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Abstract We show that the XYZ spin chain along the special line of couplings JxJy +
JxJz + JyJz = 0 possesses a hidden N = (2,2) supersymmetry. This lattice supersymmetry
is non-local and changes the number of sites. It extends to the full transfer matrix of the
corresponding eight-vertex model. In particular, it is shown how to derive the supercharges
from Baxter’s Bethe ansatz. This analysis leads to new conjectures concerning the ground
state for chains of odd length. We also discuss a correspondence between the spectrum of
this XYZ chain and that of a manifestly supersymmetric staggered fermion chain.

Keywords Supersymmetry · Lattice models · Bethe ansatz

1 Introduction

The solution of the zero-field eight-vertex model by Baxter is a landmark in the theory of
exactly solvable systems. The seminal papers [1–4, 6] present a variety of algebraic and ana-
lytic tools to compute the partition function, the eigenvalues and eigenvectors of its transfer
matrix. The model is still under active study: in particular, Fabricius and McCoy showed
that at the so-called root-of-unity points the spectrum of the transfer matrix possesses de-
generacies not easily explained by its standard integrability alone [18, 26–28]. It is natural
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to attribute them to the presence of extended symmetries, possibly an elliptic generalisation
of the sl2-loop-algebra symmetries discovered for the six-vertex model [19, 25, 41].

The topic of this paper is the eight-vertex model at a particular root-of-unity point with an
extended symmetry. We utilise the quantum XYZ spin chain, whose Hamiltonian commutes
with the eight-vertex model transfer matrix [56]. More precisely, we study the Hamiltonian

HN = −1

2

N∑

j=1

(
Jxσ

x
j σ x

j+1 + Jyσ
y

j σ
y

j+1 + Jzσ
z
j σ z

j+1

) + N(Jx + Jy + Jz)

2
(1a)

with periodic boundary conditions along the special line of couplings

JxJy + JxJz + JyJz = 0. (1b)

While it was already noticed in Baxter’s original works that along the line of cou-
plings (1) the ground state energy per site remains zero in the thermodynamic limit, its
finite-size ground state was addressed much more recently. In [54, 55] Stroganov argued
that (1) possesses exactly two zero-energy ground states for N odd. When Jx = Jy (so that
Δ ≡ Jz/Jx = −1/2), the resulting critical XXZ chain has been extensively studied over
the past decade [17, 20, 21, 31, 45–47, 61]. The components of the ground state possess
some remarkable properties. They display a variety of relations with combinatorial quanti-
ties, such as the enumeration of alternating sign matrices and plane partitions. Many of the
early conjectures, such as sum rules for the components, were then proved with the help
of techniques such as the quantum Knizhnik-Zamolodchikov equation, and combinatorial
tools [15, 22, 23, 49].

The fact that the ground state energy is exactly zero in the XXZ chain at Δ = −1/2 for
a finite odd number of sites was proved by exploiting a hidden supersymmetry [31, 61].
A ground-state energy of exactly zero is a common characteristic of theories with super-
symmetry [59]. While quite a number of lattice models possess scaling limits described
by field theories with supersymmetry [52], only a few are known where the supersymme-
try is explicitly present on the lattice. Here, an unusual feature is that the supersymmetry
operator changes the number of sites by one. While unusual, it is not unheard of; similar
operators were for example studied in a spin chain arising from the integrable structures in
four-dimensional gauge theory [11].

Remarkable properties of the zero-energy ground state persist along the entire line (1) [8,
9, 29, 43, 48]. Using the convenient parametrisation

Jx = 1 + ζ, Jy = 1 − ζ, Jz = (
ζ 2 − 1

)
/2, (2)

computer results indicate that the ground state at odd N can be expressed as polynomials in
ζ with positive integer coefficients. Non-linear recursion relations were observed for several
components of the zero-energy ground states of (1) [8, 9, 43] (see also [50]). These relations
are described by the tau-function hierarchies of the Painlevé VI equation [44]. Moreover,
very simple expressions for one-point functions in the ground state such as the magnetisation
were found by summing the expansion around the trivially solvable point ζ → ∞ [29].

