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Abstract Associative learning is known to modify foraging behavior in numerous
parasitic wasps. This is in agreement with optimal foraging theory, which predicts that
the wasps will adapt their responses to specific cues in accordance with the rewards they
receive while perceiving these cues. Indeed, the generalist parasitoid Cotesia margin-
iventris shows increased attraction to a specific plant odor after perceiving this odor
during contact with hosts. This positive associative learning is common among many
parasitoids, but little is known about the effects of unrewarding host searching events
on the attractiveness of odors. To study this, preferences of female C. marginiventris
for herbivore-induced odors of three plant species were tested in a six-arm
olfactometer after the wasps perceived one of these odors either i) without contacting
any caterpillars, ii) while contacting the host caterpillar Spodoptera littoralis, or iii)
while contacting the non-host caterpillar Pieris rapae. The results confirm the effects
of positive associative learning, but showed no changes in innate responses to the
host-induced odors after “negative” experiences. Hence, a positive association is made
during an encounter with hosts, but unsuccessful host-foraging experiences do not
necessarily lead to avoidance learning in this generalist parasitoid.
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Introduction

Learning allows foraging insects to evaluate the profitability of their environment and to
optimize the exploitation of unpredictably distributed resources (Menzel et al. 1993).
This is also expected to be the principal function of associative learning in insect
parasitoids (Turlings et al. 1993; Vet et al. 1995; Steidle and van Loon 2003), but
conclusive evidence is lacking. Parasitoids of herbivores have the arduous task of
finding their usually inconspicuous hosts in complex vegetation (Godfray and Waage
1988). Herbivores will have undergone selection to limit chemical emissions in order
to avoid being detected by their natural enemies (Tumlinson et al. 1992; Vet and Dicke
1992; Stowe et al. 1995). These enemies appear to have found a solution by using
plant-provided signals in their search for preys or hosts (Dicke and Sabelis 1988;
Turlings et al. 1990a, 1995). The signals come in the form of volatile organic
compounds emitted by plants in response to herbivore damage, and play key roles in
numerous tritrophic interactions (for reviews, see Vet and Dicke 1992; Dicke and Vet
1999; Turlings and Benrey 1998; Turlings and Wäckers 2004). Plants under herbivore
attack emit the volatiles systemically and in large amounts, thus providing parasitoids
with olfactory signals that can be readily detected over larger distances.

However, host-induced plant odors can be highly variable and parasitic wasps
have to optimize their use of the available signals within the context of this
variability. Genotype, plant stage and environmental conditions are all known to
influence the emission of host-induced odors (Loughrin et al. 1995; Krips et al.
2001; Hoballah et al. 2002; Gouinguené and Turlings 2002; Degen et al. 2004). In
addition, the makeup of the blend produced by a plant species may depend on the
herbivore species (Powell et al. 1998; De Moraes et al. 1998), or even the stage of
the attacking herbivore (Takabayashi et al. 1995). Whatever the source of variability,
parasitoids are very flexible in their responses to long-range cues and this
adaptability may help them to focus on those cues that are most reliably associated
with host presence (Vet and Dicke 1992; Wäckers and Lewis 1994). Indeed, parasitic
wasps can make an association between an encounter with a suitable host and the
odor that they perceive during such an encounter. Subsequently, their response to the
learned odor is increased (Turlings et al. 1993; Vet et al. 1995).

If indeed associative learning enhances the efficiency of parasitoids in their
foraging efforts, then it can be expected that negative or unrewarding experiences
also have an impact on their foraging decisions. Awasp might learn to avoid an odor
that it perceives in an unprofitable microhabitat. This is not the case for the
generalist ectoparasitoid Exeristes roborator, which shows no change its odor
preference after repeated exposures to a particular odor without encountering hosts
(Wardle and Borden 1989). In contrast, females of the generalist Leptopilina
heterotoma can learn to distinguish between the odors of profitable and unprofitable
host habitats (Papaj et al. 1994; Vet et al. 1998). Visual cues may also be interpreted
negatively if they are associated with unsuitable hosts, as has been shown for the
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tachinid fly Exorista mella (Stireman 2002). Takasu and Lewis (2003) found that
females of the specialist parasitoid Microplitis croceipes that have oviposited in a
lepidopteran species that is not a host cease to respond to a previously learned odor;
they also decrease subsequent responses to general odors. Similarly, Lizuka and
Takasu (1998) found that females of a pupal parasitoid, Pimpla luctuosa, cease to
respond to a learned odor after having probed “simulated” hosts with their ovipositor.

