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Abstract: The Schrödinger equation with a potential periodically varying in time is
used to model adiabatic quantum pumps. The systems considered may be either infi-
nitely extended and gapped or finite and connected to gapless leads. Correspondingly,
two descriptions of the transported charge, one relating to a Chern number and the other
to a scattering matrix, have been available for some time. Here we generalize the first
one and establish its equivalence to the second.

1. Introduction

Quantum pumps are driven devices connected to leads kept at a same voltage. Two
descriptions of charge transport are available for pumps depending on time periodically
and adiabatically. One has been proposed by Thouless [19] (see also [16]), the other
by Büttiker et al. [7] (see also [6]). We shall refer to them as the topological, resp. the
scattering approaches and denote by 〈QT 〉, resp. 〈Q B PT 〉 the charges transported during
a cycle. Each one depends on a different idealization of the devices. In the first proposal
the model is a non-interacting Fermi gas, infinitely extended in one dimension with the
Fermi energy lying in a gap. The charge transported within a period appears as a Chern
number, indicating that it is quantized. In the second approach the device is viewed as
a compact object connected to leads containing free, gapless Fermi gases. Here, the
transported charge is expressed in terms of the scattering matrix at Fermi energy and is
quantized in special cases only.

At first sight charge transport is accounted for in rather different, if not opposing,
ways: The spatial extent of the two devices is infinite, resp. finite, reflecting a micro-
scopic, resp. macroscopic, perspective; more strikingly, in the first case transport is
attributed to energies way below the Fermi energy, which lies in a spectral gap, while
in the second the scattering matrix matters only at Fermi energy. In physical terms, the
first description applies to insulators, the second to conductors, at least seemingly so.
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Yet, the two points of view are mathematically related. This has been shown in [10]
for the simpler case of a single channel, modeled as a real line, and of a potential which is
periodic also in space. A comparison becomes possible after truncating the potential to
finitely many periods, while the rest of the line gives rise to the leads. Then the spectral
gap closes and the model becomes amenable to the scattering approach. There, the con-
ditions for quantized transport are attained in the limit of many periods, and quantitative
agreement between the two approaches was established.

In this article we generalize the equivalence result in two ways, thereby extending it
to the natural setting of both approaches. First, the requirement of spatial periodicity [19]
is dropped. Such a situation was considered in [16], though by approximating a general
(e.g. quasi-periodic) potential by a sequence of periodic ones with increasing periods.
Only the approximants were associated to fiber bundles, based on the corresponding
Brillouin zones. Here we propose a bundle and hence a Chern number applying directly
to the infinite, non-periodic system. Second, we extend the correspondence [10] to a
multi-channel setting.

As far as we know, the earliest statement concerning the equivalence is found in [8],
though only for a particular, exactly solvable, periodic, tight binding Hamiltonian. On
more general terms we note that, albeit the topological approach predates the scattering
approach, several ideas underlying the equivalence can be traced back to [19]. Experi-
mental work which is thematically related is described e.g. in [5,12,17].

In Sect. 2 we state the results for charge transport based on the two approaches sepa-
rately, and formulate the comparison, which is the main result, as Theorem 2. In Sect. 3
we describe the relevant fiber bundle, while Sect. 4 is devoted to proofs. An Appendix
provides a result in adiabatic perturbation theory.

2. Main Results

We begin by describing the topological approach [19] in the case of n channels. The
Hamiltonian, acting on L2(Rx,C

n), is

H(s) = − d2

dx2 + V (x, s), (1)

where the potential V = V (x, s) takes values in the n × n matrices, Mn(C), is Her-
mitian, V = V ∗, and periodic in time, V (x, s + 2π) = V (x, s). For simplicity, let
V (·, s) ∈ L∞(Rx,Mn(C)) with C1-dependence on s ∈ S1 := R/2πZ. Then, for any
z ∈ ρ(H(s)) in the resolvent set, the Schrödinger equation H(s)ϕ = zϕ is in the
limit-point case at x = +∞ (see [14 or 9,13]), meaning that as an ordinary differential
equation it has n linearly independent solutions which are square-integrable at x = +∞.
We may thus introduce a family of sets, parametrized by z ∈ ρ(H(s)) and s ∈ S1,
consisting of matrix-valued solutions ψ(x) ∈ Mn(C) of the Schrödinger equation

− ψ ′′(x) + V (x, s)ψ(x) = zψ(x), (2)

which are regular in the sense that for any x ∈ R,

ψ(x)a = 0, ψ ′(x)a = 0 ⇒ a = 0, (a ∈ C
n). (3)

It is:

S+
(z,s) = {ψ+|ψ+ is a regular solution of (2), L2 at x = +∞}. (4)
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As a matter of fact such solutions tend to zero pointwise as x → +∞, together with
their first derivatives. Similarly, solutions ψ̃(x) ∈ Mn(C) of the adjoint equation

− ψ̃ ′′(x) + ψ̃(x)V (x, s) = zψ̃(x) (5)

act on row vectors a ∈ C
n as aψ̃(x), and we set

S̃−
(z,s) = {ψ̃−|ψ̃− is regular solution of (5), L2 at x = −∞}.

