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Abstract This paper introduces a subgradient descent algorithm to compute a
Riemannian metric that minimizes an energy involving geodesic distances. The heart
of the method is the Subgradient Marching Algorithm to compute the derivative of
the geodesic distance with respect to the metric. The geodesic distance being a con-
cave function of the metric, this algorithm computes an element of the subgradient in
O(N?1log(N)) operations on a discrete grid of N points. It performs a front propaga-
tion that computes a subgradient of a discrete geodesic distance. We show applications
to landscape modeling and to traffic congestion. Both applications require the maximi-
zation of geodesic distances under convex constraints, and are solved by subgradient
descent computed with our Subgradient Marching. We also show application to the
inversion of travel time tomography, where the recovered metric is the local minimum
of a non-convex variational problem involving geodesic distances.
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1 Introduction

This paper is concerned with variational problems involving geodesic distances. We
aim to find a Riemannian metric that optimizes an energy taking into account pairwise
geodesic distances according to the metric.

The optimization of the metric is obtained using a gradient descent scheme, and the
main contribution of the paper is an algorithm to compute the gradient of the geodesic
distance according to the metric.

1.1 Variational problems with geodesic distances

An isotropic Riemannian metric & on a domain Q C R? defines a weight &(x) that
penalizes a curve y (¢) passing through a point x = y (¢) € Q.

This paper considers the optimization of a metric £ that solves general variational
problems of the form

rgnelg 5(&)=;5s,t(dg(xs,xt))+1(§)- (1.1)

where C is a convex set of constraints, for each pair of points xy, x; € 2, & is an
interaction functional, J is a convex regularization functional and dg is the geodesic
distance according to £.

The geodesic distance is the minimal length of rectifiable curves joining two points
Xg, X; € Q

de (%, x) =  min  Le(y). (1.2)
§ X0 = oy =y, £

where the length of a curve is defined as

1
Le(y) =/|J/(t)I$(J/(t))dt- (1.3)
0

The mapping & +— dg (x,, x;) is concave, as the minimum (1.2) of linear functions
of &. The energy £ is thus convex as long as each interaction functional &; ; is convex
and non-increasing. In this paper we consider two particular instances of (1.1) where
the energy is convex, in which cases we find a global minimizer using our method.
We also consider a non-convex problem for which we compute a local minimizer
of £.

1.2 Previous works

Geodesic distance computation. The estimation of geodesic distances dg (x;, x;) has
been intensively studied in numerical analysis and can be approximated on a discrete
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grid of N points with the Fast Marching Method of Sethian [19], and Tsitsiklis [22]
in O(N log(N)) operations. This algorithm has opened the door to many applications
in computer vision and medical image analysis where the minimal geodesic curves
extract image features, see for instance [11,12,19]. Section 2 recalls the basics of
the discretization of geodesic distances and Sect. 2.2 details the front propagation
procedure underlying the Fast Marching method.

The optimization of the metric & according to a variational problem such as (1.1) is
much less studied than the computation of geodesic distances. It is however an impor-
tant problem in some specific fields, such as landscape design, traffic congestion and
seismic imaging. In these applications, the metric £ is optimized to meet certain cri-
teria, or is recovered by optimization from a few geodesic distance measures.

We now describe some applications where such optimization problems naturally
arise.

Convex geodesic distance maximization. The design of a landscape in a domain
Q c R? corresponds to the optimization of a metric £(x) that describes locally the
difficulty of passing through some point x € . Buttazzo et al. consider in [8] a
design criterion that corresponds to the maximization of geodesic distances between
landmark points {x;} SP:_OI, so that the interaction functionals in (1.1) are

8&,t(d) = _wx,td (1.4)

where w;; > 0 are weights describing the interaction between the landmarks. In this
application, we do not consider any regularization J. This criterion models agents
located at the points {x;}; and that are free to modify the landscape in order to defend
themselves optimally from the other agents.

A continuous formulation of the problem is studied in [8] that proves existence
of optimal solutions for certain sets of constraints C. Section 4.1 shows numerical
examples computed using our subgradient Marching algorithm.

Convex traffic congestion problem. A Wardrop equilibrium [23] defines a traffic
density between points {x; }52_01 such that agents travel along geodesics for a metric
& that reflects penalization of movements at points with high traffic density due to
congestion effects.

A continuous generalization of this notion of equilibrium is proposed in [9]. It
computes an equilibrium metric by solving a variational problem of the form (1.1)
with linear interaction functionals (1.4) and a regularization of the form

J(S)=/G(x,$(x))dx. (1.5)

Q

for a function G that is convex in £. We refer to [1] for more details about this varia-
tional formulation and how the metric £ and the traffic intensity are related. Section 4.2
shows some numerical examples solved using our subgradient Marching algorithm.
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Non-convex geodesic inversion problems. Seismic imaging computes an approxi-
mation of the underground from few surfaces measurements [10]. This corresponds
to an ill-posed inverse problem that is regularized using smoothness prior information
about the ground and simplifying assumptions about wave propagation.

For a pair (xy, x;) of emitter and receiver, denoted as (s, #) € I', discarding multiple
reflexions, the first arrival time of a pressure wave corresponds to the geodesic distance

V(s,1) € I', ds; = deo(xs, x;) (1.6)

for some unknown Riemannian metric £° that reflects the properties of the under-
ground.