As is expected for positive learning (Vet and Dicke 1992; Steidle and van Loon
2003), the ability to use negative information in foraging efforts may differ between
generalist and specialist parasitoids. We predict that encounters with non-host insects
in association with a specific plant odor will have a particularly negative effect if
there is a high likelihood that subsequent responses to the experienced odor will
again lead them to non-hosts. As yet, this has not been tested for generalist wasps
that use host-induced volatiles from various plant species to locate hosts.

Here we present three experiments with the generalist parasitoid Cotesia
marginiventris that studied the effects of unrewarding experiences and experiences
with non-hosts on the parasitoid’s subsequent responsiveness to host-induced plant
odors perceived during these experiences. It is known that females of C. marginiventris
readily associate rewarding experiences (i.e.: contact with host feces or ovipositions in
a suitable host) with a plant odor, and they show an increased attraction to a rewarding
odor (Turlings et al. 1989, 1990a, b; Hoballah and Turlings 2005; Tamò et al. 2006).
Using a six-arm olfactometer we tested how the wasp’s response to the induced odor
of three plant species (maize, cotton and cowpea) is affected by positive (contact with
the host Spodoptera littoralis) and negative (no host contact or contact with the
non-host Pieris rapae) experiences.

We aim to answer two questions with these experiments: (1) Does an exposure to
an host-induced plant odor in the absence of hosts affect the subsequent attraction of
C. marginiventris to this odor? (2) What is the effect of contact with a non-host
species in the presence of a host-induced plant odor on a generalist wasp’s odor
preferences? Results confirm that positive experiences increase responsiveness to the
experienced odor, whereas negative experiences in these experiments altered neither
the responsiveness nor the odor preferences of C. marginiventris.

Materials and Methods

Plants

We compared the attractiveness of host-induced plant volatiles (HIPVs) produced by
three different plant species: maize (Zea Mays, var. Delprim), cotton (Gossypium
hirsutum, var. “Coton en pots”) and cowpea (Vigna unguiculata, var. “black-eyes”,
Haefliger AG/SA). Plants were grown from seed in plastic pots (8 cm diameter, 6 cm
high) filled with fertilized commercial soil (Coop, Switzerland) in a climate chamber
(23°C, 60% R.H., Photoperiod: 16L/8D, 50,000 lm/m2) and were watered every day.
When maize seedlings were 10–12 days old and when cotton and cowpea seedlings
were 15–17 days old (all the plants had three fully developed leaves), they were
taken out of the climate chamber in the evening, placed under ambient laboratory
conditions and then prepared as follows to serve the next day as odor sources. Two
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seedlings from each plant species were carefully transplanted together into a glass
pot (5 cm diameter, 11 cm high) and the pot was covered with a glass vessel of the
olfactometer (Fig. 1). Two seedlings of the same plant species were infested with
twenty 2nd instar Spodoptera littoralis Boisduval (Lepidoptera: Noctuidae) larvae
deposited from the top opening of the vessel. Each such vessel could either be used
as an odor source to test in the olfactometer or to expose the wasps to the host-
induced plant odor before the test.

Insects

Parasitoids

The endoparasitoid Cotesia marginiventris Cresson (Hymenoptera: Braconidae) is a
generalist that has a wide range of hosts. This includes at least twenty species from
the Noctuidae, including Spodoptera spp (Krombein et al. 1979; Jalali et al. 1987).
Yet, this parasitoid cannot successfully develop on Pieris rapae larvae (Personal
observation). We reared C. marginiventris wasps from a culture that originated from
the USDA-ARS, Biological Control and Mass Rearing Research Unit (Mississippi,
USA), and that was frequently refreshed with wild individuals to preclude
inbreeding effects. Female wasps were reared in the laboratory on Spodoptera
littoralis (Hoballah et al. 2002). Adults were kept in plastic cages (30×30×30 cm)
stored in an incubator (25°C and 16L/8D) and provided with honey and moist cotton
wool. We used 2–4 day-old mated females in all experiments.

