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Abstract. We show symmetry properties of the numerical range of posi-
tive operators on Hilbert lattices. These results generalise the respective
properties for positive matrices shown in Li et al. (Linear Algebra Appl
350:1–23, 2002) and Maroulas et al. (Linear Algebra Appl 348:49–62,
2002). Similar assertions are also valid for the block numerical range of
positive operators.
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1. Introduction

In [5,8], the numerical range of positive matrices was investigated based on
the unpublished PhD thesis [4]. The authors prove analogues of the results
from Perron–Frobenius theory. They can easily show that the numerical
radius of a positive matrix is always contained in its numerical range. This is
parallel to the well-known fact that the spectral radius of a positive matrix
is always in its spectrum. Moreover, it turns out that the numerical range of
positive matrices with irreducible real part exhibits a rotational symmetry.
To be more precise, in [5, Prop. 3.11] it is stated that for such a nonnegative
matrix A and any unimodular complex number ξ the following equivalence
holds:

ξ W(A) = W(A) ⇐⇒ ξ w(A) ∈ W(A) (1.1)

where W(A) and w(A) denote the numerical range and the numerical radius
of A, respectively.

One of the main tools to prove these results is the Perron–Frobenius
theory itself. Since this theory has an important extension to Banach lat-
tices, see the monograph [9], this technique is also available in the infinite
dimensional situation. However, since the numerical range need not be closed
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in this case, we encounter new obstacles. Our results on the numerical range
of positive operators can be found in Sect. 2. We show that the implication
“⇐” in (1.1) still holds (Theorem 2.8); under some additional assumptions
we again obtain equivalence (Theorem 2.9).

In Sect. 3 we consider the block numerical range introduced in [15]. It
gives a better localisation of the spectrum, since, roughly speaking, it lies
between the spectrum and the numerical range. Motivated by results in [2]
for the matrix case, we use the results of Sect. 2 to derive symmetry properties
for the block numerical range of positive operators.

In this paper we work in complex Hilbert lattices and keep to the nota-
tion and terminology from [9]. In particular, for a complex Hilbert lattice
H the underlying real lattice is denoted by HR and the positive cone by
H+. For x ∈ H we write x ≥ 0 if x ∈ H+, and x > 0 if x ∈ H+ and
x �= 0. Moreover, sup M is the least upper bound of M ⊆ H (if it exists).
If x ∈ HR, then x+ := sup {x, 0}, x− := sup {−x, 0}, and |x| := x+ + x−. If
z = x + i y ∈ H,x, y ∈ HR, we define |z| := sup0≤θ<2π |(cos θ)x + (sin θ)y|.
For x, y ∈ H the set [x, y] := {z ∈ H : x ≤ z ≤ y} is called the order
interval between x and y. Then, x ∈ H+ is a quasi-interior point of HR if

Hx :=
⋃

n∈N

[−nx, nx]

is dense in HR. An operator A ∈ L(H) is said to be positive, in symbols
A ≥ 0, if AH+ ⊆ H+. Observe that any operator A ∈ L(H) can be decom-
posed into A = A1 + i A2 where A1, A2 ∈ L(HR). The operator A is regular
if both A1 and A2 can be written as the difference of two positive operators.
In this case

|A| := sup{(cos θ)A1 + (sin θ)A2 : 0 ≤ θ ≤ 2π}
exists, see [9, Prop. IV.1.2]. Finally, A is called irreducible if there exists no
closed non-trivial lattice ideal of H that is invariant under A, see [9, p. 341].

Note that every complex Hilbert lattice H is isometrically lattice iso-
morphic to L2(Ω, μ) for some measure space (Ω,Σ, μ) where Ω is a locally
compact space and μ is a strictly positive Radon measure, see [7, Cor. 2.7.5]
or [9, Thm. IV.6.7].

The subsequent properties always hold and are often used without ref-
erence. Here and in the following, A∗ denotes the Hilbert space adjoint of
A ∈ L(H).

Proposition 1.1. Let H be a (complex) Hilbert lattice and let A ∈ L(H). Then
the following statements hold.