Travel time tomography recovers an approximation & of &7 from few first time
arrivals (dy ;) (s,ner-. A least square recovery of SO involves the optimization of the
geodesic distance through a non-convex variational problem of the form (1.1) with
interaction functionals

(d—dg;)* if (s,1) €T,

Ei(d) = 0 otherwise.

1.7)

The resulting energy £ (&) is non convex, and optimization schemes compute a local
minimizer of the energy.

Most methods perform an approximate recovery using ray tracing, that necessitates
to compute many rays to cover the whole domain [2,3]. Eulerian methods compute the
travel time distance by solving PDEs on a discrete grid, see [10] for a related tomog-
raphy problem. An Eulerian travel time tomography method has been developed by
Leung and Qian in [16]. It performs a regularized gradient descent of an energy similar
to (1.1). Authors of [16] propose to compute the gradient of the functional using an
adjoint state method, that requires, at each step of the descent, two computations of
geodesic distances.

Section 4.3 proposes an alternative approach to compute the gradient of the func-
tional to minimize. It might be slower than the method of [16] that only requires the
evaluation of geodesic distances. Our method is however more general since it allows
to tackle arbitrary energies involving geodesic distances. It might also be numerically
more precise since we compute exactly the gradient of a discrete geodesic distance,
while [16] discretizes a gradient defined for continuous PDEs. Our method also cor-
rectly accounts for the non-differentiability of the distance with respect to the metric
by estimating an element of the subgradient of the functional.

It is however beyond the scope of this paper to compare the numerical complexity
and precision of travel time tomography methods. Section 4.3 shows some exam-
ples of travel time tomography inversion computed using our subgradient Marching
algorithm.

Non-convex geodesic shape regularization. Shape analysis in computer vision tack-

les the problem of comparing objects represented as surfaces or more general metric
spaces.
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A geodesic matching between two surfaces is obtained in [7] by minimizing an
energy similar to (1.1) for interactions (1.7), but with respect to the sample locations
{xs}s for a fixed metric & that represents the geometry of the surface to be matched.

This approach is extended into a geodesic regularization in [13] by performing
the minimization of (1.1) with respect to the metric &. In this work, the metric is
represented as a triangulated 3D surface. This corresponds to an extension of our Sub-
gradient Marching algorithm from a regular grid to a triangular grid. This extension
makes use of the extension of the 2D grid Fast Marching [19] to triangulated meshes
[15], see also [6,21].

1.3 Discrete subgradient descent

We propose a projected subgradient algorithm to solve a variational problem (1.1)
involving geodesic distances. To that end we introduce the subgradient marching
method, that computes the gradient of a discretized geodesic distance according to the
metric.

In the sequel, we will refer to &g (x,, x;) as a subgradient of the concave mapping
& — dg(xg, x;) instead of a supergradient. This slight abuse of terminology should
not create confusion however.

Projected subgradient descent. This paper proposes to find a solution to (1.1) using
a projected subgradient descent. Starting with some initial metric £, one iterates

4D = e (8 - pVewe) (18)

where p; > 0 is a decaying sequence of gradient step size and I1¢ is the orthogonal
projection on the set of constraints C, and where the gradient of the energy & is

Vel = D 8 (x5, X)E! (de (x5, 1)) + Ve J (£),
st

where 6 = 8¢ (xy, x;) is the subgradient at & of the mapping & +— dg (xy, x;). For
any location y € €2, §(y) tells how much the geodesic distance between x; and x; is
sensitive to variations on £(y).

We also consider cases where the interactions & ; do not lead to a convex energy
&, in which case (1.8) is only guaranteed to converge to a local minimum of & if £®
does not encounter a point of non-differentiability during the gradient descent.

Discretization difficulties and proposed method. The main bottleneck to compute
the solution of (1.1) using a gradient method such as (1.8) is to compute subgradients
8¢ (x5, x;). Furthermore, this computation should be performed on a discrete grid.

A small perturbation &, = & + gh defines a distance dg, (x;, x;) between x, and x;,
that can be differentiated with respectto ¢ ate =0
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Fig. 1 On the left, 8¢ (xs, x;) and some of its iso-levels for & = 1. In the middle, a non constant metric
E(x) = 1/(1.5 — exp(— [lc — x]|)), where c is the center of the domain. On the right, an element of the
superdifferential of the geodesic with respect to the metric shown in the middle

1

detoxn| = [nart = [noony o, (19

Y 0

d
de

where the curve y is the geodesic curve between x; and x; according to the metric &,
which is a curve with minimal length

Le(y) = de (x5, X1).

If y is unique, this shows that & > dg, (xy, x;) is differentiable at £, and that its gradi-
ent 8¢ (xg, x;) is a measure supported along the curve y . In the case where this geodesic
is not unique, this quantity may fail to be differentiable. Yet, the map & > dg (xy, x;)
is anyway concave (as an infimum of linear quantities in §) and for each geodesic we
get an element of the super-differential through Equation (1.9).