Hosts

Eggs of S. littoralis supplied by Syngenta (Stein, Switzerland) were incubated each
week on moist filter paper. Emerged caterpillars were fed with a wheatgerm-based

Fig. 1 System used to give female C. marginiventris prior experience (A) Vessel containing two
Spodoptera infested maize plants (B) Full system operational (Drawing : T. Degen).
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artificial diet provided by Syngenta and kept in plastic-boxes (15×9×5 cm) under
ambient laboratory conditions. Second instar larvae were used in all the experiments,
either to infest plants or to give female wasps an oviposition experience.

Non-hosts

Larvae of the non-host Pieris rapae L. (Lepidoptera: Pieridae) were obtained from a
colony at the University of Lausanne that was reared on cabbage. For the experiments,
they were transferred from cabbage to the experience tube above their assigned
experimental plant (Fig. 1). To determine if the wasps recognize these larvae as
unsuitable, we conducted preliminary tests by exposing female C. marginiventris to
second instar P. rapae larvae (non-host) and to second instar S. littoralis larvae (host),
while they perceived the HIPVs of maize (see Fig. 1 and “Experiencing the wasps”).
The larvae were frequently probed by C. marginiventris, but not as readily as larvae of
the host S. littoralis. Dissections of S. littoralis and P. rapae second instar larvae were
made just after contact they had been contacted by a wasp. Only about 30% of
the probings in the non-host led the wasp to lay an egg, whereas a great majority
of females (92%) had oviposited in S. littoralis. Similar tests showed that also
when female C. marginiventris were not exposed to any HIPVs they would in most
cases not lay an egg in P. rapae. Thus, the outcomes of an attack in S. littoralis
and P. rapae were clearly different and the wasp must have been able to distinguish
between them.

Giving the Wasps Experience

Before their release in the olfactometer, female C. marginiventris were twice given
an experience, once the day before around 16h00 and once one hour before the
test. For this “training” experience, we used the same type of vessel with host-
induced plants (Fig. 1) as used for the olfactometer tests (see: “Plants”). The top
openings of these vessels were connected to a 2.5 cm diam. glass tube that contained
a fine meshed nylon that prevented wasps and larvae from entering the vessel. Wasps
were individually placed in the tube (with or without larvae) and the top of the tube
was then covered by a transparent lid. Wasp behavior was observed through this lid.
Female wasps were trained in groups of two or three in order to have at least six
individuals of each experience type prepared for the olfactometer tests. In the tube,
the wasps were exposed to the Spodoptera-induced odor of one of the three plant
species and were offered either (i) no larvae, (ii) host larvae (S. littoralis), or (iii)
non-host larvae (P. rapae). As an additional control, a group of females were kept as
naives (without host or plant odor experience).

Behavioral Tests: The Six-arm Olfactometer

Odor preferences were tested in the six-arm olfactometer described in Turlings et al.
(2004). The setup consists of a construction with three shelves: the top shelf carries
the olfactometer, the middle shelf is used to release the insects tested and the bottom
shelf holds the odor sources. On the bottom shelf pure humidified air is pushed into
the lower part of each odor source vessel (1.2 l/min). Half of the airflow (0.6 l/min)
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is pulled out through a filter attached to an opening at the upper part of the vessel.
This filter can be extracted after an experiment for subsequent chemical analyses
(Turlings et al. 2004). The remaining air (0.6 l/min) from each vessel is carried via a
Teflon tube to an arm of the olfactometer. This way, all six airflows come together in
a central glass chamber, in which the wasps are released and can make their choice
for an odor by walking into one of the arms. After walking into an arm they end up
in a trapping bulb, where they can be readily counted (see Turlings et al. (2004) for
further details). In our tests, the wasps always had a choice between three arms
connected to host-induced plants odors of maize, cotton, and cowpea alternated with
three arms connected to empty vessels. The positions of maize, cotton, and cowpea
were randomly assigned for each different experimental day.