For later use we also introduce the families S−
(z,s), S̃+

(z,s) of solutions to (2), resp. (5)

decaying at the opposite ends. For any two differentiable functionsψ, ψ̃ : R → Mn(C)

we define the Wronskian

W (ψ̃, ψ;x) = ψ̃(x)ψ ′(x)− ψ̃ ′(x)ψ(x) ∈ Mn(C). (6)

It is independent of x if ψ and ψ̃ are solutions of (2), resp. of (5), in which case it
is simply denoted as W (ψ̃−, ψ+). As will also be shown later, det W (ψ̃−, ψ+) 	= 0
for ψ+ ∈ S+

(z,s), ψ̃− ∈ S̃−
(z,s). We observe that S+

(z,s) carries a transitive right action of
GL(n) 
 T ,

ψ+(x) �→ ψ+(x)T, (7)

while S̃−
(z,s) carries a left action,

ψ̃−(x) �→ T ψ̃−(x).

We thus have a bijective relation between ψ+ ∈ S+
(z,s) and ψ̃− ∈ S̃−

(z,s) such that

W (ψ̃−, ψ+) = 1. (8)

We assume that the Fermi energy µ > 0 lies in a spectral gap at all times s:

µ ∈ ρ(H(s)). (9)

Let P0(s) be the spectral projection of H(s) up to the Fermi energy and Uε(s, s0) be the
propagator for the non-autonomous Hamiltonian H(εt), where s = εt . In the Appendix
we prove, in the smooth case,

Uε(s, s0)(P0(s0) + εP1(s0))Uε(s, s0)
∗ = P0(s) + εP1(s) + O(ε2), (ε → 0) (10)

with

P1(s) = − 1

2π

∮
γ

R(z, s)Ṙ(z, s)dz, (11)

where R(z, s) = (H(s) − z)−1 and γ is a complex contour encircling the part of the
spectrum of H(s) lying below µ and ˙ = ∂/∂s. Equation (10) is the 1-particle density
matrix which has evolved from that of the Fermi sea, P0(s0), after a gentle start of the
pump. In fact such a start may be obtained from (1) by means of a smooth substitution
s′ �→ s with s′ �→ s0, (s ≤ s0), and s′ = s, (s′ large). Then, in the new variable,
P1(s0) = 0 by (11).

The current across a fiducial point x = x0 is the rate of change of the charge contained
in x > x0 and hence given by the operator I = i[H(s), θ(x−x0)], which is independent
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of s. The charge transported in a cycle (of duration 2πε−1) is, in expectation value and
in the adiabatic limit, given as

〈QT 〉 :=
∮

Tr(I P1(s))ds, (12)

because of dt = ε−1ds, with Tr denoting the trace on L2(Rx,C
n). This definition rests

on the fact that the leading contribution from persistent currents, ε−1
∮

Tr(I P0(s))ds,
which is potentially divergent in the limit, actually vanishes. If V were real, this would
follow trivially from time reversal invariance; however our hypothesis does not imply
this, except for n = 1, and we shall argue otherwise.

The result of [19], generalized as described in the Introduction, is part (ii) of the
following theorem.

Theorem 1. Assume (9). Then

i)

Tr(I P0(s)) = 0.

ii)

〈QT 〉 = i

2π

∮
γ

dz
∮

S1
ds tr

(
W (

∂ψ̃−
∂z

,
∂ψ+

∂s
;x0)− W (

∂ψ̃−
∂s

,
∂ψ+

∂z
;x0)

)
,

(13)

where tr denotes the matrix trace and the solutions ψ+ ∈ S+
(z,s), ψ̃− ∈ S̃−

(z,s) sat-
isfying (8) are locally smooth in (z, s). Except for these conditions, the trace is
independent of ψ+, ψ̃−, and the integral is of x0, too. Moreover, the r.h.s. is the
first Chern number of a bundle described in Sect. 3.

We next present the scattering description [7] of charge transport. Consider again the
Hamiltonian (1), but now with V of compact support in x. As a result, (9) fails:

µ ∈ σ(H(s)) (14)

for all s. We may thus introduce the scattering matrix S(s) at Fermi energy µ > 0,

S(s) =
(

R T ′
T R′

)
,

where the blocks are n × n matrices determined by the asymptotic behavior of solutions
of (2) with z = µ. More precisely, R and T are defined in terms of a plane wave incident
from the left,

ψ(x) =
{

1eikx + Re−ikx, (x < −r),
T eikx, (x > r),

(15)

with r > 0 large enough and k = √
µ. Similarly R′ and T ′ are defined in terms of a

wave incident from the right.
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The charge emitted from all channels of the left lead together, in a cycle and in the
adiabatic limit, is [7]

〈Q B PT 〉 = 1

2π i

∮
tr((d S)S∗ P), (16)

where d S = (d S/ds)ds and P = (
1 0
0 0

)
is the projection onto the left channels. For the

same situation the variance is [1,11]

〈〈Q2
B PT 〉〉 = 1

(2π)2

∫ ∞

−∞
ds

∮
ds′ tr[(S∗(s)P S(s)− S∗(s′)P S(s′))2]

sin2 (s − s′)
.

