performed SPECT scans, carefully preserving
the head position relative to the scanner, at three different
time points: the first immediately after the injection, the
second 3–5 h p.i. and the third 21–24 h p.i. This was a
compromise between a possibly more refined dosimetry
using a bi-exponential approach, which would require at
least four time points, and the need for a simple and
pragmatic protocol which does not overtax patients and
fits into a busy clinical routine. Scanning duration was
30 min, using continuous acquisition (6° per minute) on
a dual-head γ camera (Picker P 2000, Philips Medical
Systems, Eindhoven, The Netherlands), which was
calibrated and tested for linearity according to local and
national quality control guidelines. The scans were
acquired with a medium-energy collimator in multiple
energy windows in order to distinguish 99mTc from either
111In or 90Y. For pretherapeutic dosimetry with 111In, three
energy windows were used: 140 keV (±7.5%) for 99mTc,
and 171 keV (±10%) and 245 keV (±10%) for 111In. For
dosimetry after the therapeutic injections, two energy
windows were used: the 99mTc window was kept at
140 keV, whereas a larger continuum window at 306 keV
(±45%) was used to detect 90Y bremsstrahlung owing to its
low count rate. Images were reconstructed iteratively
(maximum likelihood expectation minimisation, 20 itera-
tions [18]), filtered with a low-pass filter (order 4.0, cutoff
frequency 0.26/pixel) and finally corrected for attenuation
(coefficients: 0.110/cm for 99mTc and 0.090/cm for
90Y/111In). Attenuation correction was performed by defin-
ing elliptical regions covering the whole brain on 99mTc
images; the ellipses were then transformed to the co-
registered 90Y/111In images and applied as correction
templates. Reconstructed images had a voxel size of
4.67·4.67·4.67 mm3. No scatter correction was used, as
the algorithms described in the literature are designed for
γ-emitting nuclides and not for bremsstrahlung imaging
[19–23]. Voxels with less than 5% of the maximum voxel
value were masked out in order to correct for noise far
away from the tumour, which could influence the
computation of the initial activity distribution immediately
after radiopeptide administration. An example for the
resulting distributions images is given in Fig. 2.

1390 Eur J Nucl Med Mol Imaging (2007) 34:1388–1395



Data processing

We performed manual image fusion using dedicated image
fusion software (MPI-Tool, Advanced Tomo Vision GmbH,
Kerpen, Germany [24, 25]). Outlines of the 99mTc-ECD
image were projected onto a diagnostic contrast-enhanced
CT scan, and rotation/translation parameters were adapted
until the match between the two modalities was satisfactory.
Then, the rotation and translation parameters of the 99mTc-
ECD image were applied to the co-acquired 111In/90Y
images. For each voxel of the resliced images, a linear
regression analysis between the time after administration as
the independent variable and the natural logarithm of the
count rates as the dependent variable was calculated. The
resulting slope and intercept values were stored voxel by
voxel into separate files S and I. λ1 and C(x,y,z,0) were then
calculated:

l x; y; zð Þ ¼ S x; y; zð Þ ð6Þ

C x; y; z; 0ð Þ � eI x;y;zð Þ ð7Þ

X
x

X
y

X
z

C x; y; z; 0ð Þ ¼ Atotal ð8Þ

assuming that at injection time (i.e. t = 0) the whole locally
injected activity Atotal was contained in the volume of

visible accumulation in the SPECT images, which was
defined as the set of all voxels whose count rate exceeded
5% of the maximum count rate of the total acquired
volume. The sum of all voxels in this set was assumed to
correspond to the total administered activity. Further
acquisitions were performed with the same patient and
camera positions as the first scan, thus assuming linearity
between the several scans of one patient’s series. The
cameras had been checked before for linearity according to
the manufacturer’s recommendations; it was assured that no
recalibration procedure took place between the scans.
Analytic integration of the fitted time-activity curves
between t = 0 and t=+∞ yielded the cumulative number of
decay events per voxel. Assuming an average energy
deposition of 930.8 keV per 90Y β decay and a specific
gravity of 1.0 g/cm3 for the absorbing tissue, we calculated
quantitative dose distribution maps in Gy. The tumour
region was identified on the co-registered SPECT and CT
images, and the maximum voxel values of pre- and post-
therapeutic dose maps (in Gy per injected GBq) were
correlated.

Results

Logarithmic fitting was successful in all patients, yielding
quantitative voxelwise parametric maps of dose distribution

Fig. 2 Bremsstrahlung imaging with 90Y. Following local injection, similar biodistribution can be visualised as compared to test injection with
111In
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which could be projected to the contrast-enhanced CT scan.
The correct deposition of the maximum dose into the
tumour could be documented at all pretherapeutic test
injections. An example is given in Fig. 3.

