
Metrika (2013) 76:93–106
DOI 10.1007/s00184-011-0377-1

An urn-based Bayesian block bootstrap

Pasquale Cirillo · Pietro Muliere

Received: 20 October 2011 / Published online: 28 December 2011
© Springer-Verlag 2011

Abstract Block bootstrap has been introduced in the literature for resampling
dependent data, i.e. stationary processes. One of the main assumptions in block boot-
strapping is that the blocks of observations are exchangeable, i.e. their joint distribution
is immune to permutations. In this paper we propose a new Bayesian approach to block
bootstrapping, starting from the construction of exchangeable blocks. Our sampling
mechanism is based on a particular class of reinforced urn processes.

Keywords Block bootstrap · Exchangeability · Reinforced urn processes

1 Introduction

Block bootstrap (BB) has been introduced in Carlstein (1986) and Künsch (1989)
to resample dependent data, for which standard bootstrapping rules are not correctly
applicable. In particular it has been shown that this technique works well for a wide
class of stationary processes without any parametric model assumptions, see Lahiri
(2003).

The idea behind BB is simple: instead of resampling a single observation at a time,
as in Efron’s iid bootstrap (Efron 1979), one resamples blocks of (consecutive) obser-
vations. In this way, the dependence structure of the original observations is preserved
within each block. The length of blocks is assumed to increase with sample size. As
a consequence of this, if the data are generated by a weakly dependent process, the

P. Cirillo (B)
Department of Statistics (IMSV), University of Bern, Sidlerstrasse 5, 3012 Bern, Switzerland
e-mail: pasquale.cirillo@stat.unibe.ch

P. Muliere
Department of Decision Sciences, Bocconi University, Milan, Italy

123

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by RERO DOC Digital Library

https://core.ac.uk/display/159149871?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


94 P. Cirillo, P. Muliere

BB is able to asymptotically reproduce the underlying dependence structure of that
process (Lahiri 2003).

The two most important types of BB are the moving block bootstrap (MBB) of
Künsch (1989) and the non-overlapping block bootstrap (NBB) described in Lahiri
(2003), based on the blocking rule of Carlstein (1986). The difference between these
two schemes is negligible for large sample sizes (Davison and Hinkley 1997; Lahiri
2003). Several generalizations and modifications (e.g. block of blocks) are then pos-
sible, and we refer to Lahiri (2003) for more details.

Let X1, X2, . . . be a sequence of stationary random variables and let X =
{X1, . . . , Xn} indicate the observations. Set l = ln ∈ [1, n] to be an integer. Even
if it is not strictly necessary for the construction of the MBB, it is frequent to assume
that l → ∞ and n−1l → 0 as n → ∞.

Set Bi = (Xi , . . . , Xi+l−1) to be the block of length l that starts with Xi , 1 ≤
Xi ≤ N = n − l + 1. The idea is to sample a sufficient number of blocks from
{B1, . . . ,BN }, in order to obtain the sample B∗

1, . . . ,B∗
k . If we denote the elements in

B∗
i by (X∗

(i−1)l+1, . . . , X∗
il), for i = 1, . . . , k, then X∗

1, . . . , X∗
m represents the MBB

sample1 of size m = kl.
Let us now be interested in the estimator θ̂n = T (Fn), where Fn is the empirical

distribution function of X1, . . . , Xn and T (·) is some real-valued functional. Clearly,
θ∗

n = T (F∗
m,n) is the MBB version of θ̂n , with F∗

m,n denoting the empirical distribution
of X∗

1, . . . , X∗
m .

The NBB differs from the previous construction only by assuming that the blocks
do not overlap. In other words, we consider the largest integer b ≥ 1 such that lb ≤ n.
Hence Bi = (X∗

(i−1)l+1, . . . , X∗
il), for i = 1, . . . , b.

For all the properties of MBB, NBB and other block bootstrapping techniques we
refer to Bing-Yi (1997), Lahiri (2003).