(i) If x ∈ H, then x ∈ H+ if and only if 〈x, y〉 ≥ 0 for every y ∈ H+,
(ii) 〈x+, x−〉 = 0 for every x ∈ HR,
(iii) ‖x‖2 = ‖x+‖2 + ‖x−‖2 for every x ∈ HR,
(iv) A ≥ 0 ⇐⇒ ∀x ≥ 0 ∀y ≥ 0 〈Ax, y〉 ≥ 0,
(v) A ≥ 0 ⇐⇒ A∗ ≥ 0,
(vi) |〈x, y〉| ≤ 〈|x| , |y|〉 for every x, y ∈ H,
(vii) if A is regular, then |A∗| = |A|∗.
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Proof. We only show part (vii). Using (v) one can easily see that A∗ is regular
if A is regular. Thus |A∗| exists. Let A1, A2 ∈ L(HR) such that A = A1 +i A2

and let θ ∈ [0, 2π]. It is clear from the definition of |A| that

|A| − ((cos θ)A1 + (sin θ)A2) ≥ 0.

By (v) we obtain

(|A| − ((cos θ)A1 + (sin θ)A2))∗ = |A|∗ − ((cos θ)A∗
1 + (sin θ)A∗

2)) ≥ 0,

and thus

|A|∗ ≥ sup{cos θ)A∗
1 + (sin θ)A∗

2 : θ ∈ [0, 2π]} = |A∗| . (1.2)

The assertion then follows from

|A|∗ = |A∗∗|∗
(1.2)

≤ |A∗|∗∗ = |A∗| .
�

2. The numerical range of positive operators

Our object of interest is the numerical range of positive operators on a com-
plex Hilbert lattice H. The goal is to derive symmetry properties similar to
those obtained for positive matrices on C

n in [5,8].
We first recall some basic definitions and results valid for bounded lin-

ear operators on an arbitrary complex Hilbert space H. For A ∈ L(H) the
numerical range is defined as

W (A) := {〈Ax, x〉 : x ∈ H, ‖x‖ = 1}.

Its numerical radius is

w(A) := sup {|λ| : λ ∈ W(A)}.

Moreover, the spectrum of A is denoted by σ(A), while the point spectrum
(or set of eigenvalues) of A is σp(A), and the spectral radius is r(A). An
eigenvalue λ of A is called a peripheral eigenvalue if |λ| = r(A). Finally, the
complex unit circle is denoted by Γ, i.e.,

Γ = {λ ∈ C : |λ| = 1}.

Then for the numerical radius the following properties hold, see [3, p. 8]
and [3, Thm. 1.4-2].

Lemma 2.1. Let H be a complex Hilbert space.
(i) For any A ∈ L(H) we have

|〈Ax, x〉| ≤ w(A) 〈x, x〉 .

(ii) If A ∈ L(H) is self-adjoint or normal, then its norm, its spectral radius
and its numerical radius coincide, i.e.,

‖A‖ = r(A) = w(A).

We are now ready to derive a first symmetry property for a positive
operator on H. In fact, this property is true for any operator leaving the
underlying real space HR invariant.
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Proposition 2.2. If 0 ≤ A ∈ L(H), then W(A) is symmetric with respect to
the real axis.

Proof. Let λ ∈ W(A). Then there exists z = x + i y ∈ H = HR ⊕ i HR such
that ‖z‖ = 1 and 〈Az, z〉 = λ. Then also ‖x − i y‖ = 1, and one obtains that

〈A(x − i y), x − i y〉 = 〈A(x + i y), x + i y〉 = 〈Az, z〉 = λ,

and thus λ ∈ W(A). �

In the following, an important role is played by the real or Hermitian
part

R(A) := 1
2 (A + A∗)

of a bounded linear operator A on a Hilbert lattice H. Clearly, if A is irre-
ducible, then also R(A) is irreducible. By a straightforward calculation the
following result can be verified for arbitrary Hilbert spaces.

Lemma 2.3. Let A ∈ L(H). Then

〈R(A)x, x〉 = Re(〈Ax, x〉)
for every x ∈ H.