The extraction of geodesics is quite unstable, especially for metrics such that x; and
x; are connected by many curves of length close to the minimum distance dg (x;, x;).
It is thus unclear how to discretize in a robust manner the gradient of the geodesic
distance directly from the continuous definition (1.9). We propose in this paper an
alternative method, where 8¢ (x,, x;) is defined unambiguously as a subgradient of a
discretized geodesic distance. Furthermore, this discrete subgradient is computed with
a fast Subgradient Marching algorithm.

Figure 1 shows two examples of subgradients, computed with the algorithm detailed
in Sect. 3. Near a degenerate configuration, we can see that the subgradient 8¢ (x;, x;)
might be located around several minimal curves.

Anisotropic metrics. The geodesic distance and its subgradient can be defined for
more general Riemannian metric § that depends both on the location y (¢) of the curve
and on its local direction y'(#)/|y’(¢)|. The algorithm presented (Tables 1, 2) in this
paper extends to this more general setting, thus allowing to design arbitrary anisotropic
Riemannian metric. This requires to use more advanced Fast Marching methods, such
as the ones developed in [5,20], see also [13] for a related extension of our method
to 3D meshes. We decided however to restrict our attention to the isotropic case, that
has many practical applications.
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Table 1 Fast Marching algorithm.

Initialization: Uy, = 0, Sy, = Trial, Vi, ) # xs, S,-,j = Far,U; j = +o0.
repeat
Select point: (i, j) <— argmin Ujr ji.
(i’,j’),S,-/’j/:Trial
Tag: S; j < Known.
for (i’, j') e N'(i, j) do
if Si’,j/ = Trial or Far then
L Sy jr < Trial
Update the value of 14y ;7 = u by solving (2.3).

until {G, j): &; j =Trial} =;

Table 2 Subgradient Marching algorithm.

Initialization: Uy, = 0, Sy, = Trial, Vgly, = 0 the null vector. V(i j) # x5, &;; = Far,
U;,j = +oo.
repeat
Select point: (i, j) <— argmin Ut .
(i’,j’),Si/,j/:Trial
Tag: S; j < Known.
for (i’, j) e N'(i, j) do
if Si’,j/ = Trial or Far then
Sy jo < Trial
Update the value of ui’.j” using either (2.5), (2.6) or (2.7).
Update the value of Vgui/’j/, using either (3.1), (3.2) or (3.3).

until {G,j); Si; = Trial} =,

1.4 Contributions

This paper proposes a projected subgradient descent (1.8) to minimize variational
problems that are discretized versions of (1.1). The key ingredient and the main con-
tribution of the paper is the Subgradient Marching Algorithm, detailed in Sect. 3,
that computes an element of the subgradient of the geodesic distance with respect to
the metric. This algorithm follows the optimal ordering used by the Fast Marching,
making the overall process only O (N?1og(N)) to compute subgradients of the maps
& > dg(xg, x;) for a fixed xg and for all the grid points x;.

2 Discrete geodesic distances

Our approach to minimize variation problems such as (1.1) first defines a discrete geo-
desic distance dg (xy, x;) as the solution of a discretized partial differential equation.
A discrete subgradient ¢ (x;, x;) of the map & > dg (x4, x,) is then defined to solve
exactly discrete variational problems involving geodesic distances. This is a general
framework that could be extended to a larger class of non-linear partial differential
equations.
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2.1 Discretization

Eikonal equation. To define a discrete geodesic distance and the corresponding sub-
gradient, we consider a fixed starting point x;, and define the distance map to this
point

U (x) = dg (x5, x). .1

Note that we have dropped the dependancy on the starting point x;, that is assumed to
be known and fixed.

As shown in [17], this distance map is the unique viscosity solution of the Eikonal
non-linear PDE

3 —
[nvu ()l =&, 02

UE (x5) = 0.

The computation of I/ §(x) thus requires the discretization of (2.2) so that a numer-
ical scheme captures the viscosity solution of the equation.

Upwind discretization. In the following, we describe the computation in 2D of the
geodesic distance and assume that the domain is 2 = [0, 1]2, although the scheme
carries over for an arbitrary domain in any dimension. We consider regular grid dis-
cretization, although our method extends to more complicated discretizations, such as
for instance triangulations (see [13]).

We will also drop the dependence on & and x; of the distance map U = U¢ to ease
the notations. The geodesic distance map U* is discretized on a grid of N = n x n
points, so that¢4; ; for 0 < i, j < n is an approximation of U5 (ih, jh) where the grid
step is h = 1/n. The metric & is also discretized so that &; ; = §(ih, jh).

Classical finite difference schemes do not capture the viscosity solution of (2.2).
Upwind derivative should be used instead

DU, j = max{U; ; —U;i—1,;), Ui,j —Uiv1,5),0}/h,
Dold; j = max{(U; j — Ui j—1), Ui j — U j+1), 0}/ k.

As proposed by Rouy and Tourin [18], the discrete geodesic distance map U/ = (f;, ;) is
found as the solution of the following discrete non-linear equation that discretizes (2.2)

DU=§ where DUy j=./(Dilh ;) + (Dalhi )2 2.3)

Rouy and Tourin [18] showed that this discrete geodesic distance U/ converges to U$
when 4 tends to 0.

