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Abstract The morphogenetic factor Sonic hedgehog
(SHH) has been discovered as one of the masterplayers in
cerebellar patterning and was subjected to intensive
investigation during the last decade. During early postnatal
development, this continuously secreted cholesterol-
modified protein drives the expansion of the largest
neuronal population of the brain, the granular cells.
Moreover, it acts on Bergmann glia differentiation and
would potentially affect Purkinje cells homeostasis at adult
age. The cerebellar cortex constituted an ideal develop-
mental model to dissect out the upstream mechanisms and
downstream targets of this complex pathway. Its deep
understanding discloses some of the mechanistic disorders
underlying pediatric tumorigenesis, congenital ataxia, and
mental retardation. Therapeutical use of its regulators has
been consolidated on murine transgenic models and is now
considered as a realistic human clinical application. Here,
we will review the most recent advances made in the
comprehensive understanding of SHH involvement in
cerebellar development and pathology.
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Overview

The cerebellum has long been and remains an attractive
model for neurobiologists. Its successive developmental
steps gather the main cellular events leading to a highly
organized architectural network, all orchestrated in a
sequential and coordinated way that starts to be well
defined. In particular, the involvement of the morphoge-
netic factor Sonic hedgehog (SHH) in the control of central
nervous system progenitors proliferation was first demon-
strated in this structure. This discovery has initiated an
increasing number of studies underlying the crucial general
role of this molecule in embryonic and adult brain
patterning. SHH pathway is now on a therapeutical target
at the crossroad of many developmental diseases, including
some malignant tumors.

The Hedgehog Pathway

The hedgehog family, first identified in Drosophila embry-
onic development, is largely conserved in mammals and
comprises three different proteins, Sonic hedgehog, Indian
hedgehog, and Desert hedgehog. SHH was shown to play
the broadest role in various organs including the nervous
system during development [1, 2]. The SHH pathway acts
on gene expression through the activity of the GLI
transcription factor family comprising GLI1, GLI2, and
GLI3 (Fig. 1). In absence of SHH, its 12-pass transmem-
brane receptor Patched 1 (PTC) inhibits by default the
seven-pass transmembrane protein G coupled receptor
Smoothened (SMO). This prevents the translocation of
SMO to the primary cilia. Consequently, GLI3 becomes
constitutively cleaved and converted into a transcriptional
repressor form. Upon binding of SHH to PTC, the
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inhibition exerted on SMO is released, and this allows its
accumulation in the cilia. SMO activates an inhibitory G
protein Gαi that stops cAMP production [3]. The full-
length GLI3, no longer cleaved, becomes transcriptionally
active together with GLI2, and both initiate a downstream
activation of GLI1 [4, 5]. The target genes of the GLI
factors are only partly identified. They belong to the cell
cycle regulators and to the SHH pathway itself.

Specific Role of SHH in the Developing Cerebellum

The cerebellum is built up in successive waves of
progenitors proliferation and migration throughout the
embryonic and postnatal development. Most of the cere-
bellar cell types (Purkinje cells, Bergmann glia, astrocytes,
interneurons, and neurons of the deep nuclei) arise from
ventricular zone progenitors that migrate through the
forming cortex during early embryogenesis. The cerebellar
granular cells originate from a secondary germinal zone in
the rostral rhombic lip [6]. These progenitors called
cerebellar granular neuronal precursors (CGNPs) undergo
a first wave of proliferation at E13,5 in the mouse. Then,
from E17,5 on, they migrate over the nascent cerebellum to
form the external granular layer (EGL), where their
population massively expands. This proliferation phase
peaks at P5–P8 and declines thereafter to stop at around
P15 [7]. From about P8 on, CGNPs start extending

processes and initiate their onwards migration. Their cell
body closely apposed to the Bergmann glia fibers, they
move through the growing network of the Purkinje cell
dendrites in the molecular layer (ML) to reach the future
internal granular layer (IGL). Their final neuronal differen-
tiation is accomplished in the IGL about 3 weeks after birth.