In general, and in contrast to (13), 〈Q B PT 〉 is not an integer. However, 〈〈Q2
B PT 〉〉 van-

ishes iff the time dependence of S is of the form

S(s) =
(

U1(s) 0
0 U2(s)

)
S0 (17)

with U j (s) ( j = 1, 2) and S0 unitary matrices of order n, resp. 2n. In this case 〈Q B PT 〉
is an integer,

〈Q B PT 〉 = 1

2π i

∮
tr((dU1)U

∗
1 ) = 1

2π i

∮
d log det U1,

given as the winding number of det U1.
We do not give here the definition of 〈Q B PT 〉 which makes (16) a theorem [2]. Rather

we focus on the relation between Eqs. (13) and (16). To this end we truncate the potential
to a finite interval, V (x, s)χ[0,L](x), and denote its scattering matrix by SL(s). In the
limit L → ∞ the original physical situation is recovered and the two approaches agree,
as stated in the following result.

Theorem 2. Assume (9) for the infinite system.

i) The scattering matrix SL(s) at Fermi energy µ has a limit of the form

lim
L→∞ SL(s) =

(
R(s) 0

0 R′(s)

)
. (18)

In particular, the condition (17) for quantization of 〈Q B PT 〉 is attained in the limit.
ii) The winding number of det R(s) equals the Chern number on the r.h.s of Eq. (13).

In physical terms,

〈Q B PT 〉 = 〈QT 〉. (19)

We conclude this section by summarizing the idea of the proof of (19). We may
assume that the contour γ in Eqs. (11, 13) crosses the real axis just twice, once below
the spectrum and once at Fermi energy µ. The torus of integration in (13), which is
denoted by T = γ × S1, is the base space of a bundle which will admit a global section
except at isolated points along the line {µ} × S1 ⊂ T. Using Stokes’ theorem its Chern
number can be expressed in terms of solutions of the Schrödinger equation at Fermi
energy and, in turn, of the scattering matrix (18). The main steps are given in more detail
in the following lemma. There the r.h.s. of Eq. (13) is denoted by C , and x0 is fixed. The
orientation of the torus is the natural one, dγ ∧ ds.
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Lemma 3. i) Any point (z∗, s∗) ∈ T, where detψ+(x0) = 0 for some (and hence all)
ψ+ ∈ S+

(z∗,s∗) has z∗ = µ. For a dense set of potentials V = V ∗, the points s∗ are

isolated in S1 and 0 is a simple eigenvalue of ψ+(x0); moreover,

detψ ′
+(x0) 	= 0. (20)

Density is meant w.r.t. the topology of the class of potentials specified below (1).
ii) Let ψ(z,s) ∈ S+

(z,s) be a section defined in a neighborhood in C × S1 ⊃ T of any of
the above points (z∗ = µ, s∗), which is analytic in z. Then the family of matrices
L(z, s) = ψ ′

(z̄,s)(x0)
∗ψ(z,s)(x0) has the reflection property

L(z, s) = L(z̄, s)∗. (21)

Its eigenvalues are real for real z. There is a single eigenvalue branch λ(z, s) van-
ishing to first order at (µ, s∗). Its winding number there is

ws∗ = − sgn

(
∂λ

∂z

∂λ

∂s

) ∣∣∣
(z=µ,s=s∗)

.

iii)

C = −
∑
s∗
ws∗ .

iv) At any of the points (µ, s∗) we have

∂λ

∂z
< 0.

v) The unitary matrix R(s) has eigenvalue −1 iff detψµ,s(0) = 0. More precisely, as
s increases past s∗, an eigenvalue of R crosses −1 counterclockwise if

∂λ

∂s

∣∣∣
(z=µ,s=s∗)

< 0.

As a result, C = −∑
s∗ sgn (∂λ/∂s) |(z=µ,s=s∗) is the number of eigenvalue crossings of

R(s) past −1, i.e., the winding number of det R. Actually the equality is first established
if the conditions on the potential of part (i) are satisfied, but the conclusion, Eq. (19),
extends by density.

3. A Fiber Bundle

We describe the bundle P and the connection underlying Eq. (13). LetC =C1 (R,Mn(C))

be the space of matrix valued C1-functions on R. Let π : P → T be the subbundle of
T × C with base T = γ × S1 and fibers S+

(z,s) ⊂ C:

P = {((z, s), ψ) ∈ T × C | ψ ∈ S+
(z,s)}.

It is a principal bundle w.r.t. the right action (7) of GL(n). This includes that GL(n) is its
structure group. Indeed, for any sufficiently small open set U ⊂ T there is x ∈ R with

detψ+(x) 	= 0
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for allψ+ ∈ S+
(z,s) and (z, s) ∈ U , see Lemma 4 below. This provides a local trivialization

φ with

φ−1 : π−1(U ) → U × GL(n), ψ+ �→ (z, s, ψ+(x)).

The transition function φ−1
2 ◦ φ1 : GL(n) → GL(n) is multiplication from the left by

the matrix ψ+(x2)ψ+(x1)
−1, which is clearly independent of ψ+ ∈ S+

(z,s) and belongs to
GL(n).