While the NBB was first introduced assuming iid blocks sampled with replacement,
for the MBB the assumption of independence does not hold, because of the overlaps.
Hence most block bootstrapping techniques assume the exchangeability of blocks,
as pointed out in Davison and Hinkley (1997). In fact, if the length of the blocks is
sufficiently large,2 we are able to preserve the dependence structure within blocks and,
at the same time, blocks can be assumed exchangeable, i.e. their joint distribution is
considered immune to permutations.

Exchangeability (Aldous 1985) is a milestone of Bayesian statistics, since the pio-
neering works of de Finetti (1931) on his representation theorem. Starting from this
consideration, it could be useful to introduce a Bayesian approach to block bootstrap-
ping. This could be done by presenting a particular urn-based sampling mechanism
that guarantees the creation of an exchangeable sequence of blocks, on the wake of

1 Because of the moving blocks, in the MBB the first and the last observations of the sample have a lower
chance of appearing in the resampling. To avoid this, one can imagine the data points to be placed over a
circle with no starting point and no end, according to the so-called end wrapping correction (Davison and
Hinkley 1997; Politis and Romano 1992).
2 Naturally, the choice of blocks’ size is a fundamental problem in block bootstrapping techniques; the
trade-off between length and number of blocks is well analyzed in Davison and Hinkley (1997). An inter-
esting automatic selection/estimation method for optimal block sizes is given in Politis and White (2004).
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An urn-based Bayesian block bootstrap 95

what (Lo 1988; Muliere and Secchi 1996; Muliere and Walker 1998; Rubin 1981)
have done for single observations. The idea is to use a suitably modified version of
the reinforced urn process of Muliere et al. (2000) as sampling scheme.

The paper is organized as follows: in the next section we introduce the urn-based
Bayesian block bootstrap; in Sect. 3 we focus our attention on the posterior distribu-
tion generated by the UBBB using some simulations; in Sect. 4 we then show a first
simple application of the new sampling technique to hydrological data already used
to test block bootstrapping techniques; and Sect. 5 actually concludes.

2 The urn-based Bayesian block bootstrap

The sampling mechanism we are about to propose is an adaptation of the reinforced
urn process (RUP) of Muliere et al. (2000). RUP constitute a particular class of models
that is now widely used in Bayesian nonparametric statistics. A RUP can be seen as
a random walk on a state-space of urns and it is basically constructed by the means
of Polya urns. We refer to Mahmoud (2009) for a complete treatment of Polya urn
models.

Imagine we have a discrete set of states v0 < v1 < v2 < . . . and associate to each
of them a Polya urn U (vi ), i ≥ 0. Every urn has its own initial composition of white
and red balls C(vi ) = (w(vi ), r(vi )), for i ≥ 0.

A reinforced urn process {Yn} on {v0, v1, . . .} is defined iteratively as follows: set
Y0 = v0 and, for n ≥ 1, if Yn−1 = vi sample urn U (vi ). If the sampled ball is white,
then Polya-reinforce urn U (vi ) with s > 0 white balls and set Yn = vi+1. Otherwise
the ball is red, and add s red balls and set Yt = v0. In other words, starting from urn
U (v0) we sequentially sample from urns in v0, v1, v2, . . . until a red ball is chosen,
then we start again the sequential sampling.

Repeating the iterative sampling several times, we obtain a sequence like this as
realization:

{Yn}n≥1 = {v0, v1, v2, v0, v1, v0, v1, v2, v0, v1, . . . , v10, v11, v0, . . . .}
= {0, 1, 2, 0, 1, 0, 1, 2, 0, 1, . . . , 10, 11, 0, . . . .} (1)

In other words, every time a red ball is sampled, a so called 0-block is created, i.e. a
sequence of states between two different 0’s.

It can be shown (Muliere et al. 2000) that the process {Yn} is partially exchangeable
in the sense of Diaconis and Freedman (1980). In other words {Yn} can be expressed
as a mixture of Markov chains. For further details see Muliere et al. (2000).

On the basis of these results, let us now introduce the urn-based Bayesian block
bootstrap (UBBB).