The duration and intensity of the proliferation phase
generating the pool of CGNPs is critical for the final shape
and function of the cerebellum. SHH was discovered as the
master player triggering the expansion of this population.
Indeed, a putative involvement of SHH in cerebellum was
first suspected from studies on the inhibition of cholesterol
synthesis. As SHH needs to be cholesterol-modified to be
active, this inhibition led to a defective SHH signaling
causing abnormal cerebellar development [8–10]. In con-
cordance, the human pathology Smith Lemli-Opitz syn-
drome, which is due to reduced cholesterol metabolism, is
characterized by a hypoplastic cerebellum [11, 12].

The critical mitogenic function of SHH was evidenced
almost simultaneously by four different groups [13–16].
From E17.5 on, SHH was shown to be continuously
secreted from the Purkinje cells and to diffuse up to the
EGL [13]. The outer EGL composed of proliferative
CGNPs shows the highest expression of GLI1, read-out of
the SHH pathway. These studies demonstrated the potent
proliferative role of SHH on CGNPs using diverse
combinations of in vitro and in vivo assays based on
CGNPs cultures, slices, and/or explants and injection of
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Fig. 1. SHH pathway. SHH
ligand acts through the 12-pass
transmembrane protein Patched
(Ptc) and the seven-pass trans-
membrane protein smoothened
(Smo) to trigger an intracellular
signal transduction pathway that
results in the activation of the
glioma-associated oncogene ho-
mologue (Glis) zinc finger tran-
scription factors. In the absence
of SHH, PTC blocks the func-
tion of SMO. Glis are inhibited
by suppressor-of-fused (Sufu),
preventing them from activating
gene transcription. GLI3 is
phosphorylated, recognized by
β-TrCP, and cleaved in the
proteasome to produce truncated
transcriptional repressor. The
binding of SHH to PTC releases
the basal repression on SMO
that becomes active. Subse-
quently, GLI1 is released and
activates gene transcription,
whereas cleavage of GLI2 and
GLI3 is blocked
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inhibitory anti-SHH antibodies [13–15]. Among the already
identified mitogens in the cerebellum (FGF-2, IGF-1,
epidermal growth factor (EGF)), SHH turned out to clearly
be the most potent mitogenic factor as it is solely able to
trigger up to a 100-fold increase of CGNP proliferation in
vitro [15]. SHH proliferative effect on CGNPs is restricted
to the sole postnatal phase, as its abrogation (using a SMO-
deleted conditional knock-out (KO)) does not affect CGNPs
expansion until soon after birth [17]. Gli2 transcriptional
activation is critical for this expansion, as its conditional
deletion leads to CGNP proliferation failure and reduced
size of the cerebellum [18].

SHH signaling was also shown to affect the Bergmann
glia population. These cells together with the CGNPs
express high levels of Ptc and Gli1 [13, 19]. SHH addition
to cultured cerebellar explants promotes Bergmann glia
differentiation [13]. In addition, the fibers of the Bergmann
glia are malformed and irregular upon conditional mutation
of Gli2 [17]. The exact role of SHH in Bergmann glia
maturation and function remains presently unclear. These
observations, however, indicate that SHH does not only
contribute to the final number of mature granular cells by
promoting their initial expansion but also by inducing the
maturation of their migration support.

SHH overall expression profile in early postnatal stages
is directly responsible for the final size and shape of the
cerebellum. Indeed, several groups reported an unequal
distribution of the protein along the Purkinje cell layer,
especially confined to the regions where fissures form first
[18, 20]. Finally, this was shown to determine the
differential growth of the EGL ending in a defined size of
folium. Absence of foliation was first demonstrated after
conditional deletion of SHH or injection of blocking anti-
SHH antibodies [13, 20]. SHH-P1 mutants overexpressing
SHH in the Purkinje cells presented with a larger
cerebellum, and an extralobule could even be formed upon
further increase of SHH activity in the SHH-P1; Ptc+/−
mouse [17]. In conclusion, SHH, although dispensable for
determination of folium position, is required for full lobe
extent.

