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A separable manifold failing to have the homotopy type of a
CW-complex
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Abstract. We show that (a variation of) the Prüfer surface, which is an
example of a separable non-metrizable 2-manifold, does not have the homo-
topy type of a CW-complex.
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1. Introduction. Our aim is to prove the following:

Theorem 1. The Prüfer surface1, which is an example of a separable2 non-
metrizable manifold3, does not have the homotopy type of a CW-complex.

This might sound like a dissonance in view of Milnor’s Corollary 1 in [9],
which states that every separable manifold has the homotopy type of a (countable)
CW-complex.

Obviously Milnor’s statement is formulated under the implicit proviso of
metrizability. Indeed, the proof makes essential use of a metric, working as follows.
Due to the results of J. H. C. Whitehead (see [17] and [18]), all that must be
proved is that the given space X is dominated by a CW-complex. The first step
is Hanner’s theorem [5]: a space that is locally an ANR is an ANR (=absolute
neighborhood retract). Then following Kuratowski [7], the space X is embedded
via κ : x �→ d(x, ·) where d is a bounded metric for X, into the Banach space of
bounded continuous functions on X. The image happens to be closed in its convex

1Actually, the surface we consider is not the original Prüfer surface, but rather Calabi-Rosenlicht’s
slight modification of it. (This will be clarified by recalling the historical background in § 3.)
2A space is separable if it has a countable dense subset.
3Here this means a Hausdorff topological space which is locally Euclidean.
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hull C, by an argument to be found in Wojdyslawski [19]. Since X is an ANR,
there is an open neighborhood U in C which retracts to κ(X). By transitivity of
domination, it is enough to prove that U is dominated by a polyhedron P , which
is constructed as the nerve of a suitable cover. The domination map f : P → U
is defined by linearity (P being realized in RV where V denotes the set of its
vertices). The ‘submission’ map g : U → P is the barycentric map attached to
a partition of unity (paracompactness is needed, but follows from metrizability).
Lastly the homotopy fg � 1U comes from local convexity considerations. For a
detailed exposition see Palais [13]. (All this, being a powerful elaboration of the
basic idea: embed the given space in an Euclidean space and triangulate an open
tubular neighborhood of it.)

In particular Milnor’s Corollary 1 does not apply to the manifold constructed
(under the continuum hypothesis) by Rudin-Zenor [15], which is a hereditarily sep-
arable4 non-metrizable manifold. The question of the contractibility of the Rudin-
Zenor manifold then may appear as an interesting problem.

2. Proof of Theorem 1. Let us first give a picturesque description of the Prüfer
surface P . We may think of P as the Euclidean plane from which a horizontal line
has been removed, and then for each point of the line a small bridge is introduced
in order to connect the upper to the lower half-plane (see Figure 1). A formal
construction of P will be recalled in § 3. The main point-set theoretical information
about P is its separability.

Figure 1

The fundamental group of P is easily identified, via van Kampen’s theorem, as
a free group on a continuum c=(cardinality of R) of generators. (Details will be
given in § 4.)

Theorem 1 is then best deduced5 from the following:

4In the sense that each subspace is separable.
5This argument is due to the anonymous referee of a previous version of this paper. I would like
to express him my gratitude for allowing me to reproduce it.
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Proposition 1. If a separable topological space X is homotopy equivalent to a
CW-complex K, then X is dominated by a countable subcomplex of K. In par-
ticular the fundamental group of X has to be countable .

Proof. Let f : X → K be a homotopy equivalence and D be a countable dense sub-
set of X. Then f(D) is a countable subset of K. Since any point of a CW-complex
is contained in a finite subcomplex, and the arbitrary union of subcomplexes is
again a subcomplex, it follows that f(D) is contained in a countable subcomplex
L of K. Now using the inclusion f(D) ⊂ f(D) (valid for any continuous map
between arbitrary topological spaces), and the fact that subcomplexes are closed,
one deduces that f(X) is still contained in L. So, restricting g(=the homotopy
inverse of f) to L gives a domination d : L → X with submission map s : X → L
given by the co-restriction of f to L. (Indeed denoting by i : L ↪→ K the inclusion,
we have ds = gis = gf � 1X .)