We will give an explicit expression for the Chern number C of P , which differs
somewhat from that used in [19]. We recall that

C = i

2π

∫
T

tr F , (22)

where F = DA is the curvature of any connection A on P . We recall that tr F defines
a 2-form on T, and not just on P; for any two connections, A and A′, the same is true
for the 1-form tr(A − A′), whence C is independent of the choice of connection. We
consider connections of the following form. Let B : C ×C → Mn(C) be a bilinear form
on C satisfying

B(ψ̃, ψT ) = B(ψ̃, ψ)T, (23)

B(T ψ̃, ψ) = T B(ψ̃, ψ) (24)

(ψ̃ , ψ ∈ C, T ∈ GL(n)). Moreover we assume that its restriction

B : S̃−
(z,s) × S+

(z,s) → GL(n) (25)

takes values B(ψ̃−, ψ+) in the regular matrices (as shown below, an example is (6)). We
may then consider the gl(n)-valued 1-form on P

Aψ+(δψ+) = B(ψ̃−, ψ+)
−1 B(ψ̃−, δψ+), (δψ+ ∈ T P),

which is well-defined being independent of the choice of ψ̃− ∈ S̃−
(z,s) by (24). It is a

connection on P since it enjoys the defining properties

Aψ+(ψ+t) = t, (t ∈ gl(n)),

Aψ+T (δψ+T ) = T −1Aψ+(δψ+)T, (T ∈ GL(n))

by (23). Given ψ+ ∈ S+
(z,s) there is a unique ψ̃− ∈ S̃−

(z,s) such that B(ψ̃−, ψ+) = 1, as

can again be seen from (24). Then A = B(ψ̃−, δψ+) and the trace of its curvature is

tr F = tr
(
B(
∂ψ̃−
∂z

,
∂ψ+

∂s
)− B(

∂ψ̃−
∂s

,
∂ψ+

∂z
)
)
dz ∧ ds.

We will use the bilinear

B(ψ̃, ψ) = W (ψ̃, ψ;x) = ψ̃(x)ψ ′(x)− ψ̃ ′(x)ψ(x),

whose restriction (25) is seen to be independent of x (though A may not be); then
(22) coincides with the r.h.s. of (13), as announced in Theorem 1. It remains to verify
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B(ψ̃−, ψ+) ∈ GL(n). Any column vector solution ϕ(x) of (2) is determined by ϕ(0),
ϕ′(0) ∈ C

n , similarly for any row vector ϕ̃(x) solving (5). Their Wronskian

W (ϕ̃, ϕ) = ϕ̃(0)ϕ′(0)− ϕ̃′(0)ϕ(0), (26)

which now takes values in C, clearly defines a non-degenerate bilinear form on C
2n .

Given ψ± ∈ S±
(z,s), any solution ϕ can be expressed as

ϕ(x) = ψ+(x)a+ + ψ−(x)a− (27)

with a± ∈ C
n , and ϕ ≡ 0 iff a± = 0; similarly for ϕ̃(x) = b+ψ̃+(x) + b−ψ̃−(x). In

terms of the coefficients (b+, b−), (a+, a−), the bilinear form (26) is given by the matrix
(

0 W (ψ̃+, ψ−)
W (ψ̃−, ψ+) 0

)
,

since

W (ψ̃±, ψ±) = lim
x→±∞ W (ψ̃±, ψ±;x) = 0. (28)

Hence W (ψ̃−, ψ+) is regular.

Remark. In [19] (and later in [10]) the case of a potential V (x) of period L was consid-
ered. In the case n = 1 the bilinear used there was

B(ψ̃, ψ) =
∫ L

0
dx ψ̃(x)ψ(x).

Non-degeneracy of (25) amounts to
∫ L

0 dxψ−(x)ψ+(x) 	= 0, where ψ− ∈ S̃−
(z,s) =

S−
(z,s), ψ+ ∈ S+

(z,s) are unique up to non-zero multiples.

4. Proofs

Here we prove Theorems 1 and 2 stated in Sect. 2. First however we should dwell on a
little point of precision: The current, informally given as

I = i[H, θ(x)] = −i
{ d

dx
, δ(x)

}
, (29)

is not a well-defined operator on Hilbert space. (We suppressed s from the notation and
set x0 = 0.) Instead, it should be understood as the map D(H) → D(H)∗,

I = i(γ ∗
1 γ0 − γ ∗

0 γ1),

where γ0, γ1 : D(H) → C
n with γ0ψ = ψ(0), γ1ψ = ψ ′(0). Then (29) is replaced by

i[R(z), θ(x)] = −R(z)I R(z), (30)

which can be verified first as a quadratic form. This operator is of trace class because
(p2 + 1)−1γ ∗

i γi (p2 + 1)−1 is.
Given an operator K : D(H)∗ → D(H) one may, pretending cyclicity, take

Tr(I K ) := i tr(γ0 Kγ ∗
1 − γ1 Kγ ∗

0 )
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as a definition. In fact, this is the trace of the finite rank operator I K on the Banach
space D(H)∗, see e.g. [18], Eq. (10.2). It yields

Tr(I K ) := tr(−i∂1 K (0, 0) + i∂2 K (0, 0)), (31)

where K (x, y) is the integral kernel of K and ∂1 and ∂2 indicate a derivative w.r.t. the
first, resp. second argument. As a further motivation we note that expectation values of
the current are naturally written as Tr(P0 I P0) and Tr(P0 I P1 + P1 I P0) in zeroth and
first order in ε. Then

Tr(P0 I P0) = i Tr
(
P0(γ

∗
1 γ0 − γ ∗

0 γ1)P0
) = i tr(γ0 P0γ

∗
1 − γ1 P0γ

∗
0 ), (32)

where cyclicity is now justified since γi P0 is Hilbert-Schmidt; also, P2
0 = P0 was used.

Similarly,

Tr(P0 I P1 + P1 I P0) = i tr(γ0 P1γ
∗
1 − γ1 P1γ

∗
0 ),

by P0 P1 + P1 P0 = P1.