Female wasps were released in groups of six inside the central chamber, one hour
after having received their second experience. The sequences in which the different
experience groups were released were randomized to avoid possible daytime
effects. We let the females choose during a period of 30 min, after which the six
individuals were removed from the device with an aspirator. The number of females
having made a choice for each plant was recorded, thus establishing the relative
preference of a treatment group. The first experiment was replicated on seven days
and the two other experiments on eight days. All experience treatments were tested
once on each day with the same odor sources. At the end of a day, all parts of the
olfactometer were washed with water and rinsed with acetone and hexane. After
the solvents had evaporated in a fume hood the glass parts were dried in an oven
at 250°C.

Experiment 1: The Effect of Failure to Find Hosts

In the first experiment, we assessed the effect of unrewarding experiences (defined
as a failure to find a host in the presence of a particular odor). We compared the
responses of females having performed two ovipositions in S. littoralis larvae
(referred to as +) with those having encountered no larvae in the experience tube
during 5 min (referred to as 0). We used maize (M) and cotton (Ct) for both (+)
and (0) treatments. Including the group of naives (N), we tested five groups of
wasps (M+/M0/Ct+/Ct0/N).

Experiment 2: The Effect of Encounters with Non-hosts

Given the results of the first experiment, we then evaluated the impact of an
encounter with non-hosts on the wasps’ responses to host-induced odors. Since a
large majority (70%) of females did not lay eggs inside the non-host, the en-
counters were likely to be perceived as negative in terms of host search, which
might lead to an avoidance of the odor detected during the encounter. Females
having had such a negative experience are referred to as (−). Females (−) were
either exposed to host-induced odors of maize (M−) or cotton (Ct−). We compared
the olfactometer responses of wasps experiencing these unfruitful attacks with
wasps that underwent the five treatments that were used in the first test. Thus,
the preferences of seven groups of wasps were assessed in this second experiment
(M+/M0/M−/Ct+/Ct0/Ct−/N).
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Experiment 3: Including Experiences with Cowpea Odors

In this last experiment, we performed the same tests as in the previous experiment,
except that we used the host-induced odors of cowpea (Cp) instead of cotton for the
training. The reason for this is that infested cowpea seedlings were found to be the
most attractive to naive wasps and avoidance after negative experience might be
more apparent for the initially attractive cowpea volatiles. Hence, for this third
experiment we compared the responses of seven groups of wasps, referred to as M+/
M0/M−/Cp+/Cp0/Cp−/N.

Statistics

To compare the percentage of wasps responding to plant odors in different groups of
females (having a different training), we performed a so-called Monte Carlo exact
test. Let yij denote the counts in a two-way contingency table, with i labeling the
rows and j the columns. Independence of the row and column classifications is very
often tested using the usual Pearson statistic, often called the chi-squared statistic,
which may be written X 2 ¼ P

ij yij � yi�y�j=nÞ2= yi�y�j=n
� ��

, where yi· and y·j are
respectively the totals for the ith row and jth column, and n is the total for the entire
table. Conventionally the hypothesis of row-column independence is rejected when
X 2 is large compared to a chi-squared distribution, but if the cell counts are very
small this provides a poor test, because the chi-squared distribution is then
inappropriate. In our experiments, there were just six individuals for each sequence
of releases, and our data often showed a probability of 1 for a wasp to respond, so
use of a chi-squared distribution would be very misleading. Under a Monte Carlo
exact test the conditional distribution of the test statistic, which provides an exact
significance level, is approximated using a Metropolis–Hastings algorithm. We
applied this approach using the deviance or likelihood ratio statistic W ¼
2
P

i; j yijlog n yij=yi�y�j
�� �2

= yi�y�j=n
� �

rather than X 2 because W should have
slightly higher power. Monte Carlo simulation of this sort is widely used to
approximate exact tests in small samples or other situations where the standard chi-
squared approximation for a test of fit is invalid; for more details see Davison and
Hinkley (1997, Ch. 4.2.2). In this our case, the null hypothesis H0 was that the
number of wasps making a choice is independent of prior experience. The observed
value Wobs of W was compared to 15,000 values simulated under H0. We rejected H0

at significance level t×100% if the quantile Q1−t of the simulated values was strictly
inferior to Wobs, i.e. if Q1−t < Wobs. We fixed the significance level at 5%, so all
calculated quantiles were Q0.95.