Next we state the relation between spectral properties of R(ξA), ξ ∈ Γ,
and the numerical range of A. This enables us to apply results from the theory
of positive operators to R(A) and then draw conclusions for the numerical
range.

Proposition 2.4. Let H be a Hilbert space and A ∈ L(H).

(i) For all ξ ∈ Γ we have

w(A) ≥ w(R(ξA)). (2.1)

(ii) If ξ w(A) ∈ W(A) for some ξ ∈ Γ, then

w(R(ξA)) = w(A).

(iii) For all ξ ∈ Γ we have

{x ∈ H : ξ 〈Ax, x〉 = w(A) ‖x‖2} = ker(w(A) − R(ξA)).

Proof. (i) For x ∈ H we compute

〈(w(ξA) − R(ξA))x, x〉 Lemma 2.3= w(ξA) ‖x‖2 − Re 〈ξAx, x〉︸ ︷︷ ︸
≤w(ξA)‖x‖2

≥ 0.

Thus,

w(ξA) ≥
〈
R(ξA) x

‖x‖ , x
‖x‖

〉
for every x ∈ H\{0}.

Since w(ξA) = w(A), the assertion follows.
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(ii) Let (un)n∈N ⊆ H, ‖un‖ = 1, such that 〈Aun, un〉 → ξ w(A) as
n → ∞. Then

〈R(ξA)un, un〉 = 1
2

(〈ξAun, un〉 +
〈
ξA∗un, un

〉)

= 1
2

(
ξ 〈Aun, un〉︸ ︷︷ ︸

→ξ w(A)

+ξ 〈Aun, un〉︸ ︷︷ ︸
→ξ w(A)

)

which converges to w(A) as n → ∞. This implies that

w(R(ξA)) ≥ sup
n∈N

|〈R(ξA)un, un〉| ≥ w(A). (2.2)

The other inequality was already shown in part (i).
(iii) This follows from [1, Lemma 1.2] after renorming the operators. �

Next we prove some immediate numerical range analogues of the
Perron–Frobenius theory for positive operators, which generalises results in
[5,8] for the matrix case.

In the following H will always denote a complex Hilbert lattice. Note
that in the infinite dimensional case the numerical range need not be closed.
Thus, in assertion (ii) of the following proposition the closure cannot be
omitted.

Proposition 2.5. Let A ∈ L(H) and suppose that A ≥ 0. Then
(i) w(A) = sup {〈Ax, x〉 : x ∈ H+, ‖x‖ = 1}.
(ii) w(A) ∈ W(A).
(iii) If ξ w(A) ∈ W(A) for some ξ ∈ Γ, then also w(A) ∈ W(A).
(iv) If w(A) ∈ W(A), then there exists x ∈ H+, ‖x‖ = 1, such that

w(A) = 〈Ax, x〉 ;

if, in addition, R(A) is irreducible, then x is a quasi-interior point of
H+.

(v) If |B| ≤ A for some regular operator B ∈ L(H), then

w(B) ≤ w(A).

Proof. Assertions (i), (ii), (iii) and the first part of (iv) immediately follow
from the estimate

|〈Ax, x〉| ≤ 〈|Ax| , |x|〉 ≤ 〈A |x| , |x|〉
and the fact that ‖x‖ = ‖|x|‖ for every x ∈ H. Similarly, (v) follows from

|〈Bx, x〉| ≤ 〈|B| |x| , |x|〉 ≤ 〈A |x| , |x|〉 .

If w(A) ∈ W(A), then by Proposition 2.4 w(A) is a peripheral eigenvalue
of R(A). If R(A) is irreducible, then we know from [9, Thm. V.5.2] that the
corresponding eigenspace is one-dimensional and spanned by a quasi-interior
point of H+. This shows the second part of (iv). �

By means of Proposition 2.5 (ii) and 2.4 (ii) and Lemma 2.1, we imme-
diately obtain the following.
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Corollary 2.6. For 0 ≤ A ∈ L(H) we have

r(R(A)) = w(A).