Since the ground-state energy remains zero along the entire line (1), it is natural to expect
that the supersymmetry persists off the critical point. This is true in the scaling limit, where
the XYZ chain is described by the sine-Gordon field theory. This field theory possesses
symmetries that can be related to the affine quantum group Uq(ŝl(2)) with zero centre [12].
When q2 = −1, the quantum group contains the N = (2,2) supersymmetry algebra. This is
precisely the value of q corresponding to the scaling limit along the line (1). We thus refer
to this line henceforth as the “supersymmetric” line.
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Fig. 1 Rescaled eigenvalues εj (ζ ) = 4Ej (ζ )/(3 + ζ 2) for the XYZ Hamiltonian with N = 6 and N = 7
sites along the supersymmetric line as a function of ζ . The plots are restricted to the subsectors with momen-
tum k = π and 0 respectively. The solid lines correspond to exact common eigenvalues for the two chains.
Moreover, the plot for N = 7 shows the existence of exact zero energy ground states

The purpose of this paper is to show that the supersymmetry remains exact on the lattice
all along the supersymmetric line. The main focus in most (but not all [33]) earlier studies
was the ground state of the system, which has exactly zero energy for any odd N . In this
article, we study not only the ground states of this XYZ spin chain, but also consider its
full spectrum. We show that for any value of ζ , in certain momentum sectors this model
possesses a hidden exact symmetry which we call lattice supersymmetry, a lattice version
of the well-known N = 2 supersymmetry algebra [59]. These results provide a systematic
generalisation of the XXZ results to the XYZ setting.

We illustrate this symmetry by explicitly diagonalising the XYZ Hamiltonian along the
supersymmetric line. Figure 1 shows the example of chains with N = 6 and N = 7 sites:
in particular momentum sectors, the corresponding Hamiltonians sites have exact common
non-zero eigenvalues. This is a well-known feature of supersymmetric theories: states with
E > 0 are doubly degenerate. Thus, in our case the common eigenvalues are candidates
for supersymmetry doublets. This is a consequence of the existence of supercharges which
change the number of sites N by one, and serve as intertwiners for the Hamiltonians of the
corresponding chains. Moreover, two exact zero-energy ground states are found for odd N ,
and they are potential candidates for so-called supersymmetry singlets (who do not have a
superpartner). In fact, we will show that in the sectors with momentum zero for odd N and
momentum π for even N , the states organise themselves into quadruplets: an eigenvalue
occurring first in the spectrum for N − 1 sites, appears twice at N sites, and once at N + 1
sites. The quadruplet structure hints at the existence of two copies of the supersymmetry
algebra. Indeed by taking into account the symmetry under flipping all spins, we find an
N = (2,2) supersymmetry algebra on the lattice.

The transfer matrix of the eight-vertex model commutes with the XYZ Hamiltonian,
so the two have the same eigenstates. Thus one might expect that these properties carry
over to the full model. As we will show, the existence of the N = (2,2) supersymmetry
algebra is deeply rooted in the eight-vertex model, and can be derived from the Bethe ansatz.
Moreover, the Bethe ansatz analysis leads to a novel characterisation of the ground states of
the XYZ chain (1) for odd N .

The XYZ chain is closely connected to another model with lattice supersymmetry, intro-
duced in [32] and thoroughly analysed in [31, 36, 37]. It describes spinless fermions on a
chain with nearest-neighbour as well as the usual on-site exclusion. Connections between
the two at the critical point are already known; energy levels coincide with those of the
XXZ chain at Δ = −1/2 with a momentum-dependent twist [31]. A similar correspondence
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also holds in the open chain with a magnetic field [61]. Moreover, the ground states of the
fermion models display a variety of relations with the combinatorics described above [10].
Therefore, it is natural to ask if a similar equivalence holds off the critical point. Indeed,
several connections between the zero-energy ground states for chains of odd length and the
ground states of a staggered version of the fermion models were observed in [29, 30]. In
this work, we provide more evidence for the connection of the two models. We observe the
systematic existence of common eigenvalues in their spectra after proper identification of
the relevant parameters, even in sectors where the supersymmetry is not fully realised.

The layout of this paper is the following. In Sect. 2, we introduce supercharges for the
XYZ chain which change the number of sites and study their properties. In particular, we
show that Hamiltonian can be obtained as a quadratic form of the supercharges in special
momentum sectors. The combination with various other symmetries of the XYZ chain will
lead to a second lattice supersymmetry, and thus explain the quadruplet structure in the
spectra. In Sect. 3, we change our point of view and study the system using Bethe ansatz for
the eight-vertex model. After recalling Baxter’s original approach, we present a derivation
of the supersymmetry from the Bethe equations, and show that it is a symmetry of the
full transfer matrix along the supersymmetric line, connecting systems of different sizes.
After this we proceed with a conjecture on the nature of the ground states for chains of odd
length. The relation of the present model to the theory of fermions with nearest-neighbour
exclusion is discussed in Sect. 4: we observe that the spectra of both theories have exact
common eigenvalues. We suggest a mapping between the two models, based on the Bethe
ansatz solution of the eight-vertex model. Finally, we present our conclusions and various
open problems in Sect. 5. Some technical details are relegated to appendices.