In the second part of the analysis, we created a log-linear model slightly modified
from that of Tamò et al. (2006) to compare the relative attractiveness of a particular
plant odor depending upon the wasps’ prior experience. We also took into account
the significant overdispersion of the data previously observed (Davison 2003;
Turlings et al. 2004; Tamò et al. 2006) by using a stochastic version of the model.
Our model also considered the censored nature of our data since not all the wasps
made a choice during the 30 min (Ricard and Davison 2007).

We developed several models for different scenarios (Table 1) and compared
them using likelihood ratio methods. All these models relied on the assumption
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that responses toward empty (e) arms could be different from those connected to a
plant odor (p).

Our first model (1), which assumed that the attractiveness toward an arm was not
modified by the prior wasp experience, was described by the equation

log lpþ ¼ log lp ¼ bp ðwith p ¼ maize; cotton; cowpea; empty armf gÞ; ð1Þ
where parameter βp represents the measurement of the relative attractiveness of the
odor source λp in the arm containing the plant p, while λp+ corresponds to the
relative attractiveness of a plant odor experienced by a wasp (+).

In model (2), the assumption was that wasps having treatments (+) were more
attracted by the plant they have experienced positively. The increased attractiveness
is described by parameter γp, with γp>0:

log lpþ ¼ bpþ ¼ bp þ gp;
log lp ¼ bp:

ð2Þ

In model (3), we assumed that wasps (+) were more attracted to the plant they had
already experienced compared to naive wasps that were more attracted to the plant
than wasps (0):

log lpþ ¼ bpþ ¼ bp þ sp þ gp;
log lpN ¼ bpN ¼ bp þ sp;
log lp0 ¼ bp:

ð3Þ

The difference of attractiveness for wasps (0) and naive wasps (N) was
represented by parameter σ.

Finally, in model (4), the assumption was that wasps (−) were less attracted to the
plant they have experienced negatively. The two first equations of model (3)
remained unchanged, but the last equation was modified to

log lp� ¼ bp: ð4Þ
A significant difference between the fits of models (1) and (2) would mean that

wasps (+) are more attracted to the plant odors they have experienced. If models (2)
and (3) are different, this would show that wasps (0) respond significantly less to the

Table 1 Summary of the Four Log-linear Models Developed to Compare the Relative Attractiveness of a
Particular Plant Odor Depending Upon Female C. marginiventris Prior Experience

Model Tested hypothesis Biological significance

1 (+) = N = (0) No effect of wasp prior experience

2 (+) > (N) = (0) Effect of positive associative learning (contact with a host increases
wasp response)

3 (+) > N > (0) Failure to find a host reduces female wasp response to the plant odor
while contact with a host increases wasp response

4 (+) > N > (−) Contact with a non-host reduces female wasp response to the plant odor
while contact with a host increases wasp response

N = naive females, (+) = female wasps that had oviposited twice in a host (S. littoralis), (0) female wasps
that found no host, and (−) = wasps that attacked a non-host (P. rapae)
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odors they have been exposed to. A difference between models (2) and (4) would
indicate that wasps (−) are less attracted to the plant odors they have experienced.
For each model, effects of experience were tested first as a global effect on both
plants and then on each plant separately. All programs used in the present analysis
were written in the software R (http://stat.ethz.ch/CRAN/).