Let X1, X2, . . . be a sequence of stationary random variables and let X =
{X1, . . . , Xn} represent a sample. As in the standard block bootstrap, set Bi =
(Xi , . . . , Xi+l−1) to be the block of length l that starts with Xi , 1 ≤ Xi ≤
N = n − l + 1. Blocks can overlap or not. This is not relevant for our construc-
tion. Imagine we can define a total of k blocks.
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96 P. Cirillo, P. Muliere

Consider now k Polya urns: U1, . . . , Uk . Every urn, for i = 1, . . . , k − 1, initially
contains r0

i red and w0
i white balls. The k-th only contains red balls (i.e. w0

k = 0). Let
si , i = 1, . . . , k, be the reinforcement of Ui .3 Finally, set Y = (Y1, Y2, . . .) to be a
sequence of random variables. In order to obtain a sample of blocks according to the
UBBB, proceed as follows:

Step 1 Start with the first urn, U1. Sample it and look at the color of the ball. If it is
red, then set Y1 = B1, reinforce with s1 red balls (i.e. r1

1 = r0
1 + s1 and w1

1 = w0
1),

and start again with U1 to generate Y2. If the ball is white, return the ball to the urn
together with s1 white balls (i.e. w1

1 = w0
1 + s1 and r1

1 = r0
1 ) and move to Step 2.

Step 2 Sample U2. If the sampled ball is red set Y1 = B2 and Polya-reinforce the urn
with s2 red balls (i.e. r1

2 = r0
2 + s2 and w1

2 = w0
2) and restart from U1. Otherwise,

add back s2 white balls (i.e. w1
2 = w0

2 + s2 and r1
2 = r0

2 ) and move to the next Step.
Step… …
Step k Sample Uk . With probability 1 the sampled ball is red, hence Y1 = Bk . Rein-

force and start again with Y2.

Repeating this sampling scheme for several times, we obtain the desired sequence
of blocks. It is easy to see the analogy between the UBBB and reinforced urn processes.
Every time we restart the sampling, the probability of obtaining a given block depends
on the past extractions through the Polya reinforcement mechanism of the urns, which
updates their compositions. From a Bayesian point of view, si , i = 1, 2, . . . , k, repre-
sents the power of knowledge updating, hence the choice of its value has an important
impact on the sampling mechanism and on how likely an already sampled block is
going to be resampled in the future (see Muliere et al. 2000 for the same aspect with
RUP’s). Larger values of s correspond to assigning a stronger influence to the sampling
mechanism, while smaller values represent the choice of giving more importance to
the prior belief, which has been expressed through the initial urns’ compositions (see
the next section).

Theorem 1 The sequence Y = (Y1, Y2, . . .) generated by the UBBB is exchangeable.

Proof The theorem can be proved by observing that the probability of, say,
(B1,B2,B8,Bk, . . . ,B1) and (B1,B1,B2, . . . ,B8,Bk) is just the same, i.e. it is
immune to permutations.

It is sufficient to notice that

P(Y1 = Bl) = r0
l

w0
l + r0

l

l−1∏

j=0

w0
j

w0
j + r0

j

, (2)

3 We would like to stress that it is not necessary that every urn is always reinforced with the same number
s of balls.
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An urn-based Bayesian block bootstrap 97

P(Yp+1 > Bl |Y1, . . . , Yp) =
l∏

j=0

w
p
j + s j f j

w
p
j + s j f j + r p

j + s j dl
j

, (3)

where fh = ∑p
i=1 1{Yi =Bh} and dl

h = ∑p
i=1 1{Yi �=Bh |h<l}. 	


Remark 2 If reinforcement si = 0, for i = 1, . . . , k, then the sequence Y =
(Y1, Y2, . . .) is made of independent random variables. Moreover, if all the urns have
the same composition and si = s for i = 1, . . . , k, we are in the simple case of
Bernoulli trials. If the blocks do not overlap, the UBBB is simply a NBB.

If the compositions differ, we are in the field of Poisson trials, i.e. “Bernoulli trials”
with different probabilities of success (Pepper 1929).

Acting on the initial compositions and the reinforcements of the different urns, it
is hence possible to calibrate the UBBB according to one’s needs.