Effectors of the SHH Pathway

SHH mediates CGNPs proliferation through the induction
and repression of cell cycle regulators genes. Some studies
attempted to have a comprehensive view of the genes
affected during CGNPs proliferation, with or without
addition of SHH [21, 22], and some promising candidates
of the identified cascade have been tested for their
impact. These include the cyclin family members, cyclin
A2, B1, D1 and D2, the Forkhead transcription factor
FoxM1, the growth factor IGF-2, the proto-concogene N-

myc, and Bmi-1 [16, 23, 24]. In a feedback loop, SHH
also triggers the transcription of Ptc and Gli1 and down-
regulates Gli3.

Cyclin D1 and D2 are known to regulate the G1/S phase
transition. These are direct transcriptional targets of SHH,
induced rapidly [16]. Absence of Cyclin D1 expression in
the cerebellum decreases the number of cycling CGNPs
[25]. In contrast to Cyclin D1, highly expressed in the EGL
from E17 on, Cyclin D2 expression arises later in the outer
EGL at around P6. Its deletion results in a mild hypoplastic
cerebellum [26]. Altogether, deletion of both genes has a
dramatic hypoplastic effect on the cerebellar development
[27]. SHH modulates the G2/M transition through induc-
tion of the Forkheadd transcription factor FoxM1. It
regulates mitotic entry through transcription of Cyclin B1
and Cdc25b. Its deletion in CGNPs produces defects in
spindle assembly and chromosome segregation [28].

Transcriptional induction by SHH requires the bHLH
transcriptional activator N-Myc from the Myc/Max/Mad
family [16, 22]. N-myc and Mad form heterodimers with
Max prior binding to DNA. In the cerebellum, N-Myc
expression peaks in the proliferative CGNPs upon SHH
stimulation. Conditional disruption of the N-myc gene in
the brain impairs CGNPs proliferation [29], and its over-
expression is sufficient to boost CGNP proliferation [30].
Mad3, another bHLH transcription factor, was also identi-
fied as a target gene of SHH [31]. Expressed in CGNPs
during their phase of expansion, it dimerizes with Max and
recruits the corepressor Sin3 to inhibit DNA transcription.
Mad3 overexpression is by itself sufficient to trigger
CGNP proliferation [31].

The polycomb group gene Bmi-1 expression peaks in
the CGNPs during their proliferation phase. Its deletion
impairs their survival and expansion leading to a depleted
IGL. Bmi-1 was demonstrated in culture as a downstream
target and effector of SHH signal transduction [32].

Regulators of the SHH Pathway

It is, however, surprising that no decay of SHH expression
is detected when the pool of CGNPs has been fully
generated. The SHH level remains quite elevated even at
mature adult stage [33]. The biological meaning of this high
expression level has not been elucidated until now. As the
modulation of SHH concentration strongly influences the
final shape of the cerebellum [17], a tight regulation system
seems required to control its biological impact. Some of the
molecules involved in the tuning of the SHH mitogenic
signal have been discovered, and their role, supportive or
inhibitory, is partly understood. The mechanisms are
extremely diversified and act at multiple levels. They can
modulate the quantity of SHH protein by acting at the
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transcriptional level or interfere extracellularly or intracel-
lularly with the SHH-dependent pathways (Fig. 2).

Cooperative Regulators

The positive regulators are synergistic to the mitogenic
effect of SHH. This generally happens in the outer EGL to
maintain a high number of continuously dividing CGNPs.

Chemokines and Growth Factors

The synergistic role of the chemoattractant SDF-1α and of
its receptor CXCR4 has been substantiated [34]. SDF-1α
has in fact a dual function: it attracts the CGNPs to the
outer EGL and promotes in vitro a 50% increase of the
SHH mitogenic effect. This synergy is effective through
the CXCR4-mediated activation of the G-protein Gαi, that
would lead to a downstream decrease of cAMP [34].

Among fetal mitogens, IGF-2 has been reported as an
efficient enhancer of SHH on CGNPs [35]. In cultured
CGNPs, the presence of the recombinant IGF-2 further
increases SHH stimulation by 2.2-fold [15]. The presence of
IGF-2 significantly enhances Gli1 and cyclin D1 expression
induced by SHH but not N-myc expression [35]. Altogether,
the data clearly establishes IGF-2 as an important positive
regulator of some SHH effects on CGNPs.