Figure 2 shows an example of a discrete geodesic distance map {/. The metric &
takes lower values along a black curve than the background, so that the geodesic curves
tends to follow this feature. An example of geodesic curve y between x; and x; is
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- 150

+ 100

Ls

Fig.2 Example of the minimal path computation using the Fast Marching algorithm. On the left the metric
&. On the right The distance map U and the minimal path linking xg to x;

shown on the right, that is obtained by solving the ordinary differential equation

Y - VUG wd 0 =,

2.2 Fast marching propagation

The Fast Marching algorithm, introduced by Sethian in [19] and Tsitsiklis in [22],
allows to solve (2.3) in O (N log(N)) operations using an optimal ordering of the
grid points. This greatly reduces the numerical complexity with respect to iterative
methods, because grid points are only visited once.

We recall the basic ideas underlying this algorithm, because our Subgradient March-
ing algorithm detailed in Sect. 3 makes use of the same ordering process.

The values of &/ may be regarded as the arrival times of wavefronts propagating
from the source point x; with velocity 1/&. The central idea behind the Fast Marching
method is to visit grid points in an order consistent with the way wavefronts propagates.

In the course of the algorithm, the state S; ; of a grid point (i, j) passes successively
from S; ; =Far (no estimate of 4; ; is available) to S; ; =Trial (an estimate of If; ; is
available, but it might not be the solution of (2.2)) to §; ; =Known (the value of I4; ;
is fixed and solves (2.2)). The set of Trial points forms an interface between Known
points (initially the point x; alone) and the Far points. The Fast Marching algorithm
progressively propagates this front of 7Trial points so that all grid points are visited
(see Fig. 3).

At each iteration of the algorithm, a point (i, j) is tagged as S; ; =Known so
that f; ; is the solution of (2.2). The value of U/ at the neighboring points (i, j') €
NG, jH)y={G+1,j),G—1,j), 3G j+1),(3 j—1)}suchthat (i’, j') is not Known
yet are updated by solving (2.3), using only the values of ¢/ that are Known.

The decision of moving the state of a point from S; ; =Trial to S; ; =Known is
made by selecting the Trial point with minimum value of ¢{. It can be shown that
updating the value of U/ by solving (2.3) can only increase the value of U’ ;) for a
trial point (i’, j), so that the values of Known points are ensured to solve (2.2). A heap
data structure allows one to locate this minimum point in at most log(/N) operations,
so that the overall complexity of the algorithm is O (N log(N)) operations. This is
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Uit Her
Ui i+ . -
Ui j-1
Ui g ' Known Q Trial
T T T T T T T
(a) (b)

Fig. 3 Fast Marching propagation on a regular grid. a Neighborhood N (i, j), b Points states during the
propagation

similar to Dijkstra’s algorithm for computing shortest paths on graphs [14], the main
difference is the expression of the local contribution to the weighted distance.
Table 1 details the steps of the Fast Marching algorithm.

2.3 Update of the geodesic distance map and parental relations

Each step of the Fast Marching (FM) requires the resolution of (2.3) to update the
value of u = U; ; for a small set of points (i, j). One thus needs to compute the
solution u of

max{(u — Ui—1.;), 4 — Ui1,;), OF + max{(u — Ui j—1),
( — U j+1), 0% = (h& ). (2.4)

This computation deserves special attention because our Subgradient Marching
requires the computation of the derivative of the obtained distance Uf; ; = u. Thanks
to the recursive structure of the FM procedure, the value If; ; will only depend upon
the values at some of its neighbors, which we will call parents of (i, j).

In order to solve (2.4) we first detect which of the values U; 1, U1, is smaller
(notice that one or both of these values could a priori be +00), let a € {—1, +1}
be such that U; , ; = min{lf; 1 j, U;+1,;}. Analogously, we choose b € {—1, +1}
such that f; j1, = min{lf; j 1, U; j+1}. In case of equality in these minimization we
choose a pair (a, b) according to any previously chosen conventional priority rule so
as to avoid ambiguities.

We now concentrate on the three points {(Z, j), (i +a, j), (i, j + b)} (see Fig. 3a)
and we try to find the solution u of (2.4): depending on whether the neighboring point
are Known or not, different possibilities may occur.
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o In the case where U4 j # +00, Ui j1p # +00 and [Uita j — Ui j1pl < hE; j,
then no u < max{U;4, j,U; j4+»} can be a solution of (2.4), and, since the left-
hand side of such an equation is increasing in u, there is only one solution, which
is the maximum real solution of the quadratic equation

(U —Uira )+ = U j4p)* = (hE ). (2.5)

In this case we say that both points (i + a, j) and (i, j + b) are parents of (i, j).
o In the case where U4, j # +00 and U; j+p» = +00, then one defines

u=Uyq j+h& ; (2.6)

and the point (i + a, j) is the only parent of (i, j).
e In the case where U; 4, j = +oc and Uf; jp # +00, then one takes

u=U jwp+h& ;. 2.7

and in this case it is the point (i, j + b) which is the only parent of (i, j).
o IfUiiaj # +00, Ui j1p # +oobut [Uiraj — Ui jrpl > h&; j, then no value of
u > max{U;tq,j, Ui j+»} can be a solution of (2.4). In such a case take

u=min{li1q j, Ui j1p} + h&; (2.8)

and the point which realizes the minimum between Uf; 1, ; and U; j1, (which is
unique, in this case) will be the only parent of (i, j).