Remark 3 The sampling process of the UBBB can be seen as a generalization of the
Polya urn.

Corollary 4 If the random variables X1, X2, . . . form a Markov chain, then the boot-
strap sample X∗

1, . . . , X∗
m, m = kl, is partially exchangeable in the sense of Diaconis

and Freedman (1980).

Proof If X1, X2, . . . is a Markov chain, then within each block of observations the
Markovianity is preserved. Then observe that a partially exchangeable process in the
sense of Diaconis and Freedman (1980) is nothing but a mixture of Markov chains,
where the mixture arises from the exchangeability of the urn-based selection of blocks.

	

While it is not necessary for the original data to be a Markov Chain for the UBBB

to work, in the special cases in which this form of dependence is present, the UBBB
guarantees that the bootstrap sample we create is at least a mixture of Markov chains.
Since partial exchangeability is a basic requirement for several Bayesian techniques,
this aspect can be very important for any subsequent analysis.

In Muliere et al. (2000) a result similar to the one of Corollary 4 is obtained by
imposing a recurrence condition to the reinforced urn process. In particular, assuming
special urn compositions, the authors in Muliere et al. (2000) force the RUP to re-visit
a given state in a finite number of steps with a strictly positive probability. Such a
condition is, by construction, not necessary in the UBBB. In fact, with probability 1
at least in the last urn, Uk , we sample a red ball, guaranteeing that the process restarts
from urn U1. Recurrence, together with Theorem 1, enables the following important
result.

Theorem 5 The law of the de Finetti measure F of the exchangeable block sequence
Y = (Y1, Y2, . . . , Yl) is that of a discrete beta-Stacy process with parameters
{w j/s j , r j/s j : j = 1, . . . , l}.
Proof The proposition is an application of Theorem 3.26 in Muliere et al. (2000), to
which we refer for further details. 	
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98 P. Cirillo, P. Muliere

Hence, in the UBBB we explicit a discrete beta-Stacy process prior on the blocks
of observations.

The discrete beta-Stacy process, introduced in Muliere and Walker (1998), repre-
sents a random distribution over the set of discrete distributions, and it is a special
case of neutral to the right (NTTR) process (Doksum 1974). An interesting property
of beta-Stacy processes, that directly derives from being a NTTR random distribution,
is conjugacy. In the next section we will focus our attention on this point.

From a Bayesian point of view, the possibility of eliciting a beta-Stacy prior over
the blocks is really important, since it allows us to incorporate our eventual a priori
knowledge about a special discrete distribution of the blocks. In particular, if F is a
discrete beta-Stacy process, it is possible to center it on a given discrete distribution
G, so that E[F({ j})] = G({ j}), by considering c j > 0∀ j , and setting

w j = c j × (G({ j}) r j = c j ×
⎛

⎝1 −
j∑

i=0

(G({i})
⎞

⎠ . (4)

Hence G represents the initial guess, say a multinomial distribution, while the c j ’s are
the so-called strengths of belief, which represent the weight we assign to distribution G.
It is worth noticing that assigning a beta-Stacy process centered on G is much more
flexible than directly imposing G on the blocks. In the case our prior guess is not
correct, the beta-Stacy process prior is definitely less restrictive than assigning a given
distribution with probability 1. While, if G is actually a good guess, the updated beta-
Stacy process rapidly concentrates its mass on G through sampling. See Muliere and
Walker (1998) for further details.

The possibility of eliciting a very flexible prior and the conjugacy property of beta-
Stacy processes make the UBBB an interesting sampling scheme for Bayesians.

In the special case in which G is a Dirichlet distribution D(w0
1, r0

1 , . . . , w0
k , r0

k ),
the beta-Stacy process of Theorem 5 reduces to famous Dirichlet process of Ferguson
(1973), whose many properties are well known.

For a stationary sequence X1, X2, . . . , X N and a sample X = {X1, . . . , Xn}, a
Bayesian is interested in the posterior distribution of some estimator θ̂ = T (HN , Fn)

given the data, with HN indicating the empirical distribution putting 1/N on each
observation of the whole population (N → ∞), and Fn once again representing
the empirical distribution of the sample. In other words, one wants to elicit L{θ̂ =
T (HN , Fn)|Fn}.