Proof of Theorem 1. i) The projection P0 has the integral representation P0 =
−(2π i)−1

∮
γ

R(z) dz. Since
∮
γ

R(z)2 dz = 0 we may replace R(z) therein by R(z) −
R(z)2 H = −z R(z)2:

P0 = 1

2π i

∮
γ

z R(z)2 dz.

We then have, by (32, 30),

Tr(P0 I P0) = 1

2π

∮
γ

z tr(γ0 R(z)2γ ∗
1 − γ1 R(z)2γ ∗

0 ) dz

= 1

2π

∮
γ

z Tr
(
R(z)(γ ∗

1 γ0 − γ ∗
0 γ1)R(z)

)
dz

= − 1

2π

∮
γ

z Tr([R(z), θ(x)]) dz, (33)

and, by z R(z) = H R(z)− 1, also Tr(P0 I P0) = i Tr[H P0, θ ]. As the stationarity of P0

suggests, the current is independent of x0. In fact, upon replacing θ(x) by θ̃ (x) = θ(x−
x0)− θ(x) both terms in Tr((H P0)θ̃ − θ̃ (H P0)) are separately trace class, whence the
trace vanishes ([18], Cor. 3.8). We next turn to (33): The commutator A = [R(z), θ(x)]
has integral kernel A(x, y) = G(x, y)(θ(y) − θ(x)), where G(x,x′) = R(z)(x,x′)
is the Green function. By the stated independence we may average over x0 instead of
setting it to 0, thus effectively smoothing θ . We will see in (35, 37) below that G(x, y) is
continuous. Thus A(x,x) = 0, implying Tr(P0 I P0) = 0. Alternatively the conclusion
may be reached without smoothing by resorting to Brislawn’s theorem ([18], Theorem
A.2), according to which Tr A = ∫

dx Ã(x,x), where Ã(x, y) is the Lebesgue value of
A(x, y). Here, Ã(x,x) = 0.
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ii) By applying (31) to K = R(z, s)Ṙ(z, s) in (12, 11) we obtain for the transported
charge

〈QT 〉 = i

2π

∮
ds

∮
γ

dz
∫

dx tr
(
∂1G(0,x)Ġ(x, 0)− G(0,x)∂2Ġ(x, 0)

)
. (34)

We claim that the Green function can be expressed as

G(x,x′) = −θ(x − x′)ψ+(x)ψ̃−(x′)− θ(x′ − x)ψ−(x)ψ̃+(x
′), (35)

where we complemented the locally smooth choice ofψ+ ∈ S+
(z,s), ψ̃− ∈ S̃−

(z,s) satisfying

(8) by that of a pair ψ̃+ ∈ S̃+
(z,s), ψ− ∈ S−

(z,s) with

W (ψ̃+, ψ−) = −1. (36)

Indeed, because of (8, 36) and of (28) the general column solution (27) has coefficients

a± = ±W (ψ̃∓, ϕ) = ±ψ̃∓(y)ϕ′(y)∓ ψ̃ ′±(y)ϕ(y).

By inserting this in (27) and in its derivative w.r.t. x, and by setting y = x, we conclude
from the arbitrariness of ϕ(x) and ϕ′(x) that

ψ+(x)ψ̃−(x)− ψ−(x)ψ̃+(x) = 0,

ψ+(x)ψ̃
′−(x)− ψ−(x)ψ̃ ′

+(x) = −1, (37)

ψ ′
+(x)ψ̃−(x)− ψ ′−(x)ψ̃+(x) = 1.

By means of these relations one verifies that G, as given by the r.h.s. of (35), satisfies

(
− d2

dx2 + V (x)− z

)
G(x,x′) = δ(x − x′)1;

together with G(x,x′) → 0, (|x| → ∞), which exhibits it as the Green function. We
then apply (35) in Eq. (34): For x ≥ 0 the integrand is

tr
(
∂1G(0,x)Ġ(x, 0)− G(0,x)∂2Ġ(x, 0)

)
= tr(ψ ′−(0)ψ̃+(x)(ψ̇+(x)ψ̃−(0) + ψ+(x)

˙̃
ψ−(0))

−ψ−(0)ψ̃+(x)(ψ̇+(x)ψ̃
′−(0) + ψ+(x)

˙̃
ψ ′−(0))) = tr(W (

˙̃
ψ−, ψ−) ψ̃+(x)ψ+(x)),

where we used cyclicity of the trace and (28). Here and henceforth the Wronskian is
evaluated at x = 0, unless otherwise stated. Together with a similar computation for
x ≤ 0 we obtain

〈QT 〉 = i

2π

∮
ds

∮
γ

dz

× tr
(
W (

˙̃
ψ−, ψ−)

∫ ∞

0
dx ψ̃+(x)ψ+(x) + W (

˙̃
ψ+, ψ+)

∫ 0

−∞
dx ψ̃−(x)ψ−(x)

)
.