Notice that, when a point (7, j) is tagged as S; ; =Known by the algorithm, its
value Uf; ; solves the discrete Eikonal equation (2.3), so that this value only depends
on the value of its parent(s), which is (are) necessarily Known.

The Fast Marching algorithm, during the propagation, stores this parental relation-
ship (i, j) — (i +a*, j) and/or (i, j) — (i, j + b*), since each point except x; has
exactly one or two parents. This defines a directed graph structure without cycle, that
stores the dependencies induced by the resolution of the discrete Eikonal equation. We
obviously define the set of ascendants of (i, j) as the set composed of (i, j) itself and
of those points which are before (i, j) in this parental relation, i.e. which are either
the parents of (7, j), or parents of parents. Figure 4 shows examples of such a graph
of dependencies for two different metrics.

3 Subgradient marching algorithm

This section details our Subgradient Marching algorithm that computes an element
8¢ (x5, x;) of the subgradient of the mapping & +— dg (x,, x;). Since & is discretized
on a regular grid of N points, it is represented as a vector & € RY of dimension N. A
subgradient 8¢ (x;, x;) € RY is thus also a vector of N components.
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Fig. 4 Graphs of dependencies of the Fast Marching computations. Left uniform metric, right varying
metric

For a fixed starting point x;, our algorithm in fact computes for all grid points
xe = (i, J),

8 (x5, x;) = Velhi j € RN

which is a subgradient of the mapping & — U, where U is the discrete geodesic
distance to x;, computed by solving (2.3) as detailed in Sect. 2.

3.1 Concavity of the geodesic distance

To solve variational problems involving the geodesic distance dg (xy, x), for x =
(ih, jh), one would like to differentiate with respect to & the discrete distance map
L{E I obtained by solving (2.3). Actually, this is not always possible, since the mapping
& — UE ; is not necessary smooth. The following proposition proves that Z/{E j isa
concave function of & and this allows for superdifferentiation (the correspondent of

subdifferential for concave functions instead of convex).

Proposition 3.1 For a given point (i, j), the functional & — Z/Ii&: j is concave.

Proof In the following we drop the dependence on (i, j) and note U¢ = Llf i Thanks
to the homogeneity, it is sufficient to prove super-additivity. We want to prove the
inequality

UusIte > bt Ly,
Thanks to the comparison principle of Lemma 3.2 below, it is sufficient to prove that

&L+ & > D(Z/lsl + u&), where the operator D is defined in (2.3). This is easily
done if we notice that the operator D is convex (as it is a composition of the function

@ Springer



Derivatives with respect to metrics and applications: subgradient marching algorithm 369

(s, 1) — +/s52 + 12, which is convex and increasing in both s and ¢, and the operator D
and D», which are convex since they are produced as a maximum of linear operators)
and 1 —homogeneous, and hence it is subadditive, i.e. it satisfies D(u+v) < Du+ Dv.

Lemma 3.2 If& <, then U5 < U".

Proof Let us suppose at first a strict inequality § < 7. Take a minimum point for
U" — U5 and suppose it is not the starting point x;. Computing D and using sub-addi-
tivity we have

n=DU" < DU" —U) + DU = DU" —U°) + &,

which gives DU" — leé) > n — & > 0. Yet, at minimum points we should have
DU" — U¥) = 0 and this proves that the minimum is realized at x;, which implies
U —us > 0.

To handle the case & < 5 without a strict inequality, juste replace n by (1 + &)n
and notice that the map n — U" is continuous.

3.2 Recursive subdifferentiation

Proposition 3.1 proved that for a fixed point (i, j) and a fixed source x( the functional
& L{f j is concave. For a metric § > 0, one can thus consider an element V¢lf; ; of
the subdifferential of this functional.

The value of Uf; ; atapoint (i, j) depends only on the values of its parents (i +a*, j)
and/or (i, j+b*) through quadratic or linear equations (2.5), (2.6) or (2.7). The sub-dif-
ferential VeU4; ; thus also depends on the subdifferentials Vel 1 4+ j and/or Veld; j1pr.

One has to consider several cases, depending on the number of parents of (7, j).

e For the special case (i, j) = x;, the value of f; ; is zero and does not depend on
&. Thus, Veld; ; = 0, the null vector.
e If (i, j) has two parents, differentiating (2.5) with respect to & leads to

a(Veldi j — Veljyar ;) + B(Veld; j — Veldi j1pr) = hz&i,jﬂi,j

where o =U; j —Uiyq+ j € Rand B = U; j — U; j1p+ € R. Since & > 0, one has
a + B > 0. The subgradient at the point (i, j) is thus the vector Vglf;, ; defined as

1
Veldij = s (W60 oVellisae + BVEU ) . G

where 1; ; is the Dirac vector

L if @, ) =" j"),
0 otherwise.

1,6 i) = [
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e Ifonly (i +a*, j)is aparent of (7, j), differentiating (2.6) with respect to & leads
to

Vel j = Velliparj + h1; ;. (3.2)

e Ifonly (i, j + b*) is a parent of (i, j), differentiating (2.7) with respect to & leads
to

Velli j = Vel jrpr + h1; . (3.3)

Applying these rules during the Fast Marching propagation allows one to com-
pute the value of the subgradient V¢lf; ; at all grid points (i, j). The corresponding
Subgradient Marching algorithm is detailed in Table 2.