With the UBBB we aim to approximate the posterior distribution using L{θ̂ =
T (F∗

m,n, Fn)|Fn}, where F∗
p,n is a simulated random distribution from a simulation of

size m = N − n. The procedure is as follows:

1. Generate a sample of size m = kl using the UBBB (N ≈ n + m);
2. Let F∗

m,n = (nFn + mG∗
m)/N , with G∗

m representing the empirical distribution

of the sample generated using the UBBB. Evaluate θ̂ = T (F∗
m,n, Fn);

3. Repeat the previous step for D times to get θ̂1, . . . , θ̂D .
4. Use the empirical distribution of θ̂1, . . . , θ̂D to approximate the posterior distri-

bution of L{θ̂ = T (HN , Fn)|Fn}.
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An urn-based Bayesian block bootstrap 99

From this we understand that the UBBB is in some way a generalization of the Polya
bootstrap of Lo (1988), in which we sample blocks instead of single observations.

3 The posterior

As we have anticipated, one of the main characteristic of beta-Stacy processes is con-
jugacy. This means that, in our construction, the posterior distribution for F , after
sampling p different blocks, is still a discrete beta-Stacy process, whose parameters
have been updated according to the sampling history. In particular we need to count
how many times a given block has been sampled so far. For more details we refer to
Muliere and Walker (1998).

All in all the bootstrap posterior is a beta-Stacy whose parameters are updated by f j

and dl
j , for every j , according to Eq. 3. Clearly the behavior of the posterior distribution

is influenced by the initial settings of the UBBB (urn compositions, reinforcement,
number of urns, etc.), that is to say by the prior knowledge we elicit.

Let us now consider some simulations, in order to analyze the behavior of the
posterior distribution using different configurations of parameters and a simple data
structure.

We have simulated a basic autoregressive process of order 1, i.e.

Zt = a + ρZt−1 + εt , (5)

with a = 5, ρ = 0.8, Z0 = 5 and εt ∼ N (0, 1).
We have considered two distinct situations: a time series made of only 30 observa-

tions and a time series with 200 time points.
In the first case the estimates we get are â = 2.88(1.00) for the intercept and

ρ̂ = 0.67(0.12) for the autoregressive part. For the second regression we have â =
1.90(0.39) and ρ̂ = 0.81(0.04). Naturally the number of available observations has a
clear impact on our estimates. In brackets we give the standard errors.

For what concerns our prior knowledge of the phenomenon, we analyze two dif-
ferent possibilities:

• in the first case, that we call “No prior”, we do not have any prior belief and we
consider a sequence of urns with the same initial composition, i.e. containing the
same amount of white and red balls, w0

i = r0
i = 50∀i < k, where k is the last

urn with 1 red ball and 0 white balls, as expected by the UBBB construction.
Reinforcement si is set equal to s = 1 for every urn Ui , i = 1, . . . , k;

• in the second case, called “Prior”4, we naively give more weight to the first blocks
of observations, i.e. we increase the probability of resampling them, by setting
ri > ri+1, i = 1, . . . , k, and keeping the total number of balls equal to 100 for
all urns (apart from the last one, as usual). Moreover we set si = s = 5 for every

4 The “Prior” assumption we are introducing must be simply considered as an example and not as the
real elicitation of some expert prior knowledge. In particular we are expressing an explicitly wrong belief.
A correct prior elicitation can be done using Eq. (4).
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100 P. Cirillo, P. Muliere

Table 1 Parameters’ initializations: TS represents the time series; BL is the number of non-overlapping
blocks considered; (wi , ri ) is the composition of urn Ui if available; s is the reinforcement, assumed the
same for all urns