Throughout the paper we report observations obtained from exact diagonalisation of
small system sizes. Most of them show patterns which seem to hold for general N , and
thus we formulate them as conjectures.

2 Supercharges and the XYZ Hamiltonian

In this section, we establish the relation between the XYZ chain (1) and lattice supersym-
metry. We start with a review of the elementary symmetries of the XYZ chain and then
proceed to the definition of the supercharges. The analysis of their properties under trans-
lation allows to show that they are nilpotent and write the Hamiltonian as quadratic forms
of the supercharges. Next, we study the interplay with other symmetries such as parity and
spin reversal, and establish the quadruplet structure of the eigenstates in special momentum
sectors.

In the sequel, we will frequently deal with operators that change the number of sites of
the chain. Hence, we will indicate by a subscript the length of the chain the corresponding
operator acts on. For example, we denote by QN the supercharge acting on the Hilbert space
for chains with N sites etc.

2.1 Elementary Symmetries

We start with a bit of notation. We denote by HN = (C2)⊗N the usual Hilbert space for
N spin-1/2 particles in a chain. We will use the standard orthonormal basis in which the
operators σ z

j are diagonal (σx , σy , σ z are the usual Pauli matrices). Its basis vectors are
labelled by configurations α = α1α2 · · ·αN with αj = + (spin up) or − (spin down) for the
j -th spin, and the σ z

j operator acts according to

σ z
j |α1 · · ·αj · · ·αN 〉 = αj |α1 · · ·αj · · ·αN 〉. (3)
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Let us indicate here some elementary symmetries of the Hamiltonian (1), valid for any
choice of Jx , Jy , Jz. First, it is invariant under translation. We will often use the translation
operator TN acting on basis states of HN according to the usual rule

TN |α1 · · ·αN−1αN 〉 = |αNα1 · · ·αN−1〉.
The translation invariance of the Hamiltonian implies that it commutes with this opera-
tor, and therefore they can be diagonalised simultaneously. Consider a state |ψ〉 such that
TN |ψ〉 = tN |ψ〉, then cyclicity implies (TN)N = 1. Therefore the eigenvalue tN is an N -th
root of unity. Writing tN = eik we see that the momentum k has to be an integer multiple
of 2π/N . In this work, we focus mainly on momentum k = 0 for chains of odd length, and
momentum k = π for chains of even length.

Moreover, the Hamiltonian is invariant under reversal of the order of all spins. We thus
define a parity operation PN through

PN |α1α2 · · ·αN−1αN 〉 = |αNαN−1 · · ·α2α1〉.
Obviously, we have P 2

N = 1 and therefore eigenvalues ±1.
Finally, notice that the Hamiltonian is a quadratic form of the Pauli matrices. Therefore it

remains unchanged under global rotations by an angle π around any of the x-, y- or z-axis.
Let us first consider the z-axis. The rotation is given by iNSN where

SN = σ z
1 σ z

2 · · ·σ z
N = exp

(
iπ

2

N∑

j=1

(
1 − σ z

j

)
)

. (4)

The right-hand side makes evident that SN has the eigenvalue ±1 on configurations with an
even/odd number of spins −.

Considering instead rotations by the angle π about the x-axis leads to the conclusion that
the Hamiltonian commutes with the spin reversal operator RN defined through

RN = σx
1 σx

2 · · ·σx
N . (5)

The operators SN and RN have the following (anti-)commutation relation:

SNRN = (−1)NRNSN. (6)

This implies in particular that for odd N the spin-reversal operator couples the sectors with
even and odd number of spins down. Therefore any eigenvalue of HN has even degeneracy
and is at least doubly degenerate. This is reminiscent of Kramers’ degeneracy in quantum
mechanics [53]: all energy levels of a system with an odd number of spin-1/2 particles
(fermions) are doubly degenerate as long as time-reversal symmetry is not broken. This
suggests that the number of sites N can be viewed as a fermion number. In the next sec-
tion, we give more evidence for this interpretation through an explicit construction of the
supersymmetry algebra.