Each vector V¢l; ; stores at most N non-zero coefficients, so that the overall com-
putation takes O (N2 log(N)) operations and has a space complexity of O (N?).

Figure 1 shows two examples of subgradients Vlf; ; computed with the Subgradi-
ent Marching algorithm. For the metric £ = 1, the subgradient is concentrated closely
along the geodesic, which is a straight line. The second example shows a configuration
for which the subgradient is located around two geodesic curves.

Notice that every vector Vgl; ; is a vector whose entries corresponding to points
that are not ascendant of (i, j) vanish and whose non-zero entries are smaller than /.
This may be easily proven by a recursive argument thanks to (3.1), (3.2), (3.3), using
the inequality o + 8 > /a2 4+ 2 = h&; ; (in Figure 1 the values have been scaled
with h = 1).

3.3 Validity of the subgradient marching algorithm

The following theorem ensures the validity of the Subgradient Marching algorithm.

Theorem 3.3 For & > 0, a given starting point xo and a given point (i, j), the vector
Vel;, j computed with Subgradient Marching belongs to the subdifferential set of the

functional & — Z/lf j

Proof Consider the set of metrics £ € (R )" which give distinct values to the action
map at every point, i.e. such that U; ; # Uy j for (i, j) # (i’, j). In this case the
expression of f; ; is given by the recursive algebraic formula (3.1), (3.2) or (3.3)
involving the values of the parents. Each parent (both in the case of one parent and
in the case of two parents) is defined with no ambiguity and the same tree of paren-
tal dependence would stay valid even if & was changed by small perturbations. It
means that there exists a neighborhood of £ such that, for all other metrics £ in such
a neighborhood, all the parental relations between points are the same. Hence, for &

in this neighborhood the value of Z/{f . is given by the same algebraic and recursive
expression. The vector Velf; ; is exactly the differential of this expression.

Now we suppose that £ is such that there are possible ex-aequo entries in the vec-
tor u(i, j) = L{fi i One can slightly perturb this function by a sequence of function
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u, satisfying the same strict inequalities satisfied by u (i.e., u(i, j) < u(i’, j)) =
un(i, j) < u,(i’, j")) and replacing equalities by inequalities according to the order
convention < on the points of the grid: this means

u(i, j) = u@’, j, @ ) 2@ j1) = unli j) < un(@’, j.

This is possible by small perturbations, so that u, (i, j) — u(i, j) for each (i, j).
Moreover in this way the parental relation is left unchanged for &, and for &. Then
define &, by &, = Du,, according to (2.3). Obviously we have &, — &.

Moreover, for every (i, j) and every n the vectors ng{fi’} belongs to the superdif-
ferential of the map & — Z/lf F (since the function is concave and this vector is the
gradient). Since the graph of the superdifferential is closed, the limit of this sequence
of vectors must belong to the superdifferential at £. This limit actually exists and is
given by V¢ L{E I because of the continuity of the formulas that we used to compute all
of these vectors. This is possible because the approximation &, was chosen in order
not to change the parental relations. O

4 Applications
This section describes some applications of the Subgradient Marching algorithm to
the resolution of variational problems of the form (1.1). We consider discretized met-

rics £ € RV, and the geodesic distances dg (x;, x;) are discrete distances computed as
detailed in Sect. 2.1.

4.1 Landscape design

For the design of a landscape in a domain  C R¢, the interaction functional are linear
(1.4), so that the problem corresponds to the maximization of geodesic distances.

Constrained distance maximization. The optimization of £ should be done under

additional constraints on the set of admissible metrics, in order to avoid degenerate
solutions. We consider here a local constraint

Vi.j. 0<§ <& < & @.1)

that accounts for the maximal concentration of material allowed. We also consider a
global constraint

1
a > &= (4.2)

(i.))eQ
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where |€2| is the number of grid points in €2, that accounts for the total amount of
ground material available. The constant A satisfies necessarily

| 255562

(l NEY 2J)ER

We note that the maximization of £ under the pointwise constraint (4.1) alone would
be saturated everywhere & ; = & ;

Taking into account that the constraint (4.2) is obviously saturated, the landscape
design problem is written as

£* € argmin £(8) = — > wy 1de (xy. x1) (4.3)
geC
where
C=16eRY g <& sE,,,, Z Ej=Ay, (4.4)
| ihee

and we note that this minimum might be non-unique.
To solve (4.3), we use the projected gradient descent (1.8), with no regularization
J = 0. In this case, the gradient of £ simply reads

ng = — Z ws,tVSUsg(xt). (45)

s,

where each L{f (x) = dg (xs, x) is the distance map to a landmark x;. Each subgradient

vector Vgl/[f (x) is computed by the subgradient descent algorithm, Table 2, starting
the front propagation from the point x;.