Next we show a numerical range analogue of Wielandt’s lemma. The
key tool is an infinite dimensional version Wielandt’s lemma for matrices, see
[7, Prop. 4.2.12]. In the following, the identity operator is denoted by Id.

Lemma 2.7. Let B,C ∈ L(H), B ≥ 0, C regular, |C| ≤ B and R(B) irreduc-
ible. If there exists ξ ∈ Γ such that ξ w(B) ∈ W(C), then

C = ξDBD∗

for a unitary operator D such that |D| = Id.

Proof. The proof is similar to the finite dimensional version in [5, Lemma 3.8].
However, we have to use the terminology from the theory of positive opera-
tors. If ξ w(B) ∈ W(C), then there exists y ∈ H, ‖y‖ = 1, such that

ξ w(B) = 〈Cy, y〉 ∈ W(C). (2.3)

By the monotonicity of the numerical radius (Proposition 2.5 (v)) we imme-
diately see that

w(C) = w(B).

From

w(B) = |ξ w(B)| = |〈Cy, y〉| ≤ 〈B |y| , |y|〉 ≤ w(B)

it follows that w(B) ∈ W(B). Using Proposition 2.5 (iv) we conclude that
|y| is a quasi-interior point of H. Moreover, using Proposition 2.4 we see that
w(B) is a peripheral eigenvalue of R(B) and of R(ξC), respectively. Since∣∣R(ξC)

∣∣ ≤ R(B), all the assumptions of [7, Prop. 4.2.12] are satisfied (con-
sider 1

w(B) R(B) and 1
w(B) R(ξC)), and we obtain that there exists a unitary

operator D ∈ L(H), such that |D| = |D∗| = Id and

R(B) = D∗ R(ξC)D.

The estimate

0 ≤ 〈B |y| , |y|〉 = 〈R(B) |y| , |y|〉 =
〈
D∗ R(ξC)D |y| , |y|〉

= Re(ξ 〈D∗CD |y| , |y|〉) ≤ |〈D∗CD |y| , |y|〉| ≤ 〈|C| |y| , |y|〉 ≤ 〈B |y| , |y|〉
implies that

Re(ξ 〈D∗CD |y| , |y|〉) =
〈
ξD∗CD |y| , |y|〉) = 〈B |y| , |y|〉 .

By [9, Sect. II.11, p. 135] there exist operators T1, T2 ∈ L(HR) such that

ξD∗CD = T1 + i T2.

Then,

〈B |y| , |y|〉︸ ︷︷ ︸
∈R

= 〈T1 |y| , |y|〉︸ ︷︷ ︸
∈R

+ i 〈T2 |y| , |y|〉︸ ︷︷ ︸
∈R

,
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and thus 〈T2 |y| , |y|〉 = 0. Since T1 ≤ |D∗CD| ≤ |C| ≤ B, we have B−T1 ≥ 0.
Take n ∈ N and x ∈ [0, n |y|]. Then

0 ≤ 〈(B − T1)x, |y|〉 ≤ n 〈(B − T1) |y| , |y|〉 = 0.

Since |y| is a quasi-interior point and since (B − T1)x ≥ 0, we conclude that
(B − T1)x = 0. So we obtain

Bx = T1x for every x ∈
⋃

n∈N

[−n |y| , n |y|] =: H|y|.

Since H|y| is dense in HR as |y| is quasi-interior, we have B = T1. Moreover,
T2 = 0 because |T1 + i T2| = B, and thus

B = ξD∗CD. �

Next, we consider the case that the numerical circle, i.e. the circle cen-
tered at 0 with radius w(A), contains a point from the numerical range of A.
The main result for this situation is the following theorem.

Theorem 2.8. Let 0 ≤ A ∈ L(H), such that R(A) is irreducible. Then, for
each ξ ∈ Γ the implication

ξ w(A) ∈ W(A) =⇒ ξ W(A) = W(A) (2.4)

holds. In this case, the space

Vξ := {x ∈ H : ξw(A) 〈x, x〉 = 〈Ax, x〉}
is one-dimensional. Moreover, V1 is spanned by a quasi-interior point of H+,
and if x ∈ Vξ, then |x| ∈ V1.