Computed maximum doses at the test injection ranged
from 74 to 505 Gy/GBq with a mean dose of 199 Gy/GBq.
The doses computed at the time of therapeutic injection
ranged from 12 to 483 Gy/GBq and decreased from
injection to injection over time in the majority of cases.
The dosimetric results as well as the injected activities are
given in detail in Table 1.

A comparison between pretherapeutic and the first post-
therapeutic dosimetry yielded conforming results in nearly
all cases (Fig. 4; dotted line, r2=0.79). In this series of
patients we had included two cases with suboptimal
biodistribution (patient no. 8) or an incidentally higher
111In activity (patient no. 9). While this reflects clinical
reality, upon subtraction of these two cases, an even better
correlation was obtained in the residual ten patients
(r2=0.89; solid line in Fig. 4).

Discussion

This novel dosimetry protocol for local therapy of brain
tumours is feasible and highly reproducible. Planar scinti-
graphic images cannot ascertain the exact localisation of the
therapeutic activity within the tumour borders. In contrast,
the presented method allows precise visualisation of the
expected quantitative dose distribution in relation to tumour
geometry and adjacent brain tissue. Patients not suited for
locally targeted radiopeptide therapy due to unfavourable
biodistribution can therefore be excluded following test
injection with 111In.

Other groups have recently tried different approaches to
quantify the dose delivered to the target. Ferrari et al. [10]

used Monte Carlo methods to compute S values from a
virtual phantom and applied these to patients. However, this
does not account for distribution inhomogeneities between
different regions of the same tumour. They estimated transit
times and hence clearance from urine measurements; while
this is probably a good estimator of an overall averaged
clearance, regional differences could occur owing to
inhomogeneous receptor density and inhomogeneous vital-
ity of tumour cells. Akabani et al. [8] used direct measure-
ments using a probe placed externally over the surgical
resection cavity. This might give a better estimation of
effective half-life in loco; however, this likewise does not
account for regional differences. In our experience, often
several catheters are needed to guarantee a similar dose
deposition throughout the tumour; judging where these
additional catheters should be placed is not possible using
geometric models or global decay measurements.

Some possible error sources need to be discussed:

Different physical properties of radionuclides One may
suspect that different physical properties of the two radio-
nuclides could introduce errors considering possible scatter
and attenuation artefacts. This aspect probably does not
affect the measurement of effective half-life times, as these
effects can be expected to be similar among several scans
and not to impair linearity. It could affect the measured
radiopharmaceutical distribution, with a faulty attribution of
activity to voxels without actual irradiation sources. Mask-
ing out voxels without a reasonable probability of radionu-
clide accumulation is therefore necessary, as described in
the Materials and methods section. Scatter correction
algorithms have been suggested to deal with this problem
[19–23]. However, these algorithms were developed for γ-
emitting nuclides, not for imaging of bremsstrahlung. When
we tried to apply these algorithms, we obtained non-
evaluable activity distribution images. One might argue that

Fig. 3 Quantitative voxelwise dose map in a patient with glioblastoma multiforme documenting an orthotopic dose distribution
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the wide range of absolute doses might be due to inaccuracies
in acquisition or processing of the data; however, the good
correlation between 111In and 90Y (p<0.01) with their
different physical properties makes this hypothesis unlikely
and supports the use of the approach discussed in this
report.

Different distribution volumes If the tumour is growing
rapidly, the dosimetry may be inaccurate owing to different

distribution volumes of the radiopharmaceutical, especially
if the tumour is gaining access to open cerebrospinal fluid
(CSF) spaces. Considering the fact that an increase in the
distribution volume leads to a decrease in the deposited
energy per mass unit (= Gy), the dose would be over- rather
than underestimated. In such cases, additional injections
may be needed to reach the intended dose in the target area.
However, if the outflow of the radiopharmaceutical into the
CSF spaces is excessive and no specific tumour uptake can
be visualised on SPECT images, further treatments should
not be applied.

Possible count loss at high count rates This might have
happened in patient no. 9: a higher amount of 111In
(5 MBq) was incidentally administered at test injection
into a relatively small tumour volume (2 ml). Compared
with the dosimetry at the first therapy cycle, the dose was
computed substantially higher. It is not clear whether this is
within the fluctuation margin of the method; however, a
possible count loss at high count rates might have played a
role. In such a case, the decay curve gets more shallow,
leading to an underestimation of λ1 in Eq. 3 and an
overestimation of D(x,y,z) according to Eq. 5. In practice,
this could lead to a reduction in the prescribed 90Y activity
and consequently to undertreatment of the tumour.

Table 1 Dosimetry results in Gy/GBq

Patient
no.