2.2 Supercharges

We proceed with the definition of the supercharges. It is useful to start by recalling the
usual N = 2 supersymmetry algebra [59]. It is built from two conjugate supercharges Q,
Q† that are nilpotent, i.e. their squares are zero: Q2 = (Q†)2 = 0. A further symmetry
generator is the fermion number F . The supercharges obey the relations [F,Q] = Q and
[F,Q†] = −Q†. Hence Q increases the fermion number by one, while Q† decreases it. The
Hamiltonian is given as anticommutator H = {Q,Q†}. It conserves the fermion number and
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commutes with Q and Q†. The fact that H is of this form implies that its eigenvalues are
non-negative. Any states with zero energy are automatically ground states, and annihilated
by both supercharges. Thus they each are a supersymmetry singlet. Conversely, all states
with positive energy E > 0 form doublets of the supersymmetry algebra, with the fermion
numbers of the two states in a doublet differing by one.

We here define the analogous supercharges on the lattice. We start with a generalisation
of the work [61] and introduce operators qj which map HN to HN+1 through action on site
j according to the following rules (the subscripts denote the positions of the corresponding
spins):

qj |α1 · · ·αj−1 +
j

αj+1 · · ·αN 〉 = 0, (7a)

qj |α1 · · ·αj−1 −
j

αj+1 · · ·αN 〉
= (−1)j−1

(|α1 · · ·αj−1 +
j

+
j+1

αj+1 · · ·αN 〉 − ζ |α1 · · ·αj−1 −
j

−
j+1

αj+1 · · ·αN 〉). (7b)

We see that while states with spins + at site j are annihilated by qj , the spins − are trans-
formed into pairs ++ and −− with weights 1 and −ζ respectively. The pair creation im-
plies a shift of the spin sequence αj+1 · · ·αN by one site to the right. This includes a “string”
(−1)j−1 which is crucial in the following. To respect the periodic boundary conditions here,
we need to build eigenstates of the translation operator. We thus introduce an operator that
creates a pair of like spins ++ or −− on sites N + 1 and 1, namely

q0|α1 · · ·αN−1 +
N

〉 = 0, (7c)

q0|α1 · · ·αN−1 −
N

〉 = −(|+
1

α1 · · ·αN−1 +
N+1

〉 − ζ |−
1

α1 · · ·αN−1 −
N+1

〉). (7d)

The operator q0 acts always on the last site irrespectively of length of the chain with no
string attached.

With the help of these “local” operators qj we construct a supercharge QN . It increases
the number of sites by one what supports the interpretation that N plays the role of the
fermion number F . The construction goes as follows. Suppose that |ψ〉 is an eigenstate of
the translation operator TN with some eigenvalue tN . Then we define QN |ψ〉 = 0 unless
tN = (−1)N+1. If tN = (−1)N+1 however, we define

QN =
(

N

N + 1

)1/2 N∑

j=0

qj .

For ζ = 0 these operators decrease the number of spins − by one but map a state of definite
total magnetisation to another state of definite total magnetisation [61]. For finite ζ however,
this is not the case because the two states on the right-hand side of (7) differ in magnetisation
by two. This is related to the fact that the XYZ Hamiltonian can flip pairs ++ and −− of
adjacent spins, and thus conserves magnetisation only mod 2.

Because of q0 the operator QN seems to distinguish the last site of the chain from the
others. However, translation invariance removes this distinction, and we claim that QN is
a well-defined mapping between the momentum spaces with tN = (−1)N+1. To show this
it is useful to understand the transformation properties of qj under translation. From their
definition it is not difficult to show that

TN+1qjT
−1
N = − qj+1, j = 0, . . . ,N − 1,

TN+1qN = (−1)Nq0.
(8)
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Consider now an eigenvector |ψ〉 of the translation operator for the chain with N sites:
TN |ψ〉 = tN |ψ〉, tN = (−1)N+1. Upon action with QN we produce a vector |φ〉 = QN |ψ〉
belonging to HN+1. The application of TN+1 to this new vector leads to

TN+1|φ〉 =
(

N−1∑

j=1

TN+1qjT
−1
N + TN+1qNT −1

N + TN+1q0T
−1
N

)
TN |ψ〉

= tN

(
−

N∑

j=1

qj + (−1)N t−1
N q0

)
|ψ〉.