Proof. Suppose that ξ w(A) ∈ W(A). Lemma 2.7 with C = B = A yields

A = ξDAD∗ (2.5)

for some unitary operator D ∈ L(H) such that |D| = |D∗| = Id. By the
invariance of the numerical range under unitary transformations we obtain

W(A) = ξ W(DAD∗) = ξ W(A).

Clearly, it follows from (2.5) that

R(A) = D R(ξA)D∗.

In view of Proposition 2.4 (iii), this implies that the spaces Vξ and V1 have
the same dimension. By [9, Thm. V.5.2], V1 is one-dimensional and spanned
by a quasi-interior point y ∈ H+. From (2.5) we also see that if x ∈ Vξ,
then D∗x ∈ V1. However, since D∗x is a multiple of y, we conclude that
|D∗x| ∈ V1. On the other hand, |D∗x| = |x| which shows the last assertion
of the theorem. �

The reverse implication in (2.4) is not true in general. Consider for
example the left shift operator L on �2. It is well-known that its numerical
range is the open unit disk. Thus, ξ W(L) = W(L) is fulfilled for any ξ ∈ Γ.
However, ξ w(L) = ξ is not contained in the numerical range.
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In the next theorem we establish conditions on the Hilbert lattice �2

ensuring that the intersection of the numerical circle with the numerical range
is the same as the intersection with the closure of the numerical range.

To prove this we make use of an embedding procedure turning the
approximate spectrum of an operator into the point spectrum of the embed-
ded operator. Such embeddings occur frequently in various contexts, see
[11,12]. Here, we want the order structure to be preserved as well as pos-
itivity and irreducibility of the operators involved. Such a construction can
be found in [9, Section V.1]. We will briefly summarise the main points but
we refer to the reference above for details.

We start from the space

B := �∞(�2) := {(xn)n∈N : xn ∈ �2, n ∈ N, (xn)n∈N is bounded}
of bounded sequences in �2 = �2(N). We fix a free ultra filter U on N and
define

cU := {(xn)n∈N ∈ B : lim
U

‖xn‖ = 0},

where limU means the limit with respect to the ultra filter U . The quotient
space of B by cU is denoted by

M = B/cU ,

and it can be endowed with an ordering in a canonical way, see
[9, Prop. II.5.4]. The space �2 can be embedded into M via

x ∈ �2 �→ x̂ := (x, x, x, . . .) + cU ∈ M.

Moreover, to an operator C ∈ L(�2) we associate its extension Ĉ ∈ L(M) by

Ĉ((x1, x2, x3, . . .) + cU ) = (Cx1, Cx2, Cx3, . . .) + cU .

Clearly, if C ≥ 0, then also Ĉ ≥ 0.

Theorem 2.9. Let 0 ≤ A ∈ L(�2) such that R(A) is irreducible and let r(R(A))
be a pole of the resolvent of R(A). Then, for each ξ ∈ Γ the following are
equivalent.

(i) ξ w(A) ∈ W(A),
(ii) ξ w(A) ∈ W(A),
(iii) ξ W(A) = W(A).

In this case, the space

Vξ := {x ∈ �2 : ξw(A) 〈x, x〉 = 〈Ax, x〉}
is one-dimensional. Moreover, V1 is spanned by a quasi-interior point of �2+,
and if x ∈ Vξ, then |x| ∈ V1.

Proof. “(i) ⇒ (ii)” If ξ w(A) ∈ W(A), then there exists a sequence (un)n∈N ⊆
�2, ‖un‖ = 1, such that

ξ 〈Aun, un〉 → w(A) as n → ∞. (2.6)
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As the unit ball in �2 is weakly sequentially compact, we can extract a weakly
convergent subsequence from (un) called (un) again. By [3, Thm. 1.5-4] either

(un)n∈Nconverges weakly to 0, (∗)

or

(un)n∈N converges weakly to some z ∈ Vξ\{0}. (∗∗)

Clearly, (∗∗) implies that ξ w(A) ∈ W(A). Observe that in the space �2 (∗)
is satisfied if and only if

(|un|)n∈N converges weakly to 0, (∗′)

as one can check directly or use [7, Prop. 2.5.23]. So our goal in the following
is to exclude (∗′).