Results

Experiment 1

Most of the wasps (77.2%) responded to HIPVs during this first experiment, thus
confirming the suitability of the set-up for assessing the wasp’ responses. The
Metropolis–Hastings algorithm yielded a quantile of simulated deviances (Q0.95=
49.2) lower than the observed deviance of the data (Wobs=55.8), thus indicating
that there was a significant difference in responsiveness (proportion of wasps
entering an arm) between the different wasp treatments. The most responsive
wasps were those having a positive experience on cotton (C+), while the least
responsive were those that failed in finding a host on cotton (C0) or had a positive
experience on maize (M+) (Fig. 2).

Females that had a positive experience in the presence of induced plant odor
displayed a highly significant increase in response towards the odor (Chi21 ¼ 17:39;
P<0.0001). The effect of positive experience on Ct+ females was highly significant
(Chi1

2 =18.56; P<0.0001). Although their response was highest (Fig. 3), M+ females
were not significantly more attracted to maize than naïve (N) ones (Chi21 ¼ 3:22; P=
0.07). There was also no difference in responses between naive females and females
that perceived the HIPVs in the absence of hosts (M0: Chi21 ¼ 2:02; P=0.15 and
Ct0: Chi21 ¼ 0:99; P=0.32).

Model (2) provided the best fit to the data among the models fitted, thus
showing that increased attraction occurring after a positive experience on a
particular plant odor. Wasps were overall more attracted by cowpea than by the
other two plant (P<0.0001).

Experiment 2

In Experiment 2, we compared the same treatments as in Experiment 1, but we also
included groups of females that contacted the non-host P. rapae in presence of maize
(M−) or cotton (Ct−) volatiles. A majority of females (80.7% on average) chose an
arm with a plant odor, and there was no significant difference in overall
responsiveness between different groups of females (Wobs=66.1<Q0.95=82.7).
Among the three host-induced plant odors offered, cowpea odor was again
significantly preferred (P<0.0001).

M+ females (Chi21 ¼ 15:41; P<0.0001) and Ct+ females (Chi21 ¼ 25:5; P<
0.0001) exhibited a highly significant preference for the plant odor they had
previously experienced (Fig. 4). Females having encountered P. rapae did not
change their preference whether they experienced the odor of maize (Chi21 ¼ 0:76;
P=0.38) or cotton (Chi21 ¼ 1:83; P=0.18). As in Experiment 1, females that did not
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encounter hosts while perceiving an odor also did not change their preference,
whether the perceived odor was maize (Chi21 ¼ 2:21; P=0.14) or cotton
(Chi21 ¼ 0:06; P=0.81).

Since models (3) and (4) did not provide a better fit, we found that model (2)
again best described the wasp responses, confirming the strong and highly
significant increase of odor attractiveness observed after encountering a host.

Experiment 3

A very high proportion (84.2% in average) of wasps responded by entering one of
the arms with a plant odor, and no significant difference of overall responsiveness

Fig. 3 Female C. marginiventris olfactory preference to host-induced plant volatiles from maize, cotton,
and cowpea in Experiment 1. Five groups of wasps were tested: naive wasps (N), wasps that had
oviposited in a host while exposed to maize (M+) or cotton (Ct+) volatiles, wasps that found no host while
being exposed to maize (M0) or cotton (Ct0) volatiles. Asterisk indicates significant differences (** P<
0.01; * P<0.05) between the response of an experienced group and naive wasps. Data were analyzed with
likelihood ratio tests performed on log linear models (see text for more details).

Fig. 2 Responsiveness of female C. marginiventris during Experiment 1. Five groups of wasps were
tested: naive wasps (N), wasps that had oviposited in a host while exposed to maize (M+) or cotton (Ct+)
volatiles, wasps that found no host while being exposed to maize (M0) or cotton (Ct0) volatiles. Numbers
indicate the percentages of wasps entering an arm with host-induced plant odor entering an empty arm, or
making no choice. Letters indicate groups with significant differences based on an exact test between
simulated and observed deviances (Metropolis-Hasting algorithm).
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(Fig. 5) was found between the treatment groups (Wobs=71.5<Q0.95=76.2). A great
majority of naive wasps (74.4%) entered the arm with cowpea volatiles during this
last experiment and this preference was highly significant (P<0.0001).