The last assertion follows from the fact that a countable CW-complex has a
countable fundamental group. �

Note. Proposition 1 could as well be applied to the Hawaiian earrings to show they
do not have the homotopy type of a CW-complex.

3. Construction of the Prüfer surface P . The following construction is due to
Prüfer, first described in print by Radó [14]. However, our more geometric exposi-
tion is from [2], [12] (following an idea that can be traced back to R. L. Moore [11]).
Historically, the Prüfer manifold emerged as an example of a non-triangulable sur-
face6, at about the same time as Radó [14] proved the triangulability of surfaces
with countable base (in particular of Riemann surfaces).

We use C as model for the Euclidean plane. The idea is to consider the set P0
formed by the points of the (open) upper half-plane H = {z : Im(z) > 0} together
with the set of all rays emanating from an arbitrary point of R and pointing into
the upper half-plane. (Such rays are points of P0.) We topologize P0 with the usual
topology on H, and by taking as neighborhoods of a ray r (say emanating from
x ∈ R) the set of all rays with the same origin x deviating by at most ε radians
from r, together with the points of H lying between the two extremal rays and at
a (Euclidean) distance less than ε from x (compare left part of Figure 2).

The space P0 turns out to be a surface-with-boundary. To see this one has
only to check that a neighborhood N of a ray r is homeomorphic to the closed
half-plane H. Intuitively one may argue as follows (compare Fig.3a)). One may
first stretch N (which by construction is a sector swept out by focusing rays) to
obtain parallel rays. Then the process of collapsing rays to their origins becomes
one-to-one, and actually produces a boundary for the distorted sector. This vague
idea can be made precise by writing down an explicit ‘stretching’. One may choose

6Actually the first such example if we discard surfaces obtainable from Cantor’s long ray.
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Figure 2. Some ray’s neighborhoods

the map ϕ : N → C taking a point z to ϕ(z) = σ(z)+ i|z −x| (where σ(z) denotes
the intersection of the line through x and z with λ = {z : Im(z) = 1}, while taking
a ray ρ to its intersection with λ (compare Fig.3.b)). Paying attention to follow
how ϕ transforms typical neighborhoods shows that ϕ is a homeomorphism (once
restricted to its image which is clearly homeomorphic to H).
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Note. This approach involving rays brings the Prüfer surface in close analogy
to projective geometry, but some readers may find it confusing and prefer the
extremely useful exposition in [6].
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Observe that P0 has a continuum c of boundary components, each homeomor-
phic to the real line R. (The Hausdorffness of P0 is easily verified.)

Now given W a manifold-with-boundary, there are two obvious ways to produce
a manifold M (without boundary). A first method is by collaring: we set M =
W ∪id∂W (∂W × [0, 1)). A second option is by doubling: M = W ∪id∂W W (two
copies of W are glued along their boundaries).

For W = P0, the process of collaring leads to the ‘original’ Prüfer surface (the
one described in [14]). In this case there is in M an uncountable family of pairwise
disjoint open sets, so that M fails to be separable.

The second option leads to the surface P we are interested in, since it is sep-
arable. We also call it a Prüfer surface, even though it seems to appear explicitly
only in the paper by Calabi-Rosenlicht [3].

Proposition 2. The Prüfer surface P obtained by doubling P0, is a connected
(Hausdorff) 2-manifold which is separable, but contains an uncountable discrete
subspace, and therefore is non-metrizable.

Proof. Observe that the rational points Q + iQ>0 give a countable dense subset
of P0, and so P is clearly separable. Further we note that the family of all rays
(rx)x∈R, say orthogonal to R, is an uncountable discrete subspace of P , since given
any ray rx one can find an open neighborhood of it cutting out only this single
ray from the whole family. It follows that P is not hereditarily separable, so not
second countable, and therefore non-metrizable. (As is well-known, metrizability
and second countability are equivalent for connected manifolds (see [16] or [12]).
Actually, since P is separable, its non-metrizability is more economically deduced
from the fact that metrizable plus separable imply second countable.) �

At this stage one could already observe the following:

Corollary 1. The Prüfer surface P (and more generally any non-metrizable man-
ifold) is not homeomorphic to a CW-complex.