Since the limit in (2.6) is real, we have
〈
R(ξA)un, un

〉
= Re(ξ 〈Aun, un〉) → w(A) as n → ∞.

From the estimate
∣∣〈R(ξA)un, un

〉∣∣ ≤ 〈∣∣R(ξA)un

∣∣ , |un|〉 ≤ 〈R(A) |un| , |un|〉 ≤ w(R(A)) = w(A)

we see that also

lim
n→∞ 〈R(A) |un| , |un|〉 = w(R(A)).

To exclude (∗′) we return to the embedding procedure sketched above.
Without loss of generality we may assume that r(R(A)) = 1 (otherwise con-
sider 1

r(R(A)) R(A)). By [9, Cor. V.5.2], r(A) is a first order pole. Let y be the
normalised strictly positive vector spanning the eigenspace of R(A). Then
the residue P is of the form

P : �2 → �2, x �→ ϕ(x)y,

for some strictly positive linear form ϕ such that ϕ(y) = 1. Thus P is a strictly
positive projection of rank 1. It follows that also the embedded operator R̂(A)
has a first order pole at 1 with residue P̂ = ϕ̂(·)ŷ where

ϕ̂((xn)n∈N + cU ) = lim
U

ϕ(xn),

see the proof of [9, Thm. V.5.4].
An elementary computation shows that

R(A) |un| − |un| → 0, n → ∞.

Hence, (|un|)n∈N + cU is an eigenvector of R̂(A), and thus (|un|)n∈N + cU =
P̂ ((|un|)n∈N + cU ). Now

0 < (|un|)n∈N + cU = P̂ ((|un|)n∈N + cU ) = lim
U

ϕ(|un|)ŷ. (2.7)

If (|un|)n∈N converges weakly to 0, then also limU ϕ(|un|) = 0 which contra-
dicts the positivity of limU ϕ(|un|)ŷ in (2.7).
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“(ii) ⇒ (iii)” See Theorem 2.8.
“(iii) ⇒ (i)” We know from Proposition 2.5 (ii) that w(A) ∈ W(A).

Then

ξ w(A) ∈ ξW(A) = ξ W(A) ass.= W(A). �

The requirement that r(R(A)) is a pole of the resolvent is, for example,
satisfied for any compact or quasi-compact operator R(A).

Example. Let Lw be a compact weighted shift operator on �2 with posi-
tive weights. It is well-known that W(Lw) is a closed disk, see [10, Cor. 8].
Since R(Lw) is positive, irreducible and compact, we have that r(R(Lw)) ∈
σp(R(Lw)). Moreover, we know that for a compact operator the eigenvalues
are poles of the resolvent, see [13, Thm. 5.8-E]. Thus, all the assumptions
of Theorem 2.9 are satisfied. Hence, for every ξ ∈ Γ the space Vξ from
Theorem 2.9 is one-dimensional, see also [16, Prop. 2.1].

3. The block numerical range of positive operators

In this section we study symmetry properties of the block numerical range of
positive operators. Concerning the block numerical range of bounded opera-
tors, which was introduced in [15], we refer to the monograph [14] and [15].
The block numerical range of positive matrices has already been investigated
in [2]. We briefly recall some of the basic definitions. Suppose that H is
decomposed into the orthogonal direct sum

H = H1 ⊕ · · · ⊕ Hn

of n Hilbert spaces H1, . . . , Hn. Then an operator A ∈ L(H) can be repre-
sented by an operator matrix

⎛

⎜⎝
A11 · · · A1n

...
...

An1 · · · Ann

⎞

⎟⎠

where Aij ∈ L(Hj ,Hi). To every x = (x1, . . . , xn) ∈ H1 × · · · × Hn we
associate a scalar n × n-matrix

Ax :=

⎛

⎜⎝
〈A11x1, x1〉 · · · 〈A1nxn, x1〉

...
...