It has not yet been established which receptor (IGF-1R
or IGF-2R) mediates the synergistic effect of IGF-2 on the
SHH pathway. Whether IGF-1 can also potentiate SHH has
not been determined either. IGF-2 synergistic effect would

be mediated through the insulin receptor substrate 1 (IRS1)
[36]. IGF-2 binding to IGF-1R leads to phosphorylation of
IRS1 that finally activates the PI3K pathway. Knock-down
experiments have shown that IRS1 activity is required for
CGNP proliferation in slice explants and dissociated
CGNPs cultures. IRS1 overexpression can maintain CGNP
proliferation in the absence of SHH. SHH treatment
upregulates IRS1 by stabilization of the protein rather than
by transcription. Given the known proliferative effect of
IGF1 on CGNPs and the fact that IRS1 is essential for IGF-
mediated proliferation in other cell types, these results
identify IRS1 as a new effector of SHH in CGNP
proliferation. They also provide evidence for interactions
between SHH and other mitogenic pathways. In this
respect, very recently published results showed experimen-
tal evidence for the first time of an interaction between the
SHH and the mTOR pathways. mTOR, directly or
indirectly through the phosphorylation of S6, stimulates
the phosphorylation of IRS1 which leads to its degradation
[37]. In cultured CGNPs, the inhibition of SHH signaling
through cyclopamine decreases IRS1 protein levels. This
effect is prevented by rapamycin, an inhibitor of the mTOR:
Raptor complex[36]. However, the detailed mechanisms
involved in this SHH-mediated mTOR inhibition will
require further investigations.

Extra Cellular Matrix

The cellular environment, namely the extracellular matrix
(ECM), is intensively remodeled throughout cerebellar
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Fig. 2. Schematic view of the
developing cerebellar cortex in-
cluding cooperative and nega-
tive regulators of SHH pathway.
Postnatally, SHH is constantly
secreted by the Purkinje cells
and triggers CGNPs mitosis in
the outer EGL, Bergmann glia
differentiation, and possibly
Purkinje cells maturation in the
PCL. Its promitogenic effect on
CGNPs is synergized by coop-
erative modulators (left) or
tuned down by negative modu-
lators (right). Signals can origi-
nate from different
compartments as specified. EGL
external granular layer, IGL in-
ternal granular layer, ML mo-
lecular layer, PCL Purkinje cell
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development. It provides distinct and changing cues for
division or differentiation according to its content, which is
often modified by the cell-derived proteolytic activity [38,
39]. The glycoprotein laminin originates from the cerebellar
pial surface that immature CGNPs contact. In culture, it
was shown that laminin activates CGNPs division rate by
favoring the mitogenic potential of SHH [20, 34]. Laminin
directly complexes with SHH, and binding of the dimer to
the receptor integrin β1 subunit is critical for this
synergystic effect [40]. Downstream, the cytoplasmic
scaffold protein integrin linked kinase (ILK) is essential in
the transduction of the proliferative signal. Its conditional
deletion is reminiscent of the β1 integrin conditional KO.
Moreover, the blockade of its kinase activity suppresses
SHH-mediated proliferation in cultured CGNPs. Its kinase
domain would trigger downstream kinase candidates, such
as GSK-3β and protein kinase B (PKB) [41].

In addition, the outer EGL is rich in heparan sulfate
proteoglycans [42]. Treatment of organotypic cerebellar
sections with heparinases abrogates SHH mitogenicity on
CGNPs, suggesting a requirement for the proteoglycans,
possibly in the promotion of protein interactions at the cell
surface [42].

Antagonistic Regulators

On the other hand, the activity due to the persistent SHH
high protein level must be tuned down by some negative
regulators to favor CGNPs cell cycle exit and the onset of
differentiation. Such antagonistic agents preferentially
target the deep inner EGL.