(38)
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We maintain that the same expression is obtained from a computation of C , the r.h.s. of
(13). That calls for one of ∂ψ+/∂z, ∂ψ̃−/∂z. Differentiating (2) w.r.t. z we obtain(

− d2

dx2 + V (x, s)− z

)
∂ψ+

∂z
= ψ+,

whose general solution with ∂ψ+/∂z → 0, (x → ∞) is

∂ψ+

∂z
(x) = ψ+(x)F+(x)− ψ−(x)

∫ ∞

x
ψ̃+(x

′)ψ+(x
′)dx′, (39)

where F ′
+(x) = d F+/dx = −ψ̃−(x)ψ+(x). Hence F+ is determined up to an additive

constant, which reflects the gauge freedom (7) of ψ+. Equation (39) is verified by twice
differentiating it w.r.t. x, the first derivative being

∂ψ ′
+

∂z
(x) = ψ ′

+(x)F+(x)− ψ ′−(x)
∫ ∞

x
ψ̃+(x

′)ψ+(x
′)dx′,

by using (37). In the same way we find

∂ψ̃−
∂z

(x) = F−(x)ψ̃−(x)−
(∫ x

−∞
ψ̃−(x′)ψ−(x′)dx′

)
ψ̃+(x),

with F ′− = −F ′
+. The arbitrariness of F± is constrained by (8), which implies

F+ + F− = 0. (40)

This is seen by differentiating the constraint w.r.t. z and by using

W (ψ̃−,
∂ψ+

∂z
;x) = W

(
ψ̃−, ψ+;x

)
F+(x)− W (ψ̃−, ψ−;x)

×
∫ ∞

x
ψ̃+(x)ψ+(x) dx = F+(x),W (

∂ψ̃−
∂z

, ψ+;x) = F−(x).

Similarly, differentiating the constraint w.r.t. s yields

W (
˙̃
ψ−, ψ+;x) + W (ψ̃−, ψ̇+;x) = 0. (41)

We are now in position to compute C and in particular

W (
∂ψ̃−
∂s

,
∂ψ+

∂z
) = ˙̃

ψ−(0)(ψ ′
+(0)F+(0)− ψ ′−(0)

∫ ∞

0
ψ̃+(x)ψ+(x) dx)

− ˙̃
ψ ′−(0)

(
ψ+(0)F+(0)− ψ−(0)

∫ ∞

0
ψ̃+(x)ψ+(x) dx

)

= W (
˙̃
ψ−, ψ+)F+(0)− W (

˙̃
ψ−, ψ−)

∫ ∞

0
ψ̃+(x)ψ+(x) dx,

W (
∂ψ̃−
∂z

,
∂ψ+

∂s
) = F−(0)W (ψ̃−, ψ̇+)−

(∫ 0

−∞
ψ̃−(x)ψ−(x) dx

)
W (ψ̃+, ψ̇+).

Taking the trace of difference of the two expressions, the first terms on the r.h.s. cancel
because of (40, 41). The result is that C agrees with the r.h.s. of (38).

The stated independence of the trace follows from its cyclicity by joining the left and
right actions (7) in such a way as to preserve (8); that of the integral is explained after
Eq. (22). ��
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Proof of Theorem 2. i) We recall that the scattering matrix SL =
(

RL T ′
L

TL R′
L

)
is that of the

potential truncated to the interval [0, L]. The left incident solution of (2) is given by the
expressions (15) in the intervals x ≤ 0, resp. x ≥ L . Its adjoint is a solution of (5) since
z = µ is real. By the constancy of the Wronskian,

W (1e−ikx + R∗
Leikx, ψ±;x = 0) = W (T ∗

L e−ikx, ψ±;x = L),

and by W (1eikx, ψ±;x) = eikx(ψ ′±(x)− ikψ±(x)) we find

(
ψ ′±(0) + ikψ±(0)

)
+ R∗

L

(
ψ ′±(0)− ikψ±(0)

) = T ∗
L e−ikL (

ψ ′±(L) + ikψ±(L)
)
.

(42)

We have that

lim
x→+∞ψ

′
+(x) + ikψ+(x) = 0, (43)

lim
x→+∞

(
ψ ′−(x) + ikψ−(x)

)−1 = 0. (44)

Indeed, the first limit just repeats the definition (4) and the second may be rephrased to
the effect that

A(x) := (
ψ ′−(x) + ikψ−(x)

)∗ (
ψ ′−(x) + ikψ−(x)

)

is invertible with limx→+∞ ‖A(x)−1‖ = 0. We note that

A(x) = ψ ′−(x)∗ψ ′−(x) + k2ψ−(x)∗ψ−(x),

since the cross term is −ikW (ψ∗−, ψ−) = 0 by (28). If the claim were false, there
would exist a sequence x → ∞ and a(x) ∈ C

n , (‖a(x)‖ = 1) such that ‖ψ ′−(x)a(x)‖ +
‖ψ−(x)a(x)‖ remains bounded. Together with (43) this however contradicts the fact that
W (ψ∗

+ , ψ−) is regular. Having so established (44), we multiply the − version of (42) by
eikL(ψ ′−(L)− ikψ−(L))−1 from the right, while keeping the + version unchanged. As
L → +∞ the two equations then go over to

(
ψ ′

+(0) + ikψ+(0)
)

+ R∗ (
ψ ′

+(0)− ikψ+(0)
) = 0, (45)

0 = T ∗,

in the sense that the coefficients do. Since the latter system has a unique solution
(R∗, T ∗), it is the limit of (R∗

L , T ∗
L ).

ii) As indicated at the end of Sect. 2, part (ii) is an immediate consequence of Lemma 3.
��

As a preliminary to the proof of Lemma 3(i) we state:

Lemma 4. Let ψ+ ∈ S+
(z,s) and x ∈ R. Then 0 is an eigenvalue of ψ+(x) iff z is a