〈An1x1, xn〉 · · · 〈Annxn, xn〉

⎞

⎟⎠ .

The set

Wn(A) =
⋃

x∈Sn

σ(Ax)

where Sn = {(x1, . . . , xn) ∈ H1 × · · · × Hn : ‖xi‖ = 1, i = 1, . . . , n} is called
the block numerical range of A. In analogy to the numerical radius we define
the block numerical radius as

wn(A) := sup
λ∈Wn(A)

|λ| .
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Note that in the case n = 1 the block numerical range and radius reduce to
the numerical range and radius, respectively. In general, the block numerical
range and radius depend on the particular decomposition of H. In the follow-
ing we fix such a decomposition and omit this dependence in the notation,
writing Wn(A) instead of Wn

H1⊕···⊕Hn
(A).

For a Hilbert lattice H, we admit only positive orthogonal decomposi-
tions of the form

H = H1 ⊕ · · · ⊕ Hn

where each Hk, k = 1, . . . , n, is a closed lattice ideal of H. Note that for a
positive decomposition of H and a positive operator A ∈ L(H) the operators
Aij in the matrix representation are positive.

As in Proposition 2.2 we immediately obtain symmetry with respect to
the real axis.

Proposition 3.1. For a positive decomposition of H the block numerical range
of an operator 0 ≤ A ∈ L(H), is symmetric with respect to the real axis.

Proof. Any y ∈ H is of the form a + i b, where a, b ∈ HR Define y := a − i b.
Then it is easy to see that λ ∈ σ(A(x1,...,xn)) if and only if λ ∈ σ(A(x1,...,xn)).

�
Lemma 3.2. Let 0 ≤ A ∈ L(H), be irreducible and consider a positive decom-
position H = H1 ⊕ · · · ⊕ Hn. If (x1, . . . , xn) ∈ Sn, where each xi is a quasi-
interior element of Hi, then also the matrix Ax is irreducible.

Proof. The idea is to replace vectors with positive entries in the proof of
[2, Prop. 4.1] by quasi-interior points. Suppose that under the given assump-
tions Ax is reducible. Then there exists B ⊆ {1, . . . , n}, B �= ∅ and B �=
{1, . . . , n}, such that the space

{(z1, . . . , zn) ∈ C
n : zi = 0 for every i ∈ B}

is invariant under Ax. Since xi is quasi-interior for every i ∈ {1, . . . , n}, it fol-
lows that 〈Aijxj , xi〉 = 0 if and only if Aijxj = 0. Since xj is a quasi-interior
point of Hj , this implies Aij = 0. Hence, the closed ideal

{(y1, . . . , yn) ∈ H1 ⊕ · · · ⊕ Hn : yi = 0 for every i ∈ B}
is invariant under A, and thus A is not irreducible contradicting our assump-
tion. �

Next, we generalise Proposition 2.5 to the block numerical range.

Proposition 3.3. Consider a positive decomposition H1 ⊕ · · · ⊕ Hn of H. Let
0 ≤ A ∈ L(H) and set

Wn
+(A) :=

⋃

(x1,...,xn)∈Sn,
xi≥0, i=1,...,n

σ(Ax).

Then the following statements hold.
(i) wn(A) = supz∈Wn

+(A) |z| .
(ii) wn(A) ∈ Wn(A).
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(iii) If ξ wn(A) ∈ Wn(A) for some ξ ∈ Γ, then also wn(A) ∈ Wn(A).
(iv) If wn(A) ∈ Wn(A), then there exists x = (x1, . . . , xn) ∈ Sn, xi ≥ 0, i =

1, . . . , n, such that

wn(A) = r(Ax);

if, in addition, A is irreducible, then xi is a quasi-interior point of Hi

for every i ∈ {1, . . . , n}.
(v) If |B| ≤ A for some regular operator B ∈ L(H), then

wn(B) ≤ wn(A).