ECM and ECM Remodeling Agents

Increasing levels of vitronectin and of its receptor, the
integrin subunit αv, are found in the deep inner EGL.
Vitronectin binds directly to SHH and has been shown to
stop SHH-mediated mitosis by inducing the phosphoryla-
tion of cAMP response element-binding (CREB) [43],
known to associate with Gli1 and the adaptor p300 to
modulate SHH signaling. A similar inhibitory effect was
observed for the ECM glycoprotein fibronectin [43].

The ECM fluctuates rapidly thanks to the involvement of
proteases and their inhibitors. The serine-protease inhibitor
Protease Nexin-1 (PN-1) is secreted by the Purkinje cell
layer with a peak of expression during the proliferation
temporal window. It was recently shown that its binding to
the low density lipoprotein receptor-related protein (LRP)
efficiently antagonizes SHH-induced mitosis in cultured
CGNPs. Disruption of the PN-1 gene in vivo leads to
overactivation of the SHH pathway and expansion of
defined lobes [44]. The downstream mechanism has not
yet been characterized but could rely on a competitive

binding between PN-1, SHH, and the LRP receptor. Indeed,
SHH binding to LRP and subsequent endocytosis has been
evidenced using different cell lines [45]. Moreover, binding
of SHH to LRP-2 has been established, and mice lacking
LRP-2 (also named Megalin or gp330) exhibit numerous
phenotypical similarities with the SHH-null mutant [46]. A
role as coreceptor for LRP-2 or other LRPs in SHH signal
transduction, similar to the function described for LRP-6 in
Wnt pathway, still remains to be demonstrated. Further-
more, the binding of other LRP ligands could indirectly
trigger a cross-reacting signaling cascade interfering with
SHH pathway. For example, PN-1 binding to LRP-1
triggers protein kinase A (PKA) activation known to
participate in GLI3 phosphorylation in fibroblasts and
CGNPs ([47] and Vaillant, unpublished data).

Growth Factors

It is well established that increasing cAMP levels or protein
kinase A activity stops SHH transduction [4]. The neuro-
peptide pituitary adenylate-cyclase activating polypeptide
(PACAP) has been identified as one of the negative
regulators of SHH pathway acting upstream of the PKA
kinase [48]. Its binding to the G-coupled receptor PAC1 is
considered to trigger an increase in cAMP leading to the
final phosphorylation of the cAMP responsive transcription
factor CREB. PACAP knock-out mice exhibit enlarged
EGL coupled with overactivated SHH pathway [48].

Furthermore, SHH is inactivated by a growth-promoting
mitogen, FGF-2. On its own, this growth factor stimulates
CGNPs proliferation [15]. Intriguingly, its combination with
SHH renders its proliferative effect unoperative and triggers
CGNP differentiation [15, 49]. The intraventricular injection
of FGF-2 in vivo accelerates CGNP differentiation [49]. The
mechanisms rely on the involvement of the mitogen-
activating protein (MAP) kinase pathway. By the use of
chemical inhibitors, the authors showed that fibroblast
growth factor (FGF)-mediated antagonism requires FGF
receptors and downstream activation of the extracellular
regulated kinase (ERK) and junN-terminal kinase (JNK)
kinases [49]. This impacts directly on the level of SHH target
gene transcription. This discovery would explain the
differential effect exerted by FGF and SHH on distinct
cerebellar populations. Indeed, the same group reported the
existence of multipotent neural stem cells dispersed in the
white matter tracts of the developing and mature cerebellum.
These cells, opposite to CGNPs, are positively stimulated for
proliferation by FGF-2 but unaffected by SHH [50].

The cytokine BMP-2 antagonizes SHH-induced prolif-
eration [51]. This mechanism is PKA-independent, and it is
exerted by blocking N-Myc expression [52]. The BMP
target gene TIEG-1 binds the Sp1 activator sites in the N-
Myc promoter.
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The novel EGF-responsive gene RENKCTD11, that has
been discovered to be a prodifferentiating and growth arrest
factor in the developing nervous system, accumulates in the
postmitotic granular cells of the inner EGL [53]. In culture
experiments, these authors demonstrate that ectopic expres-
sion of RENKCTD11 leads to decayed proliferation in
CGNPs, associated with a decreased activity of GLI1 and
GLI2. Its loss of function supports SHH-dependant prolif-
eration. RENKCTD11 would act by regulating the cyclin-
dependent kinase inhibitor p27/Kip1 [54].