Dirichlet eigenvalue for H(s) on [x,∞), including multiplicities. These conditions can
occur only for z ∈ R and for isolated x.
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Proof. Solutions ϕ = ϕ(x) with values in C
n of the differential equation H(s)ϕ = zϕ

are square-integrable at x = +∞ iff ϕ(x) = ψ+(x)a for some a ∈ C
n . Hence the

equivalence of the two conditions. They imply z ∈ R because the operator H(s) with
Dirichlet boundary conditions on [x,∞) is self-adjoint. To show that x is isolated, we
assume x = 0 without loss and Taylor expand ψ+(x) at x = 0 up to second order. Using
(2) on the second derivative, we so obtain

ψ+(x)
∗ψ+(x)

= P⊥(ψ+(0)
∗ψ+(0)+x(ψ ′

+(0)
∗ψ+(0) + ψ+(0)

∗ψ ′
+(0)) + x2ψ+(0)

∗(V (0)− z)ψ+(0))

×P⊥ + x2ψ ′
+(0)

∗ψ ′
+(0) + o(x2), (x → 0),

where an orthogonal projection P⊥ = 1 − P onto (kerψ+(0))⊥ has been inserted for
free as a result of ψ+(0)P = 0 and of ψ ′

+(0)
∗ψ+(0) = ψ+(0)∗ψ ′

+(0), which follows
from (21) for z̄ = z. For small x 	= 0 the two terms are positive semidefinite, with the
first one being definite on (kerψ+(0))⊥. Since

kerψ+(0) ∩ kerψ ′
+(0) = {0} (46)

by (3), their sum is positive definite on all of C
n . Hence ψ+(x) is regular. ��

Proof of Lemma 3. We keep x0 = 0 throughout the proof.
i) If at (z∗, s∗) a matrix ψ+(0) is singular, that remains true under gauge transformations
(7). By the previous lemma, z∗ ∈ γ is real and not below the spectrum of H(s∗). It
remains to prove the properties holding true for a dense set of potentials. Eigenvalue
curves f (s) of the Dirichlet Hamiltonian H(s) on [0,∞) are continuously differentia-
ble, even through crossings. By Sard’s theorem the set {µ′ ∈ R | f (s∗) = µ′, f ′(s∗) =
0 for some s∗ ∈ S1} has zero measure. Upon adding to V (x, s) an arbitrarily small con-
stant we may assume that µ is not in that set. In particular, the points s∗ are isolated, as
claimed. We further perturb V by tW (x, s), where t is small and W = W (x, s) is an
arbitrary Hermitian matrix from the same class as V . To first order in t , the splitting of
a degenerate Dirichlet eigenvalue µ of H(s∗) is µ + tµ̃ + o(t2), (t → 0), where the µ̃
are obtained by solving the finite dimensional eigenvalue problem

P

(∫ ∞

0
dxψ+(x)

∗W (x, s∗)ψ+(x)

)
Pa

= µ̃P

(∫ ∞

0
dxψ+(x)

∗ψ+(x)

)
Pa, (a ∈ C

n), (47)

and P is again the projection onto kerψ+(0). Since ψ+(x) is regular a.e., the matrix
in brackets on the l.h.s. may take arbitrary Hermitian values, while that on the r.h.s. is
positive definite on C

n ; the latter may then be set equal to 1 by means of a gauge transfor-
mation. As a result, the eigenvalues µ̃ are generically distinct and, since f ′(s∗) 	= 0, the
points s∗ split into non-degenerate ones. Moreover, points s∗ with detψ ′

+(x0) = 0 cor-
respond to Neumann eigenvalues. They are also perturbed and split according to (47),
except that P now is the projection onto kerψ ′

+(0). Because of (46) the coincidence
between Dirichlet and Neumann eigenvalues is generically lifted.
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ii) If ψ(z,s)(x) is a solution of (2), then ψ(z̄,s)(x)∗ is a solution of (5). Hence

L(z̄, s)∗ − L(z, s) = W (ψ∗
(z̄,s), ψ(z,s); 0) = 0,

by (28), proving the reflection property. The statement about the eigenvalue branch
follows from (i). The winding number can be read off from the linearization

λ(z, s) = ∂λ

∂z

∣∣∣∣
(µ,s∗)

· (z − µ) +
∂λ

∂s

∣∣∣∣
(µ,s∗)

· (s − s∗) + O(|z − µ|2 + |s − s∗|2),

where the derivatives are real.
iii) In view of the right action (7) a section ψ0

+ : (z, s) �→ ψ0
(z,s)(x) may be defined

on all of the torus by ψ0
(z,s)(0) = 1, except for the points (µ, s∗) of part (i). We use it

outside of the union ∪s∗Us∗ of arbitrarily small neighborhoods of those points; inside we
use a section ψ̂+ defined there. Using these local sections, the connection is expressed
as a 1-form on the corresponding patches of the torus, e.g. ψ0∗

+ A (with ∗ exceptionally
denoting the pull-back), and the trace of the curvature as a 2-form, tr DA = d trψ0∗

+ A.
Upon changing the patch we have ψ̂+ = ψ0

+ T with T = T (z, s) ∈ GL(n) and hence
ψ̂∗

+A = T −1(ψ0∗
+ A)T + T −1(dT ). So, using Stokes’ theorem on (22), we express the

Chern number as

C = i

2π

∑
s∗

∮
∂Us∗

tr ψ̂∗
+A − trψ0∗

+ A = i

2π

∮
∂Us∗

d log det T .