Thanks to the following proposition, the projection I1¢ is easily computed. A simple
dichotomy is used to find the value of « that satisfies (4.7)

Proposition 4.1 For § <A< §, one has

Me®) =PiE +a), where PEE); =max(min.&,,).6, )  (46)

where o € R is such that

> Mo+, = (4.7)

(i,j)e

3]

Proof The projected metric IT(€) satisfies

Me(&) = min & - e “8)
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For a given Lagrange multiplier &« € R, this corresponds to minimize

. bt 2 =
min — — 2 PP
§S§§§ns £l > &,

(i,j)e

By developing the square terms, one sees that this amounts to project £ + « on the
set of constraints g < § < E This is obtained by truncation with the operator 735 , as

written in (4.6).
Since the function

o > P+,

(i,j)ex
is an increasing continuous function, there exists & € R satisfying conditions (4.7).
The following theorem ensures the convergence of the projected gradient descent.

Theorem 4.2 For p;y = 1/k, the sequence (§%)); converges to a minimizer £* of
(4.3).

Proof As stated for instance in [4], the convergence of a subgradient descent is ensured
if

Zpkz—i—oo and Zp,? < +o00.
k k

and if the sequence (V$<k>5)k stay bounded. Since for each landmarks (x;, x;), the

mapping & +— Z/{f (x) is concave and 1-homogeneous, it is Lipschitz continuous and
hence its subgradients are bounded. O

Numerical examples. We first consider p = 2 agents located at two points xq, x| in
the corners of a square domain, as shows in Fig. 5. The constraints are set to £ = 0.1,

& = 1and A = 0.2]22|. The domain €2 is sampled on a square grid of 100 x 100
points. Since the landmarks are close to the boundary of €2, hills appear between each
x; and the boundary. This phenomena is explained by the fact that it is less costly to
build these short hills and it makes a bypass behind the defender more difficult.

Figure 6 left, shows the decay of the error between the iterates £®) and an opti-
mal metric £*. Figure 6, right, shows the increase of the energy, which is not strictly
monotonic because of the non-smooth nature of the problem to optimize.

Figure 7, left and middle, shows the influence of the total mass parameter A. Decreas-
ing the value of A causes the optimal metric £* to be more concentrated around the
landmark positions. By decreasing value of £ toward 0, these regions approach circular
shape (see Figure 7 right). One can note that the Gradient Marching algorithm is able
to compute a subgradient of £ as soon as & > 0, but the convergence tends to become
slower when & approaches 0.
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Fig. 6 Left decrease of the error loglo(llé(k) — E*||/IIE* ), right increase of the energy 5(5(1‘))

One can indeed prove that if gi,j = 0 and ?i, j = ¢, in a continuous setting, the
unique optimal metric £* is given by &; ; = c for (i, j) in two disks around x¢ and x;
and &; ; = 0 elsewhere, if A is small enough so that the two disks fit inside €2.

Figure 8, left, shows an example of spatially varying constraints. To prevent the
agent located in x; to modify the metric, we enforce

V@, j) € Q, éi,j = gi,j =0.1,
where €2 is a region surrounding x1, whereas outside €21 we set

V(la .]) ¢ Qla gi,j == 01, gi,j = 1

The metric is thus only optimized in €2 \ €21, as shown on Fig. 8 left.
Figure 8, right, shows an example of optimal metric £* computed with P = 8
landmarks. The weights between the landmarks are set to w;; = 1 and gi i = 0.1,

?i’ ;j = 6. Figure 9 shows the iterations of the algorithm for a domain €2 with a hole.
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(€=0.1,A=0.4) (¢ =0.1,A =0.15) (¢ =10"%,A = 0.15)

Fig.7 Dependence on parameters A and & of the optimal metric &. In all examples £E=1

Fig. 8 Left spatially vayring constraint E,»__, with P = 2 landmarks, right constant constraint with P = §

landmarks

’ -

o o
o L3 [

k =100 k =300 k =500

Fig. 9 Iterations S(") computed for a domain € with a hole and with P = 5 landmarks
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k =100 k =300 k =500

Fig. 10 Iteration 5(1‘) computed during the subgradient descent. The dashed line corresponds to the con-
nexion s — #(s) of nearest neighbors points

Extension of the model. 1t is possible to modify the energy £ defined in (4.3) to mix
differently the distances between the points {x;},. One can for instance minimize

Emin(§) = — Zn;n de (x5, X;).

This functional is the opposite of the minimum of concave functions, and hence Enip
is a convex function. The minimization of the energy En;, forces each landmark to be
maximally distant from its closest neighbors.

The subgradient of &y, is computed as

Vel = — D Vills (xi(s))-

where, for each landmark x;, x;(5) is the closest landmark according to the metric &

t(s) = argmin dg (xg, X;).
t#s

The projected gradient descent (1.8) converges to a minimum of Enip.

Figure 10, left and center, shows how the metric & &) evolves during the iterations
of a projected gradient descent. The graph connecting each x; to its nearest neighbor
Xt (s) 1s overlaid. The points x; are clustered on two sides of the domain, so that during
the first iterations, the graph connects points on each side of the domain. During the
iterations, the nearest neighbor connexion s — (s) evolves, until reaching a stable
configuration, as shown on Fig. 10.
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4.2 Traffic congestion equilibria
The simulation of a static traffic congestion is the computation of a Riemannian metric
so that agents travel along geodesics between points {x,};. The metric is the unique

minimizer of (1.1) for linear interactions (1.4). The regularization J is a discretization
of (1.5)

1
YOREEDN N
@)

Each weight wy ; is the strength of the traffic between two landmarks x; and x;. The
only constraint is that metrics should be positive

C={§€RN; 5[,;’20}-
The projection on this constraint set is simply

¢ (§) = max(0, §),

and the subgradient descent (1.8) is guaranteed to converge to the solution of (1.1) if
one uses for instance py = 1/k.
For this application, the subgradient of £ is

Vel = j€) — D we, Velks (x,), (4.9)

5.t

where
Jjé&) = (-‘E,%j)(i,j) e RV,

The subgradient V¢l (x;) at & of the mapping & > dg (x4, x;) is computed with the
Subgradient Marching algorithm, Table 2, starting the front propagation at the point x;.