The developmental protein Numb also appears to be
involved in SHH-mediated proliferation and signaling. This
protein, critical for asymetric cell division, assigns cell
polarity by accumulating in the newly generated daughter
cells. Numb-deficient mice present with a cerebellar
developmental phenotype marked by an enlarged EGL,
where CGNPS are unable to start differentiation [55]. Di
Marcotullio and collaborators [56] showed that Numb
directly affects SHH signaling by promoting GLI1 degra-
dation. Its effect first requires recruitment and complexation
with the HECT-type E3 ligase Itch. This allows polyubi-
quitination of GLI1 that can no longer activate transcription
in the nucleus [56].

SHH in Disease

SHH and Medulloblastoma

Deregulation of the SHH pathway is responsible for
abnormal cerebellar proliferation, which results in one
of the most common and most aggressive childhood
brain tumors, medulloblastomas [57]. These highly
malignant tumors belong to the subclass of primitive
neuroectodermal tumors which account for about 20–30%
of all childhood brain tumors [58]. A combination of
surgery with radiation and chemotherapy represents the
classical treatments, but the lack of accuracy often results
in cognitive and neuroendocrine deficits, and tumors
reoccur rather often.

Medulloblastomas have long been thought to arise from
an exceeding proliferation of the CGNPs located in the
EGL. However, some groups then reported expression in
the tumors of markers typical from the remnant stem cells
of the underlying IVth ventricle [59]. The medulloblasto-
mas were also shown to contain multipotent neural stem
cells that could be driven to the neuronal or glial lineage
[60]. The identification of the “cell of origin” transformed
by SHH oversignaling has been recently and simultaneous-
ly addressed by Yang et al. and Schüller et al. They have
conditionally overactivated SHH pathway in lineage-
restricted CGNPs and sought for their potential susceptibil-
ity to tumor formation [61, 62].

The first evidence of SHH involvement in medulloblas-
toma came from the characterization of the Gorlin
syndrome, also known as basal cell nevus syndrome [63].
Gorlin patients carry germline mutations of the PTC
receptor leading to its inactivation and subsequent SHH
overactivation. Ten per cent of these patients develop
medulloblastomas. Many reports described several other
sporadic mutations affecting the SHH pathway, including,
apart from PTC (in 10% of the cases), SMO and the
intracytoplasmic inhibitor of the SHH pathway suppressor-
of-fused (SUFU) [64–66]. The second evidence of the
direct implication of SHH in medulloblastoma biology
came from the murine experimental models. Targeted
overexpression of SHH in neural progenitors of the
cerebellum in newborn mice or in utero is sufficient to
induce medulloblastoma [67, 68]. Moreover, inactivation of
Ptc and constitutive activation of Smo in genetically
engineered mice is sufficient to trigger tumor formation
that faithfully recapitulates the biology of human tumors
[65, 69–71]. The Ptc heterozygous mutant mice develop
medulloblastomas (Fig. 3) with an incidence of about 20%
within 1 year [69]. Gli1 is involved in the transformation as
the double mutants Gli1 −/−, Ptc+/− develop medulloblas-
tomas at lower frequency than Ptc+/− mice [72]. The tumor
frequency associated with the Ptc mutation increases dramat-
ically in the p53 null background, exceeding 95% at 3 months
of age [73]. Similarly Sufu+/−53−/− mice exhibit medullo-
blastomas, contrary to Sufu+/− mice that do not develop any
tumor [74]. The tumor incidence seen in Sufu+/−p53−/− mice
reached 58% after 4 months of age and was then lower than
the one seen in Ptc+/−53−/− mice, revealing that the Ptc gene
is a more potent tumor suppressor.

Still, the incidence of these mutations is quite low in
humans and does not account for the general SHH deregula-
tion affecting most of the tumors, for more than 30% of them
exhibit overexpression of the target gene Gli1 [75]. Given
also the poor penetrance of tumor formation in the mouse
models, such as the Ptc+/− mutant, there must be additional
causative factors at the origin of tumorigenesis. A growing
number of reports identify some of these.