Sex Age
(yr)

Diagnostic Therapy 1 Therapy 2 Therapy 3 Therapy 4
111In 90Y 90Y 90Y 90Y

1 m 42 204 67 81 – –
74 Gy/1.11 GBq 150 Gy/1.85 GBq

2 m 46 88 84 60 55 –
93 Gy/1.11 GBq 66 Gy/1.11 GBq 121 Gy/2.22 GBq

3 m 56 88 79 – – –
88 Gy/1.11 GBq

4 m 50 74 56 51 – –
124 Gy/2.22 GBq 151 Gy/2.96 GBq

5 m 31 223 226 269 – –
251 Gy/1.11 GBq 298 Gy/1.11 GBq

6 f 42 249 198 79 38 12
220 Gy/1.11 GBq 88 Gy/1.11 GBq 42 Gy/1.11 GBq 14 Gy/1.11 GBq

7 m 47 75 59 48 87 102
65 Gy/1.11 GBq 160 Gy/3.33 GBq 291 Gy/3.33 GBq 341 Gy/3.33 GBq

8 f 53 131 40 – – –
44 Gy/1.11 GBq

9 m 64 505 308 355 – –
114 Gy/0.37 GBq 394 Gy/1.11 GBq

10 f 46 118 109 143 – –
241 Gy/2.22 GBq 317 Gy/2.22 GBq

11 m 44 456 483 304 – –
198 Gy/0.41 GBq 170 Gy/0.56 GBq

12 m 37 176 146 207 103 –
175 Gy/1.20 GBq 230 Gy/1.11 GBq 114 Gy/1.11 GBq

– denotes not performed
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One might argue that the comparison of maximum doses
could be inaccurate owing to local inequalities in dose
distribution and that a correlation of medium doses or
dose–volume histograms might be a more adequate
method. Unfortunately, even on contrast-enhanced CT,
especially low-grade gliomas are often not clearly delimit-
able from the surrounding tissue, as could be observed in
comparison to positron emission tomography using prolif-
eration markers [26]. This makes the definition of exact
tumour borders very difficult and would therefore probably
introduce an additional error source. The maximum dose
value was therefore chosen as a more robust estimator.
Owing to the limited resolution of the acquisition and
reconstruction processes, images are likewise convoluted
by a smoothing kernel; thus, the potential influence of
single deviating voxels is minimised.

The clinical meaning of the computed doses remains to
be defined. In vivo validation of the method by absolute
dose values is not practicable, because this would require
implantation of dosimeters into the brain of patients.
Assuming an average administered activity of around
1 GBq, doses vary between ten and several hundred grays
owing to variations in biological half-life of the radiophar-
maceutical at the tumour site. However, the dose rate is
much lower than in conventional external beam radiother-
apy or conforming irradiation techniques. Typically, with
external beam irradiation a dose of about 2 Gy is
administered in 20–30 s (corresponding to about 0.1 Gy/s).
Targeted radiopeptide therapy delivers its dose over a much
longer period, resulting in a lower dose rate (by about one to
two orders of magnitude). This results in fewer ionising
events per time unit, and DNA damage in tumour cells is
likely to be more efficiently repaired during low-dose-rate
brachytherapy than in conventional high-dose-rate external
beam radiotherapy.

Awell-known example in the field of radiation oncology is
permanent 125I or 103Pd seed implantation for the treatment
of early prostate cancer. Using 125I seeds, the most
commonly prescribed dose is 160 Gy, and the minimal dose
to 90% of the outlined prostate volume should be equal to or
greater than 145 Gy [27–30]. In contrast, external beam
radiation is typically performed with a total dose of about
72–74 Gy with daily fractions of 2 Gy.

Malignant gliomas are among the most radioresistant
tumours; even 90 Gy externally applied radiation dose is
not sufficient to sterilise glioblastoma multiforme in vivo
[31]. Therefore the doses of several hundred grays
administered by 90Y radiopeptide therapy computed in this
study lay within a reasonable order of magnitude, assuming
a multiplicator of at least 2–3 of the doses applied in
conventional external beam radiotherapy.

Most patients showed a decreasing dose deposition
from injection to injection over time, caused by shorten-

ing of biological half-lives. The reason for this is not yet
clear. Repetitive therapies may reduce viable tumour cells
and their binding sites for substance P. Another possibil-
ity is an increase in the blood-brain barrier permeability
following radiation damage of endothelial cells, resulting
in a greater loss of substance P into the systemic
circulation.

Two patients (nos. 5 and 7) showed a sudden increase in
retention time and dose per administered activity. This
coincided with a reduction in CT tumour density to below
20 Hounsfield units (HU), suggesting necrotic transforma-
tion of the tumour. A loss of draining vessels may be the
critical factor for this effect.

The approach can be further improved by the use of a
dedicated SPECT/CT device to eliminate the need for co-
injection of 99mTc-ECD, which may cause an error due to
approximative attenuation correction and manual image
fusion.

In order to correlate computed doses with toxicity, which
mainly consists of perifocal radiation necrosis, and to
define therapeutic doses, a follow-up study will be initiated
to further develop this novel treatment modality.
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