As tN = (−1)N+1 the new vector is an eigenvector of TN+1, with eigenvalue −tN = tN+1,
what proves our claim. Thus, we have TN+1QNT −1

N = −QN .
The fact that the operators QN are bona fide mappings between the momentum spaces

of interest is crucial to the supersymmetric structure of the XYZ chain (1) that we describe
now. First, the supercharges have “square zero” in the sense that

QN+1QN = 0. (9)

Hence they can be thought of as fermionic. Second, if restricted to the subsectors with
translation eigenvalue tN = (−1)N+1 the XYZ-Hamiltonian can be constructed from the
supercharges and their Hermitian conjugates. The latter are defined in the usual way: if |ψ〉
is a vector in HN , and |φ〉 in HN+1 then 〈ψ |Q†

N |φ〉 = 〈φ|QN |ψ〉∗. With this definition, the
Hamiltonian can be written as an “anticommutator”

HN = QN−1Q
†
N−1 + Q

†
NQN. (10)

The proofs of (9) and (10) are elementary but cumbersome. We present the details in Ap-
pendices A.1 and A.2. Here, we study their consequences for the eigenvalue spectrum, and
thus give an explanation of the common eigenvalues for systems of different size. We will
see that all these properties are familiar from the theory of N = 2 supersymmetric quantum
mechanics [59].

First of all, consider the eigenvalue equation HN |ψ〉 = E|ψ〉. Projecting back on |ψ〉 we
find

∥∥Q
†
N−1|ψ〉∥∥2 + ∥∥QN |ψ〉∥∥2 = E

∥∥|ψ〉∥∥2
. (11)

It follows that the spectrum is non-negative: all E ≥ 0. Let us first concentrate on strictly
positive energies E > 0. For a chain with N sites these energies come in pairs in the sense
that a given positive eigenvalue occurs in the spectrum at either N + 1 or N − 1 sites.
This can be seen as follows. The structure of the Hamiltonian in (9) and (10) results in the
commutation relation

HN+1QN − QNHN = 0. (12)

Hence, if |ψ〉 is an eigenvector of HN with eigenvalue E in the subspace with tN = (−1)N+1,
then QN |ψ〉 is either zero or an eigenvector of HN+1 with the same eigenvalue E. Likewise
Q

†
N−1|ψ〉 is either zero or an eigenvector of HN−1 with the same eigenvalue E. However,

one of the two vectors QN |ψ〉, Q
†
N−1|ψ〉 must vanish.1 Hence, every eigenstate with non-

zero energy is part of a doublet
(|ψ〉,QN |ψ〉) and so

(|ψ〉,Q†
N−1|ψ〉).

1To show this we write HN = H
(1)
N

+ H
(2)
N

with H
(1)
N

= Q
†
N

QN and H
(2)
N

= QN−1Q
†
N−1. Then

H
(1)
N

H
(2)
N

= H
(2)
N

H
(1)
N

= 0. Therefore, their respective eigenspaces associated with non-zero eigenvalues
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Conversely, zero-energy states are unpaired (singlets). From (11) it follows that they must
be solution to the two equations

QN |ψ〉 = 0, Q
†
N−1|ψ〉 = 0. (13)

It is well known that the solutions to these equations are related to the cohomology HN =
kerQN/ imQN−1 of the operator QN . Every zero-energy eigenstate corresponds to a non-
trivial (non-zero) element in HN . This can be seen indirectly: suppose that there are two
linearly independent zero-energy states |ψ1〉 and |ψ2〉, and assume that they are in the same
cohomology class. This means that there is a state |φ〉 for the chain with N − 1 sites such
that

|ψ1〉 = |ψ2〉 + QN−1|φ〉.
We act with Q

†
N−1 on both sides, and apply (13). This yields Q

†
N−1QN−1|φ〉 = 0, and by

reprojection on |φ〉 to ‖QN−1|φ〉‖2 = 0. This implies QN−1|φ〉 = 0 and therefore |ψ1〉 =
|ψ2〉—in contradiction to the assumption of linear independence. Hence every non-trivial
cohomology class contains exactly one ground state. This has two consequences. First, every
eigenstate with non-zero energy that is annihilated by QN can be written in the form |ψ〉 =
QN−1|φ〉 where |φ〉 is an eigenstate for the chain with N − 1 sites. We will frequently use
this property in the next section. Second, the number of zero-energy ground states is the
number of distinct non-trivial elements in the cohomology. We formulate the following

Conjecture 1 For odd N there are two non-trivial elements in HN , whereas for even N

there are none.