IGF-2 is often upregulated in the human medulloblasto-
mas of the desmoplastic type [76]. Its requirement in SHH-
related oncogenesis was evidenced by the fact that its
genetic deletion blocks medulloblastoma formation in the
Ptc+/− mutant mice [77]. IGF-2 binding to IGF-1R leads to
final activation of PKB. Coexpression through retroviral
injection of Shh/Igf-2 or Shh/PKB in neuronal progeni-
tors drove increased formation of medulloblastomas with an
efficiency of more than 2- and 3-fold, respectively,
compared with SHH alone [78]. The PI3Kinase pathway
was found to stabilize N-Myc through inhibition of its
GSK-3β-mediated phosphorylation [79]. Although retrovi-
ral coexpression of N-Myc and SHH in neural progenitors
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reinforces medulloblastoma induction, N-myc ectopic ex-
pression, alone or combined with IGF pathway members or
Gli1, produces no oncogenic effect [80]. This indicates that
SHH needs additional unidentified factors to generate the
tumor. In this respect, it is interesting to note that some of
the molecules identified in association with medulloblasto-
mas are among the effectors or cooperative regulators of the
SHH pathway mentioned earlier.

A recent publication [81] strengthened the involvement
of SHH pathway in medulloblastoma neoplasia. Over a
group of 31 medulloblastomas biopsies, the authors identi-
fied a marked increase of GLI1 expression in half of them
and split the group in high GLI1- and low GLI1-expressing
tumor subsets. After a microRNA high-throughput expres-
sion profile analysis, they evidenced that the high GLI1
tumor subset showed a poor level of microRNAs targeting
SMO and GLI1 3′ UTRs. Interestingly, such miRNAs are
transcribed in the chromosome 17p arm, a region frequently
deleted in 40% of medulloblastomas. As medulloblastomas
very rarely exhibit mutations of GLI1 or SMO, their
overactivation could be attributed to mutation(s) resulting in
repression of miRNA expression. These transcriptional
regulators have also an inhibiting effect during normal
postnatal development. Their ectopic expression reduces
SHH-induced proliferation [81].

P53, HIC1, and RENKCD11, all known to cooperate
normally with the SHH pathway, are affected as well by the
17p chromosom arm deletion commonly found in medul-
loblastomas. In mice, their deletion strengthens the effect of
the Ptc heterozygous deletion [73, 82-84].

The comprehension and use of the physiological
developmental SHH antagonists that have been or will be
characterized will undoubtedly condition future therapeut-
ical strategies (Table 1).

Several groups have undergone preclinical trial in this
direction [85, 86–90]. The addition of FGF stops the
growth of CGNPs extracted from a mouse model of
medulloblastoma [49]. In addition, FGF stops the growth
of human medulloblastoma cell lines [91] and human
medulloblastoma xenografts injected in nude mice [92].

SHH and Congenital Ataxia

Primary cilia are determinant for SHH signal transduction.
The SHH intramembranous transducer Smo concentrates in
the cilia when activated by SHH, and PTC meanwhile
leaves the cilia compartment [93]. In the cerebellum,
disrupting primary cilia formation and maintenance by
deleting Kif3a and IFT88 abolished SHH-mediated CGNPs
proliferation [94, 95]. Interestingly, mutations of the genes

medulloblastoma
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CbCb

Tel Tel Tel
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Fig. 3. Formation of medulloblastoma in the Ptc+/− mouse. Six-
month-old Ptc+/− mice (B, C) exhibit bigger brain compared to wild-
type (A). About 20% of them develop medulloblastoma (dotted in C).
Ptc+/− deprived of tumor (D). Tumors arise mainly in the lobe IX–X
(E). Their histology is characterized by dense and compacted

transformed granular progenitors (see enlargement of E in F). Later,
the tumors spread over the whole cerebellum at mature stages (G).
Unpublished personal data. Similar data have been published earlier
(Goodrich et al. [69]). Cb cerebellum, Tel telencephalon
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involved in the assembly and stability of cilia have been
reported in the Joubert Syndrome [96]. This recessively
hereditary disease is marked by a congenital ataxia and
mental retardation linked to malformations of the brain-
stem, cerebellum, and cerebellar peduncles [97].