TS BL (w1, r1) (w2, r2) (w3, r3) (w4, r4) (w5, r5) (w6, r6) (w7, r7) (w8, r8) s

30 2 (50, 50) (0, 1) * * * * * * 1

30 3 (30, 70) (40, 60) (0, 1) * * * * * 1

30 2 (50, 50) (0, 1) * * * * * * 5

30 3 (30, 70) (40, 60) (0, 1) * * * * * 5

200 4 (50, 50) (50, 50) (50, 50) (0 ,1) * * * * 1

200 8 (50, 50) (50, 50) (50, 50) (50, 50) (50, 50) (50, 50) (50, 50) (0, 1) 1

200 4 (20, 80) (30, 0) (40, 60) (0, 1) * * * * 5

200 8 (20, 80) (25, 75) (30, 70) (35, 65) (40, 60) (45 , 55) (50, 50) (0, 1) 5

For every parameter specification we have generated 1,000 samples

urn Ui . The increase in the reinforcement can be seen as a countermeasure that
balances our prior elicitation.

Remark 6 The choice of si is particularly relevant for the finite sample performances
of the UBBB.

For example, choosing s = 1 implies a quite moderate knowledge update, meaning
that the more a block is sampled, the more likely it will be sampled in the future (and
its information/dependence structure will be more replicated in the data). The choice
s = 5 increases the importance of sampling with respect to the prior elicitation given
by the initial compositions of the urns.

To reduce the impact of updating one could choose smaller values of s, such as 0.1
or 0.01, moving towards the IID case. On the contrary, setting say s = 1, 000 causes
the first blocks to be sampled over and over again.

Naturally, the impact of s depends on the relative initial composition of the dif-
ferent urns. Adding 1 extra ball to a total of 100 balls is not the same as adding 1
ball to a group of 3 balls. If we standardize the composition of the urns to 1, some
reference values for s may be 0.001 (weak reinforcement), 0.01, 0.1 and 0.2 (strong
reinforcement).

A nice discussion on the role of reinforcement in reinforced urn processes can be
found in Muliere et al. (2000), and it can be easily applied to the UBBB as well.

Table 1 contains all the information concerning the initialization of the UBBB in
the different situations. For example we can read that, for the shorter time series made
of 30 observations, we have created bootstrap samples using 2 and 3 non-overlapping
blocks.5 Table 1 also tells us that, in the first case, we have initialized the two urns
with (50,50) and (0,1) white and red balls.

Under every specification we have created 1,000 bootstrap samples.

5 Please notice that the use of 2 non-overlapping blocks, in a time series containing 30 points, is unrealistic
in actual applications. We are proposing it just for pedagogical purposes.
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AR(1) estimates: ρ

 

 

No Prior 4 Blocks s=1
No Prior 8 Blocks s=1
Prior 4 Blocks s=5
Prior 8 Blocks s=5

Fig. 1 Posterior distributions for the autoregressive parameter ρ for the longer time series (200 observa-
tions) using 1,000 UBBB samples for the 4 specifications of Table 1, rows: 5–8

Figure 1 shows the four posterior distributions for the parameter ρ of the AR(1)
model of the longer time series with 200 observations. First of all, we can observe
that eliciting some prior knowledge of the phenomenon under investigation has a clear
impact on the posterior distribution generated by the UBBB. In particular, while in
the case of no specific assumption we have that the posterior distribution tends to
concentrate on the true value of ρ = 0.8, when we wrongly give more weight to the
first blocks (those whose corresponding urns have a higher proportion of red balls) we
have that the posterior distribution of ρ tends to slightly shift to the left. This is surely
due to the fact that we are giving more strength to the information contained in the first
blocks, without actually knowing if this information is correct or not. Eliciting a more
appropriate prior knowledge could easily concentrate the posterior on the true value.

Always in Fig. 1 it is interesting to notice that the number and thus the length of
non-overlapping blocks has a smaller impact than what one could expect. In particular
the length of blocks seems to be important if we elicit a wrong prior. In that case,
the larger amount of information about the dependence structure in the data is able
to mitigate the effect of a wrong a priori. This is clear if we compare the posterior
distribution of ρ under the prior assumption with 4 (50 observation each) and 8 (25
observations) blocks.