Experienced wasps were exposed to either maize or cowpea odors. The analysis
showed that in general, the experience significantly increased the attractiveness of an
odor (Chi21 ¼ 6:91; P<0.01) (Fig. 6). M+ females significantly shifted their response
towards maize (Chi21 ¼ 5:27; P=0.02). Cp0 and Cp− females respond slightly less to
cowpea volatiles than naive ones (respectively 57% and 60%), but this difference
was not significant (Chi21 ¼ 1:07; P=0.30 and Chi21 ¼ 0:08; P=0.77). Neither M0
females (Chi21 ¼ 0:17; P=0.69) nor M− females (Chi21 ¼ 0:17; P=0.68) reduced
their response toward maize odor.

Model (2) provided finally the best fit relative to all other models, just as was
observed in Experiments 1 and 2.

Discussion

The fitness of parasitoids is largely determined by the number of hosts a female can
successfully parasitize during her lifetime. Hence, parasitic wasps are expected to
have evolved foraging strategies that would optimize their chances to localize
suitable hosts with minimal expenditure of time and energy. Associative learning,
whereby female wasps increase their responsiveness to odor and visual cues that
they perceive when they encounter hosts, is thought to be one such an evolved
strategy (Turlings et al. 1993; Wäckers and Lewis 1994; Vet et al. 1995, 1998). For
the same reason, we hypothesized that the failure to find hosts and unrewarding
encounters with non-hosts should have the opposite effect, attenuating responses to
associated odors. However, our results suggest that female C. marginiventris do not
change their response towards HIPVs after unrewarding experiences; in none of the
experiments was there a significant effect of an unrewarding experience on the
responsiveness of the wasps as compared to that of naive wasps.

We purposely included an exceptionally attractive cowpea variety (D’Alessandro
and Turlings 2005) in the olfactometer tests, assuming that a reduction in
attractiveness would be most evident in case of a strong innate attractiveness. The
high attractiveness was confirmed, with almost 75% of naive females choosing for

Fig. 4 Female C. marginiventris olfactory preference to host-induced plant volatiles from maize, cotton,
and cowpea in Experiment 2. Seven groups of wasps were tested: naive wasps (N), wasps that had
oviposited in a host while exposed to maize (M+) or cotton (Ct+) volatiles, wasps that found no hosts
while being exposed to maize (M0) or cotton (Ct0) volatiles, and wasps that had contacted a non-host
while exposed to maize (M−) or cotton (Ct−) volatiles. Asterisk indicates significant differences (** P<
0.01; * P<0.05) between the response of an experienced group and naive wasps. Data were analyzed with
likelihood ratio tests performed on log linear models (see text for more details).
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Fig. 6 Female C. marginiventris olfactory preference to host-induced plant volatiles from maize, cotton,
and cowpea in Experiment 3. Seven groups of wasps were tested: naive wasps (N), wasps that had
oviposited in a host while exposed to maize (M+) or cowpea (Cp+) volatiles, wasps that found no host
while being exposed to maize (M0) or cowpea (Cp0) volatiles, and wasps that had contacted a non host
while being exposed to maize (M−) or cowpea (Cp−) volatiles. Asterisk indicates significant difference
(** P<0.01; * P<0.05) between the response of an experienced group and naive wasps. Data were
analyzed with likelihood ratio tests performed on log linear models (see text for more details).

Fig. 5 Responsiveness of female C. marginiventris during Experiment 3. Numbers indicate the
percentages of wasps entering an arm with a host-induced plant odor, entering an empty arm, or making
no choice. No significant difference of responsiveness was found between groups of wasps.
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the cowpea odor. However, and despite a slight trend, neither of the two negative
experiences significantly reduced this response to cowpea volatiles (Fig. 6). The
strong attraction to the induced cowpea odor remains intriguing, as herbivore-
damaged cowpea releases far less volatiles than cotton and maize (Hoballah et al.
2002; D’Alessandro and Turlings 2005; Tamò et al. 2006). This observation
confirms the notion that minor compounds may be of key importance for the innate
attraction of C. marginiventris (D’Alessandro and Turlings 2005).