Proof. This follows from the paracompactness of CW-complexes established by
Miyazaki [10], and the equivalence between the concepts of paracompactness and
metrizability, when spaces are restricted to be manifolds (see again [16] or [12]). �

4. The fundamental group of the Prüfer surface. The following information on
the fundamental group of P completes the proof of Theorem 1.

Proposition 3. π1(P ) is a free group on a continuum c of generators.

Proof. (After M. Baillif). For all x ∈ R, let Ux be the open neighborhood of x
in P0 depicted in Figure 2 where r is chosen orthogonal to R and ε = π

2 . Let
then Bx be Ux taken together with its symmetrical copy Uσ

x , so Bx = Ux ∪ Uσ
x is

an open set of P (we can think of it as a ‘bridge’ linking the upper to the lower
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half-plane). For all x ∈ R − {0} = R∗, put Ox = H ∪ Hσ ∪ B0 ∪ Bx. The collection
(Ox)x∈R∗ forms an open cover of P , which satisfies the hypotheses of van Kampen’s
theorem, since Ox∩Oy is arcwise-connected. Furthermore

⋂
x∈R∗ Ox = H∪Hσ∪B0

is homeomorphic to the union of C−R with an open interval from R (by the same
kind of argument as the one cartooned in Fig.3.a)), and so is simply connected.
Moreover each member Ox of this cover is homeomorphic to the union of C − R

with two disjoint (real) intervals. Hence it has the homotopy type of the circle S1.
The result follows by van Kampen’s theorem. �

Note. It is well-known that the fundamental group of any metrizable open surface
is a free group ([1], [4], [8]). Whether this freeness holds true behind the horizon
of metrizability seems to be a difficult question.

5. The case of non-Hausdorff manifolds. We conclude by making some simple
observations concerning complications arising in the relation between manifolds
and CW-complexes, in the case that the Hausdorff separation axiom is relaxed
from the definition of a manifold. Then already one of the simplest examples of
a ‘manifold’, the so-called line with two origins (obtained from two copies of R

by identifying corresponding points outside the origin, see Figure 4) fails to have
the homotopy type of a CW-complex (and this in spite of the fact that it is well-
behaved from the point of view of second countability). In fact, we even have a
worse situation:

Proposition 4. The line with two origins R does not have the homotopy type of
any Hausdorff topological space.

Proof. We need two preliminary remarks.

• First remember that there is a general Hausdorffization process applicable to
any space X, which leads to a Hausdorff space XHaus with a map X → XHaus.
This is obtained by factorizing the given space by the smallest Hausdorff
equivalence relation. It has the property that any continuous map from X to
a Hausdorff space H factors through XHaus.

• Second by Mayer-Vietoris it is easy to check that the first homology group
H1(R, Z) is infinite cyclic.

We are now ready to prove Proposition 4. Assume there is a homotopy equiva-
lence f : R → H for some Hausdorff space H. Then f factors through RHaus, which
is nothing but the usual real line R. But this being contractible, it follows by func-
toriality that the morphism H1(f) is zero, in contradiction to the non-vanishing
of H1(R, Z). �

Finally, let us consider a variant of the line with two origins obtained by iden-
tifying in two copies of R corresponding points outside some closed interval (see
Figure 5). The resulting quotient space is again a non-Hausdorff manifold which
is easily seen to be homotopy equivalent to the circle S1.
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Figure 4. The line with two origins
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So, it is not so much relaxing the Hausdorff axiom, that leads us outside the
class W of spaces having the homotopy type of a CW-complex. Rather it is the
strange geometric behavior of ‘extremely narrow bifurcations’ inherent to some
non-Hausdorff manifolds, which appears as something alien to the combinatorial
nature of CW-complexes.
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