We may here replace T = ψ̂(z,s)(0)ψ0
(z,s)(0)

−1 = ψ̂(z,s)(0) by L(z, s), because of (20).

In Us∗ we have L(z, s) = λ(z, s)P(z, s) + L̃(z, s), where P(z, s) is a rank 1 projection
and L̃(z, s) is a regular linear map from ker P(z, s) to itself. Thus det L can be in turn
replaced by det(λP) = λ and the claim follows.
iv) Let u ∈ C

n be the normalized eigenvector of L(µ, s∗)with eigenvalue λ(µ, s∗) = 0.
Then

∂λ

∂z

∣∣∣∣
(µ,s∗)

=
(

u,
∂L

∂z

∣∣∣∣
(µ,s∗)

u

)
=

(
u, ψ

′∗
+
∂ψ+

∂z
u

)
, (48)

since ψ+u = 0 at (z = µ, s = s∗). There we may write

∂λ

∂z
=

(
u,

(
ψ∗

+
′ ∂ψ+

∂z
− ψ∗

+
∂2ψ+

∂x∂z

)
u

)
= −

(
u, W

(
ψ∗

+ ,
∂ψ+

∂z
;x = 0

)
u

)
.

On the other hand we have

W

(
ψ∗

+ ,
∂ψ+

∂z
;x

)
=

∫ ∞

x
dx′ψ∗

+(z,x
′)ψ+(z,x

′) > 0,

which follows by differentiating (6) w.r.t. x and by using (2).
v) The matrix R in (18) is determined by (45) or, after multiplication with R,

R
(
ψ ′

+(0) + ikψ+(0)
)

+
(
ψ ′

+(0)− ikψ+(0)
) = 0.
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This shows thatψ+(0) has eigenvalue 0 iff R has eigenvalue −1:ψ+(0)u = 0 implies
(R + 1)ψ ′

+(0)u = 0; conversely (R + 1)v = 0 implies R∗v = −v and then ψ∗
+(0)v = 0.

Moreover

Ṙ
(
ψ ′

+(0) + ikψ+(0)
)

+ R
(
ψ̇ ′

+(0) + ikψ̇+(0)
)

+ ψ̇ ′
+(0)− ikψ̇+(0) = 0. (49)

We compute the rate at which the eigenvalue crosses −1 as

Ż =
(
ψ ′

+(0)u, Ṙψ ′
+(0)u

)
(
ψ ′

+(0)u, ψ
′
+(0)u

) ,

since the eigenprojection of the unitary R is orthogonal. Multiplying (49) with ψ ′
+(0)u

from the left and with u from the right we obtain, using R∗ψ ′
+(0)u = −ψ ′

+(0)u,

(
ψ ′

+(0)u, Ṙψ ′
+(0)u

) − 2ik
(
ψ ′

+(0)u, ψ̇+(0)u
) = 0,

and hence

Ż
(
ψ ′

+(0)u, ψ
′
+(0)u

) = 2ik
∂λ

∂s
.

��

A. Adiabatic Evolution

We consider the usual quantum mechanical, adiabatic setting in the presence of a spectral
gap: A family of operators H(s) depending smoothly on s and corresponding spectral
projections P0(s) belonging to an interval I (s) whose endpoints lie in the resolvent set
ρ(H(s)). Let Uε(s, s0) be the propagator for the non-autonomous Hamiltonian H(s)
with s = εt . Then

Uε(s, s0)(P0(s0) + εP1(s0))Uε(s, s0)
∗ = P0(s) + εP1(s) + O(ε2), (ε → 0)

with P1(s) as given by Eq. (11). This result is implicit in [19]. We give an alternate
derivation which does not approximate the continuous spectrum by a quasi-continuum
of discrete eigenvalues.

Proof. In Eq. (10) P1(s) is uniquely determined [15] by the conditions

i Ṗ0(s) = [H, P1(s)],
(50)

P0(s)P1(s) + P1(s)P0(s) = P1(s),

which are obtained by differentiating the expansion w.r.t. s, respectively from the fact
that it represents a projection. We omit s from the notation in the rest of the proof.
Equation (11) satisfies the first condition because of

[H, P1] = − 1

2π

∮
γ

[H − z, R(z)Ṙ(z)]dz = − 1

2π

∮
γ

(Ṙ(z) + R(z)2 Ḣ)dz,
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where we expanded the commutator and used Ṙ = −RḢ R. The second contribution
vanishes and the first yields the claim by P0 = −(2π i)−1

∮
γ

R(z) dz. The second con-
dition (50) is equivalent to P0 P1 P0 = 0, (1 − P0)P1(1 − P0) = 0, which are satisfied,
too: we rewrite Ṙ as before and use the spectral representation P = ∫

I d Pλ to compute

P0 P1 P0 =
∫

I

∫
I
(d Pλ)Ḣ(d Pµ)

∮
γ

dz
1

(λ− z)2(µ− z)
= 0 ;

similarly, (1 − P0)P1(1 − P0) = 0. ��
We may add that in [3], Eq. (2.6) and [4], Eq. (2.10a), as well as in [15], Eq. (2.28),

the expression

P1(s) = − 1

2π

∮
γ (s)

R(z, s)[Ṗ(s), P(s)]R(z, s) dz (51)

is given. Its equality with (11) can be verified independently of (50).
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