The lack of an effect of unrewarding experiences suggests that C. marginiventris
follows a similar strategy as observed for the generalist Exeristes roborator. This
ectoparasitoid shows no decrease in responsiveness after several exposures to highly
attractive apple scent without encountering hosts (Wardle and Borden 1989).
However, the behavior of C. marginiventris seems to contrast with that of other
parasitoids. For instance, female Leptopilina heterotoma avoid microhabitats
associated with host absence (Papaj et al. 1994; Vet et al. 1998), whereas female
Microplitis croceipes and Pimpla luctuosa avoid artificial odors like vanilla or
strawberry after experiencing these odors during unsuccessful oviposition attempts
(Takasu and Lewis 2003; Lizuka and Takasu 1998). The contrasting results of the
above-mentioned studies might imply that different parasitoids employ different host
foraging strategies. Indeed, some parasitic wasps such as Campoletis sonorensis do
not learn HIPVs during rewarding experiences (McAuslane et al. 1991; Tamò et al.
2006), whereas other species such as M. croceipes readily learn to respond to any
odor that is associated with hosts or food (Lewis and Takasu 1990).

Whereas non-host encounters or the absence of hosts in the presence of HIPVs
did not alter the females’ innate odor preferences, rewarding experiences with hosts
significantly increased the preference for the experienced odor, as was demonstrated
previously (Turlings et al. 1991; Tamò et al. 2006). Females that oviposited in S.
littoralis larvae while perceiving the odor of host-damaged plants drastically
increased their preference for the experienced odor, except for cowpea volatiles.
The most spectacular shift of preference took place during the second experiment
when the percentage of wasps attracted to cotton volatiles reached 66% for wasps
having contacted hosts in the presence of host-damaged cotton odor (Ct+), while of
the naive females (N) only 15% were attracted to this odor (Fig. 4). This effect of
positive associative learning was obvious in each of the three experiments, and in
most cases, the observed shift of preference was significant. This demonstrated
effect of positive associative learning indicates that C. marginiventris females
perceived the HIPVs emitted by the plant during the experience procedure. Hence,
the absence of an effect of negative experiences cannot be explained by an
inadequate training set up and the results also rules out the possibility that female
wasps were not able to distinguish between the different HIPVs in the olfactometer.

One explanation for the contrasting results obtained for different parasitoids could
be the different ways in which the wasps were trained. Indeed, C. marginiventris
were here only confronted with rewarding or unrewarding situations before the
olfactometer tests, whereas the effects of negative experiences on L. heterotoma, M.
croceipes and P. luctuosa were mostly assessed in a previously rewarding
microhabitat. The completeness of information is considered of primary importance
for female parasitic wasps in order to evaluate the profitability of its environment
(Vet et al. 1998). This notion is also in accordance with the above-mentioned results
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for E. roborator, which also only received the negative experience (Wardle and
Borden 1989). It is safe to conclude that C. marginiventris’ innate response is not
affected by an unrewarding response, but it remains possible that increased
preference for an odor after a positive experience can be neutralized by an
unrewarding experience with the same odor. This is exactly what experiments
conducted with M. croceipes indicate; oviposition by this wasp in a non-host larva
reduces the preference newly induced—either by associative learning or by
sensitization—of vanilla odor (Takasu and Lewis 2003).

Finally, a recent study on how plant hoppers may affect the odor emission of
Spodoptera-damaged maize plants (Erb et al. submitted) points at another possible
reason why we did not find the hypothesized negative effect. It may be that an effect
of negative association on the foraging behavior of C. marginiventris only takes
place when the wasps contact non-hosts that they normally encounter in their natural
environment. Pieris rapae will normally not be encountered by C. marginiventris, as
Pieris species exclusively feed on Brassicacae plants, which do not support hosts of
this generalist. Therefore, the parasitoid may not have evolved to recognize this non-
host. In a follow-up study, we will explore the possibility that encounters of non-
hosts that occur on plants frequently visited by C. marginiventris differentially affect
the wasp’s responsiveness.
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