Numerical example. Figure 11 shows an example of congested metric with a com-
plex domain €2 and four landmarks. The two landmarks x;, , x4, are sources of traffic
and x;,, x;, are targets, so that wy, 5, = wy, », = 0 and we choose the other weights

) d Wy Wsyn
wsl.tl + wsl,tz - (wsz,tl + wsz,tz) an - 5
Wsy.1y Wsy.1y

so that the traffic intensity going out from xg, is twice the one from xy,. One can note

the two hollows on each side of the river appearing because of the inter-sides and
intra-sides crossed traffics.
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(b)

Fig. 11 Two sources and two targets, with a river and a bridge on a symmetric configuration and an
asymmetric traffic weights. a 3D view of £*, b Flat view of log (§*)

4.3 Travel time tomography

A simple model of seismic data acquisition assumes that geodesic distances are col-
lected between points (x;)s. Pairs of emitter and receiver are denoted as (xy, x;) for
(s,t) eTl.

In our simplified tomography setting, the data acquisition (1.6) computes geodesic
distances d; ; for each pair (s, ) € I' according to an unknown Riemannian metric

£°.

Geodesic tomography inversion. 'The recovery is obtained by solving (1.1) for a data
fidelity term (1.7) as interaction functionals.
We use a discrete Sobolev regularization

M M
JE) =3 llgradé | = 2 > llgrad, ;)
i,j)e

where the operator grad is a finite difference discretization of the 2D gradient
grad; ;& = (i1, — &ij, &ij+1 — &ij),

with Neumann condition on the boundary 92 of the domain. The parameter v con-
trols the strength of the regularization and should be adapted to the number |I'| of
measurements and the smoothness of £°.

We use the local and global constraints (4.4), where

. = 1
§ = min §0~ S:(maxQ l-(?j, and k:m Z Ei(’)j.

a i,j? o
LJ)EQ JJE
@ )) i) (e
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The travel time recovery is thus obtained by minimizing

1 "
argmin = " (dz (x5, x,) — dy.1)* + 5 llgradé|®. (4.10)
§eC (s,n)el’

Subgradient descent recovery. The minimization problem (4.10) is non-convex, but
a local minimizer £* can be computed using the projected gradient descent (1.8). In
this case, the gradient of the energy £ at a metric £ reads

VeE = pAE — D (de (x5, ;) — ds ) VewUs (x7).

.t

where A = —grad* o grad is the Laplacian. The subgradient Vgl (x;) of the map-
ping & > dg (xy, x;) is computed with the Subgradient Marching algorithm, Table 2,
starting the propagation from the point x;.

The subgradient descent (1.8) converges to a local minimum &* of the problem
(4.10).

Numerical examples.  Figure 12 shows two examples of smooth metrics £° recovered
from travel time tomography measurements. In each case, we set £ /& = 1.3 and we

use Ei((j.) = ) as an initial flat metric.

For the first example, we use P = 100 points distributed evenly on the boundary of
a square €2, discretized at N = 150 x 150 points, and each points acts both as emitter
and sensor.

For the second example, we use 50 emitter points {x }?io distributed evenly on the
boundary of a complicated domain €2, and 150 sensors {x;} iigso distributed randomly
within the domain. Each emitter is connected to all the sensors, so that (s, ) € I' if
and only if s < 50 and ¢ > 50.

We enforce the smoothness of the solution by setting a large enough regulariza-
tior}( parameter © = 0.1. Figure 13 shows the decay of the energy £ and the error
[g© =&,

The recovery error || — £* | / | &9 is 2.5 % 1072 for the firstexample and 7 x 10~
for the second example. Both examples show that for moderately complicated tomog-
raphy problems (smooth medium and low contrast), a good approximation can be
obtained by Subgradient Marching descent. These synthetic examples are however
quite simple, and a detailed analysis of the method and the properties of the minimizer
&* is desirable but beyond the scope of this paper.

5 Conclusion

We have presented a new projected gradient descent algorithm to optimize a metric
with respect to an energy involving geodesic distances. The heart of our approach
is the Subgradient Marching algorithm, which computes the derivative of a discrete
geodesic distance with respect to the metric. Up to our knowledge, this is the first
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Fig. 12 Examples of travel time tomography recovery
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Fig. 13 Decay of the energy and the error for the first example shown in Fig. 12

time that a consistent numerical tool has been introduced to solve discrete variational
problems that take into account geodesic distances between points. Three represen-
tative applications illustrate the practical use of Subgradient Marching. Landscape
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design and traffic congestion lead to the minimization of a convex functional, and can
be solved efficiently with a projected gradient descent. Recovery of geodesic inverse
problems such as travel time tomography is obtained by computing a local minimizer
of a non-convex problem.
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