We checked this conjecture up to N = 11 sites by evaluation of the row and column ranks
of the rectangular matrices QN . Notice that for N odd it implies Stroganov’s conjecture [55]
on the existence of two zero energy ground states, provided that one can prove that they
occur in the zero-momentum sector.

Before proceeding, let us make the following comment: both the nilpotency and the su-
persymmetric structure of the XYZ-Hamiltonian studied in this section are only valid in
certain momentum sectors. The nature of their derivation, given in Appendices A.1 and A.2,
reveals that this restriction comes from matching the periodic boundary conditions. Every-
thing else follows from local relations. Thus, we conclude that the supersymmetry has to be
present in the full problem for chains of infinite length.

2.3 Spin-Reversal Symmetry

In this and the next section we provide a detailed discussion of the relation between super-
symmetry and the other symmetries of the Hamiltonian introduced in Sect. 2.1. Let us give
a motivation for this. The relation QN+1QN = 0 implies that we cannot relate chains with
N sites to N + 2 sites by sole use of the supercharges defined in the previous sections. Yet,
a detailed inspection of the spectra for small system sizes suggests such a connection. The
most simple example is the eigenvalue 3 + ζ 2, appearing once in the spectrum for N = 2

are orthogonal. If H
(1)
N

|ψ〉 = E|ψ〉 for some E > 0 then H
(2)
N

|ψ〉 = 0, by reprojection on |ψ〉 we find

‖Q†
N−1|ψ〉‖2 = 0, and therefore Q

†
N−1|ψ〉 = 0. It follows that QN |ψ〉 is non-zero because otherwise |ψ〉

would be a zero-energy state. Thus we found a doublet (|ψ〉,QN |ψ〉). A similar argument applies to the

eigenstates of H
(2)
N

, and leads to pairs (|ψ〉,Q†
N−1|ψ〉). Finally, as HN commutes with H

(1)
N

and H
(2)
N

it
follows that all non-zero eigenstates of our Hamiltonian organise in pairs in the sense stated above.
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sites, twice for N = 3 sites and once for N = 4 sites. The inspection of other non-zero eigen-
values reveals similar patterns. This hints at a larger symmetry algebra which we analyse in
this section.

The existence of these degeneracies can be explained through a remarkably simple ob-
servation. The supercharges QN introduced in Sect. 2.2 treat spins up and down in a very
asymmetric way. However, the Hamiltonian commutes with the spin-reversal operator (5),
as pointed out in Sect. 2.1. Therefore it seems natural to introduce the spin-reversed version
of QN :

Q̃N = RN+1QNRN.

In order to understand the implications of this operator on the spectrum we need to work out
the algebra generated QN , Q̃N and their adjoints. The full list of relations reads

QNQN−1 = Q̃NQ̃N−1 = 0, Q
†
N−1Q

†
N = Q̃

†
N−1Q̃

†
N = 0, (14a)

Q̃
†
NQN + QN−1Q̃

†
N−1 = 0, Q

†
NQ̃N + Q̃N−1Q

†
N−1 = 0, (14b)

Q̃NQN−1 + QNQ̃N−1 = 0, Q
†
N−1Q̃

†
N + Q̃

†
N−1Q

†
N = 0. (14c)

The Hamiltonian can be written as anticommutator of either set of supercharges

HN = Q
†
NQN + QN−1Q

†
N−1 = Q̃

†
NQ̃N + Q̃N−1Q̃

†
N−1. (14d)

In fact, even any linear combination αQN + βQ̃N with |α|2 + |β|2 = 1 is an admissible
supercharge that will generate the Hamiltonian. We omit the proofs of (14b) and (14c) as
they are tedious and very similar to the proof of nilpotency outlined in Appendix A.1.

Instead, we point out the striking analogies between (14) and the N = (2,2) supersym-
metry algebra in two dimensional quantum field theory (see for example [35], Chap. 22).
The latter consists of four supercharges Q±, Q±, Hamiltonian H, momentum P and a fermion
number F. The algebra is defined through the relations

Q2
± = Q

2
± = 0, (15a)

{Q±,Q∓} = 0, (15b)

{Q+,Q+} = Δ, {Q−,Q−} = Δ∗, (15c)

{Q+,Q−} = H + P, {Q+,Q−} = H − P, (15d)

[F,Q±] = ±Q±, [F,Q±] = ∓Q±, (15e)

together with the conjugation relations Q†
± = Q∓ and Q

†
± = Q∓. The definition of H and

P implies that they commute with all supercharges and the fermion number. The operators
Δ and Δ∗ are central elements. Non-zero values of the latter are usually an indication of
topological sectors [60] which occur generically in non-compact spaces.