Proof. (i) Note that for (x1, . . . , xn) ∈ Sn we have
∣∣A(x1,...,xn)

∣∣ ≤ A(|x1|,...,|xn|).

By the monotonicity of the spectral radius for matrices (see [9, p. 21]) it
follows that

r(A(|x1|,...,|xn|)) ≥ r(A(x1,...,xn)). (3.1)

Since r(A(|x1|,...,|xn|)) ∈ σ(A(|x1|,...,|xn|)) we conclude that

wn(A) = sup
z∈Wn

+(A)

|z| .

(ii) This follows from (3.1).
(iii) If ξ wn(A) ∈ Wn(A), then there exists x ∈ Sn such that

ξ wn(A) ∈ σ(Ax). (3.2)

Moreover, using again the monotonicity of the spectral radius we have

wn(A) = |ξ wn(A)|
(3.2)

≤ r(Ax) ≤ r(|Ax|) ≤ r(A|x|) ≤ wn(A).

and thus wn(A) = r(A|x|) ∈ σ(A|x|) ⊆ Wn(A).
(iv) The first assertion is immediate from (3.1) and the fact that

r(A(|x1|,...,|xn|)) ∈ σ(A(|x1|,...,|xn|)).

For the second part we use the idea from the proof of [2, Prop. 4.1] Let
x := (x1, . . . , xn) ∈ Sn such that xi ≥ 0, and wn(A) = r(Ax) and suppose
that there exists an index k ∈ {1, . . . , n} such that xk is not quasi-interior in
Hk. Without loss of generality we may assume that k = n and that all other
xi are quasi-interior points of Hi. Denote by I the closure of the principal
ideal generated by xn. Then the orthogonal complement I⊥ of I is again a
non-trivial closed ideal in Hn, see [9, Thm. II.2.10, Thm. II.5.14]. Thus,

H = H1 ⊕ · · · ⊕ Hn−1 ⊕ I ⊕ I⊥

is a positive decomposition of H refining the original decomposition. By our
assumption there exists a quasi-interior point y, y ≥ 0, ‖y‖ = 1 of I⊥. Then
for x̃ := (x1, . . . , xn, y) the matrix Ax̃ is irreducible by Lemma 3.2. More-
over, it contains Ax as a principal submatrix. Thus, by [6, Thm. I.5.1] we
have r(Ax) < r(Ax̃). On the other hand for the block numerical radius of our
refinement we have wn+1(A) ≤ wn(A), see [15, Thm.3.5], and therefore we
obtain the contradiction



Vol. 75 (2013) The numerical range of positive 471

wn(A) = r(Ax) < r(Ax̃) ≤ wn+1(A) ≤ wn(A).

(v) The claim is immediate from the monotonicity of the spectral radius.
�

Theorem 3.4. Let 0 ≤ A ∈ L(H) such that R(A) is irreducible. Then, for
ξ ∈ Γ and a positive decomposition of H we have the implication

ξ w(A) ∈ W(A) =⇒ ξ Wn(A) = Wn(A).

Proof. From the proof of Theorem 2.8 we obtain that there exists a unitary
operator D ∈ L(H) such that |D| = Id and

ξA = DAD∗.

Observe that the spaces H1, . . . , Hn are invariant under D. Hence, there exist
operators Di ∈ L(Hi), i = 1, . . . , n, such that D has an operator matrix rep-
resentation in diagonal form

D =

⎛

⎜⎝
D1 0

. . .
0 Dn

⎞

⎟⎠ .

Moreover, each Di is a unitary operator on Hi. Hence,

Wn(DAD∗) = Wn(A),

see [14, Prop. 1.1.7]. �

Theorem 3.5. Let 0 ≤ A ∈ L(�2) be such that the conditions of Theorem 2.9
are satisfied and consider a positive decomposition H1 ⊕· · ·⊕Hn of �2. Then
for ξ ∈ Γ we have the implication

ξ w(A) ∈ W(A) =⇒ ξ Wn(A) = Wn(A).

Proof. By Theorem 2.9 we conclude that ξ w(A) ∈ W(A). Then the claim
follows directly from Theorem 3.4. �
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