Summarizing we get the following basic descriptive statistics about the UBBB
posterior distribution of ρ:

• the mean value of ρ is 0.8013 under the no prior assumption with 4 blocks, 0.7991
under the no prior assumption with 8 blocks, 0.7244 under the prior assumption
with 4 blocks and 0.7219 under the prior assumption with 8 blocks.

• the corresponding standard deviations are: 0.0510, 0.0621, 0.0764 and 0.5046.

Similar results do hold for the intercept a of the AR(1) model.
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102 P. Cirillo, P. Muliere

Figure 2 contains the posterior distributions for the autoregressive parameter ρ

under the four different specifications for the shorter time series with 30 observations.
Even in this case it is interesting to notice the impact of the prior specification and the
number of blocks. In particular, it is worth noticing how choosing just two blocks made
of 15 observations and giving more weight to the first one leads us to a very irregular
posterior distribution. In fact we are creating UBBB samples in which the first block
(50% of all original data) is more and more present. Having just few observations
exacerbates the situation.

For what concerns the mean and the standard deviation of ρ under the UBBB
posteriors we get:

• the mean value of ρ is 0.6596 under the no prior assumption with 2 blocks, 0.6323
under the no prior assumption with 3 blocks, 0.6776 under the prior assumption
with 2 blocks and 0.6182 under the prior assumption with 3 blocks.

• the corresponding standard deviations are: 0.1155, 0.1304, 0.1084 and 0.1402.

These values are all very close to the estimate we can obtain from the original time
series by fitting an AR(1) model, i.e. ρ̂ = 0.67(0.12).

Finally, Fig. 3 shows the comparison of the joint distribution of the whole time
series with 200 observations, as obtained using the original data set, and those of two
bootstrap copies with 4 and 8 blocks, under the “no prior” assumption. Clearly the
sample based on larger blocks is definitely closer to the original data. Something sim-
ilar holds for the 30 observations case, even if the use of a smaller data set presents
some more problems.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

AR(1) estimates: ρ

Prior 2 Blocks s=5
No prior 2 Blocks s=1
Prior 3 Blocks s=5
No Prior 3 Blocks s=1

Fig. 2 Posterior distributions for the autoregressive parameter ρ for the shorter time series (30 observations)
using 1,000 UBBB samples for the 4 specifications of Table 1, rows: 1–4
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2 4 6 8 10 12 14 16 18
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0.35

Joint distribution

Actual
4 blocks
8 blocks

Fig. 3 Comparison of the joint distribution of the longer time series (200 observations) with two UBBB
samples with 4 (50 obs.) and 8 blocks (25 obs)

4 An example

We now give a simple demonstration of the UBBB using a time series of river stages
from the Rio Negro data set of Brillinger (1988).

The data set contains 120 monthly observations, from January 1970 to December
1979, centered on their mean. This data set has also been used in Davison and Hinkley
(1997) to compare different block bootstrapping methods. Figure 4 shows the original
series and two examples of UBBB samples with different block lengths.
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Fig. 4 Resamples from the Rio Negro data. The first plot represent the actual data. Panels 2 and 3 are
related to UBBB samples with block length 10 and 15
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To evaluate the UBBB we have generated 1,000 samples using different block
sizes and no end correction. In particular we have chosen blocks made of 10, 15
and 20 observations (hence k = 12, 8, 6). Moreover si = 1, w0

i = b0
i = 10 for

i = 1, . . . , k − 1, w0
k = 0 and b0

k = 1. These settings guarantee a fair process of
reinforcement.

Following (Davison and Hinkley 1997) we have computed the averages (ρ1, ρ2 and
ρ3) of the first three autocorrelation coefficients and the SE of the mean.

In the original Rio Negro data, we have ρ1 = 0.87(0.003), ρ2 = 0.57(0.005) and
ρ3 = 0.28(0.012), indicating a rather dependent series. For what concerns the mean,
the sampling SE is 0.013.

As expected, the larger the blocks used, the more the dependence structure is pre-
served and the original information replicated. If we start with blocks of 10 observa-
tions, we obtain ρ̂1 = 0.55, ρ̂2 = 0.41 and ρ̂3 = 0.18. The SE of the mean is estimated
as 0.28.