The similarity between the two algebraic structures (14) and (15) is certainly not a co-
incidence. In fact, as mentioned in the introduction, the scaling limit of the lattice model is
described by the sine-Gordon field theory at the supersymmetric point. Precisely, the limit is
N → ∞, ζ → 0 with g = ζN1/3 finite, and it yields the sine-Gordon theory with bare mass g

and coupling β = √
16π/3 in conventional units. It was shown in [12] that the sine-Gordon

field theory possesses an affine quantum group symmetry Uq(ŝl(2)), q = exp(−8iπ2/β2)

with zero centre. For β = √
16π/3 the latter is known to contain the N = (2,2) supersym-

metry algebra [13], which indeed corresponds to our coupling.
Let us establish a dictionary between the lattice and field theory quantities. The first three

lines of (14) and (15) are in one-to-one correspondence, provided that we identify the field
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theory charges with some linear combinations of the lattice supercharges, and replace anti-
commutators by appropriate (and natural) expressions for the lattice operators. We see that
there is no equivalent of the central charges Δ, Δ∗ in the lattice theory as the corresponding
anticommutators are zero. We attribute this to the fact, that we have a finite, discrete and
periodic space, and thus no topological/solitonic sector. The fourth line of (15) defines the
field theory Hamiltonian and momentum. Whereas the former is related to the lattice XYZ
Hamiltonian in a direct way, the identification between momenta in field and lattice theory
needs to be supplemented by a shift by (N + 1)π mod 2π . The need for a shift becomes
even more plausible when taking into account that the lattice equivalent of fermion number
appears to be the number of sites of the spin chain. This is consistent with the Jordan-Wigner
transformation appearing in the analysis of continuum limit of the XYZ chain [42].

It is known that all non-zero energy states of a theory possessing the N = (2,2) super-
symmetry (15) are organised in quadruplets of the form (|ψ〉;Q+|ψ〉,Q−|ψ〉;Q+Q−|ψ〉)
with the state |ψ〉 being annihilated by Q− and Q+. The states in such a supermultiplet
have all the same energy, and momentum, but differ in their fermion number. Given the
similarities between the field theory and lattice algebra, it is natural to ask if there is a
quadruplet structure in the lattice model. Indeed, we now show that the relations (14) im-
ply that it exists, at least in the momentum sectors considered in this paper. From the
last section, we already know that the eigenstates |ψ〉 of the lattice Hamiltonian HN are
part of doublets (|ψ〉,Q†

N−1|ψ〉) or (|ψ〉,QN |ψ〉). Without loss of generality, we focus on
the second case (|ψ〉,QN |ψ〉). Let us consider the vector Q̃N |ψ〉. There are two possi-
bilities: it may either be non-zero or zero. First, suppose that Q̃N |ψ〉 is a non-zero vec-
tor. Clearly, it has the same energy as QN |ψ〉, and we might wonder if they coincide.
In fact, we show that this cannot be the case, and that they are rather linearly indepen-
dent. If there is linear dependence, then there must be non-zero numbers λ and μ such that
λQN |ψ〉 + μQ̃N |ψ〉 = 0. We show that λ = 0 by applying Q

†
N from the left. For the first

term, we use Q
†
NQN |ψ〉 = HN |ψ〉 = E|ψ〉; for the second term, we make use of the an-

ticommutation relation (14b) and write Q
†
NQ̃N |ψ〉 = −Q̃N−1Q

†
N−1|ψ〉 = 0. Thus, we are

left with −λE|ψ〉 = 0 but because of E > 0 we must have λ = 0. Likewise, one shows that
μ = 0. Thus, the two vectors are linearly independent. This implies in particular that in addi-
tion to Q

†
N−1|ψ〉 = 0 we have the equation Q̃

†
N−1|ψ〉 = 0. Next, we increase once more the

system size: consider the vector QN+1Q̃N |ψ〉 = −Q̃N+1QN |ψ〉. This vector is non-zero as
again can be shown by an indirect proof: if for example QN+1Q̃N |ψ〉 = 0 then there would
be some vector |φ〉 for the chain with N sites such that Q̃N |ψ〉 = QN |φ〉. If we premultiply
this relation by Q

†
N we find on the left-hand side Q

†
NQ̃N |ψ〉 = −Q̃N−1Q

†
N−1|ψ〉 = 0 be-

cause of (14b). Thus, the right-hand side becomes Q
†
NQN |φ〉 = 0 what implies QN |φ〉 = 0.