SHH is also suspected to play a role in a second congenital
ataxia syndrome termed the Dandy–Walker malformation. In
this case, chromosome regions encompassing Zic1 and Zic4
coding zones are deleted. Such Zinc finger transcription
factors are thought to modulate SHH signaling pathway in the
developing cerebellum [98], although the precise mecha-
nisms of such regulation are still under investigation.

SHH in Down Syndrome

The Down Syndrome, also called trisomy 21, is marked by
the inheritance of a supplementary chromosome 21 due to
its improper disjunction during meiosis. Interestingly,
Latash and Corcos [99] noted a reduction of the granular
cell layer volume in the cerebellum of the patients with
Down Syndrome accompanied by hypotonia and fine-
motor control impairment [99]. A mouse transgenic model
of Down Syndrome Ts65Dn could phenocopy the reduction
of CGNPs, resulting from an insufficient mitotic rate. In
addition, the granular cells of the transgenic mouse
exhibited reduced sensitivity to SHH [100, 101]. Intraven-
tricular infusion of recombinant SHH significantly rescued
the reduced granular volume observed in the Ts65Dn.

Conclusions

In summary, the well-defined structure and developmental
steps characterizing the cerebellum provided additional
information and perspectives on the impact of SHH in the
nervous system. In the future, it will be interesting to see
whether studies in this structure will allow further important
contributions. For example, the meaning of the persistent
high expression of SHH in the adult cerebellum remains an
intriguing issue. Is the biological activity of SHH strongly
reduced or even masked by antagonists in the adult? Does
discrete removal of such inhibition lead to localized impact
of SHH in mature brain structures as observed in the adult
rat nervous system [19]? Would such focalized activity
influence the proliferation or fate of precursor cells as
recently described in the mouse optic nerve [102]? Would it
rather contribute to circuit, respectively synaptic plasticity
by acting as axonal chemoattractant as shown in the
midline axon guidance [103] or by enhancing retinoic acid
induced neurite outgrowth as evidenced in a subpopulation
of dorsal ganglia neurons [104]? Given the knowledge
presently available, the cerebellum could be an appropriate
in vivo model to better define distinct functions of SHH in
the adult nervous system.
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Table 1 Possible therapeutic targets directly or indirectly affecting the SHH pathway in medulloblastomas

Target Strategy Biological model References

SMO Cyclopamine Primary cultures and allograft of medulloblastoma from Ptc+/−p53−/− mice Berman et al. [85]
Primary cultures of human medulloblastoma

Small antagonist
HAntag

Oral administration in Ptc+/−p53−/− mice Romer et al. [86]

CXCR4 AmD 3100 Culture and xenograft of human medulloblastoma cell lines Rubin et al.,
PNAS [87]

FGFR1-4 FGF-2 Primary culture of CGNPs from mouse Fogarty et al. [49]
FGF-2 Primary culture of human classic medulloblastoma Duplan et al. [91]
FGF-9
FGF-2 Xenograft of human medulloblastoma in nude mice Vachon et al. [92]

IGFR1 Anti-IGFR1 blocking
antibody

Murine medulloblastoma cell line Corcoran et al.
[88]

IGF2 Soluble IGF2 Murine medulloblastoma cell line Corcoran et al.
[88]

Cholesterol
synthesis

Sterol-synthesis
inhibitors

Medulloblastoma cell line of Ptc+/−p53−/− mice Corcoran and
Scott [89]

Math1 BMP-2, BMP-4,
BMP-7

Medulloblastoma cultures and allograft from Cdkn2c−/−, Trp53Fl/Fl, Nes-cre+,
and Cdkn2c−/−, Ptch1+/− mice

Grimmer and
Weiss [90]

Experimental approaches on human or murine medulloblastomas have evidenced the potency of targeting SHH to reduce exceeding proliferation.
The modulating properties of physiological SHH tuners come up as a promising tool
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