Choosing 15 observations per block, the results get better. In fact: ρ̂1 = 0.67, ρ̂2 =
0.50, ρ̂3 = 0.24 and SE = 0.32.

Finally, for a block size of 20, we obtain ρ̂1 = 0.86, ρ̂2 = 0.56, ρ̂3 = 0.24 and
SE = 0.29.

All in all, the UBBB seems to be able to maintain the dependence structure of the
original data. Naturally the results improve with the size of the blocks, as expected.

To complete the analysis we have compared our results with those obtainable with
other block bootstrap methods, commonly used in the literature (see Davison and
Hinkley 1997). In particular, we have tested the UBBB against the stationary bootstrap,
the blockwise approach, the blocks of blocks method and a model-based bootstrap,
using AR(1) and AR(2) specifications as underlying models. The last two techniques
are widely used in the literature thanks to their generally satisfactory results.

Table 2 contains the results: from one side, the UBBB is more accurate than the
stationary and the blockwise bootstraps; while, from the other, it seems to be less
accurate than the block of blocks and the model-based approaches, in particular when
we consider blocks of length 10.

The performances of the UBBB could be improved by better eliciting some prior
knowledge about the dependence structure, instead of assuming almost equiprobable
blocks. In any case, we believe that these first results6 are definitely promising and
suggest us to continue with the development of the UBBB approach.

5 Conclusions

Block bootstrapping techniques have been introduced in the literature for resampling
dependent data, and in particular stationary processes. One of the main assumptions
in block bootstrapping is that the blocks of observations are exchangeable.

6 In particular, we would like to underline that the difference between the UBBB and the powerful model-
based bootstrap is not extreme, especially if we consider that the AR(2) model is actually the best one for
the Rio Negro time series.
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Table 2 Comparison of the
UBBB with other block
bootstrap approaches

The first line contains the actual
estimates from Rio Negro data.
The column “Details” indicates
the size of the blocks or the
underlying model (model-based
bootstrap) used in the
experiment

Method Actual → 0.013 0.87 0.57 0.28

Details SE ρ̂1 ρ̂2 ρ̂3

UBBB 10 0.28 0.55 0.41 0.18

20 0.29 0.86 0.56 0.24

Stationary 10 0.30 0.49 0.40 0.15

20 0.27 0.79 0.54 0.22

Blockwise 10 0.35 0.53 0.39 0.18

20 0.28 0.81 0.52 0.22

Blocks of blocks 10 0.31 0.81 0.60 0.39

20 0.32 0.84 0.53 0.26

Model-based AR(1) 0.34 0.83 0.59 0.33

AR(2) 0.45 0.87 0.58 0.30

Starting from this assumption, and considering that exchangeability represents
a fundamental aspect of Bayesian statistics, we have introduced a new Bayesian
approach to block bootstrap using reinforced urn processes (Muliere et al. 2000).
We call this new sampling scheme the urn-based Bayesian block bootstrap (UBBB).

The UBBB generates an exchangeable sequence of blocks, eliciting a very flexible
beta-Stacy prior on them. This has nice implications, as we discuss in the paper.

By modifying the reinforcement rules and the urns, the UBBB could also be
extended and generalized in several ways. The UBBB might even be combined with
other techniques, in order to have better replications of the actual data. An idea could be
to use the UBBB on blocks of blocks (Lahiri 2003), or with post-blackening techniques
(Davison and Hinkley 1997).

Finally, one could apply the UBBB in extreme value theory (EVT). In fact, it
is known that one of the most used approach in EVT is the so called block-max-
ima approach, in which the extremes are computed over blocks of observations. The
UBBB could then be used as sampling mechanism for maxima (or minima). Since the
UBBB generates a sequence of exchangeable blocks and the maxima are functions
of these blocks, the UBBB would generate a sequence of exchangeable maxima with
beta-Stacy prior. We will work on this in the future.

In the last part of the paper we have shown an application of our urn-based block
bootstrap to some hydrological data, comparing our results with those obtainable with
other commonly used block bootstrap techniques.
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