Yet, this is in contradiction to Q̃N |ψ〉 = 0, proving our claim. We cannot apply more su-
percharges in order to increase the length of the chain because the state QN+1Q̃N |ψ〉 is
annihilated by both QN+2 (trivially), and Q̃N+2 (because of (14c)). Thus, we have con-
structed a quadruplet of one state at N sites, two states at N + 1 sites, and one state N + 2
sites, all of them having the same energy E with respect to the corresponding Hamiltonians:

(|ψ〉;QN |ψ〉, Q̃N |ψ〉;QN+1Q̃N |ψ〉).
The preceding construction assumes that Q̃N |ψ〉 is non-zero. Let us now consider the

second case Q̃N |ψ〉 = 0. As E > 0 this can only be the case if there is a vector |φ〉 for the
chain with N − 1 sites such that |ψ〉 = Q̃N−1|φ〉. Consider now the state QN−1|φ〉. It cannot
be zero: otherwise, we could write 0 = Q̃N(QN−1|φ〉) = −QN(Q̃N−1|φ〉) = −QN |ψ〉 what
contradicts our assumptions as we started from a doublet (|ψ〉,QN |ψ〉). Moreover, the state
QN−1|φ〉 is linearly independent from |ψ〉, as follows from the same argument as above. We
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have QN |ψ〉 = QNQ̃N−1|φ〉 = −Q̃NQN−1|φ〉, and hence a similar quadruplet structure as
before, this time however with one state at N − 1 sites, two states at N sites, and one state
N + 1 sites:

(|φ〉;QN−1|φ〉, Q̃N−1|φ〉;QNQ̃N−1|φ〉), Q̃N−1|φ〉 = |ψ〉. (16)

Therefore, all states with non-zero energy must be part of a quadruplet. We see that our
argument leads automatically to a degeneracy in the “middle” of such a quadruplet. In fact,
there is a non-trivial conserved charge that maps between these two states. It is given by

CN = Q̃
†
NQN = −QN−1Q̃

†
N−1.

The anticommutation relations imply that it commutes with the Hamiltonian and has square
zero:

[HN,CN ] = 0, and C2
N = 0.

Moreover, its Hermitian conjugate is the “spin-reversed” operator C
†
N = RNCNRN . They

have the character of fermionic ladder operators. Indeed, let us consider the quadruplet (16)
containing two states |ψ〉 = QN−1|φ〉 and |ψ̃〉 = Q̃N−1|φ〉 at N sites. We find the following
relations

CN |ψ〉 = 0, CN |ψ̃〉 = −E|ψ〉,
C

†
N |ψ̃〉 = 0, C

†
N |ψ〉 = −E|ψ̃〉.

The other two states in the quadruplet, |φ〉 and QNQ̃N−1|φ〉, are annihilated by the corre-
sponding operators CN−1 and CN+1 and their Hermitian conjugates. Thus, (|ψ〉, |ψ̃〉) can be
thought of a doublet inside the quadruplet (16).

Even though CN is a bilinear in the supercharges, it still can be thought of as fermionic in
the following sense. The symmetry operator SN defined in Sect. 2.1 anti-commutes with the
fermion: CNSN +SNCN = 0, as can be shown using (6) and the fact that SN+1QN +QNSN =
0. If we now suppose that the state |ψ〉 is an eigenstate of SN with eigenvalue s = ±1
then the anticommutation relation tells us that |ψ̃〉 is also an eigenstate of SN , however
with eigenvalue −s. Therefore, we see that the fermionic operators CN provide a mapping
between the sectors with odd and even number of spins down. For chains of odd length,
this connection is already established through the spin-reversal operator, as explained in
Sect. 2.1. Namely, the states (|ψ〉, |ψ̃〉) can be mapped onto each other through spin reversal,
as the state |φ〉 is an eigenstate of the spin-reversal operator RN−1 when N is odd. For chains
of even length, however, the spin-reversal operator fails to connect the two vectors, whereas
the operator CN does this independently of the number of sites.

2.4 Parity Symmetry

In the last part of this section, we analyse the relation between the supercharges and the
parity operation. Using the definition of the “local” supercharges (7) we find the simple
transformation laws

PN+1qj = (−1)N+1qN−j+1PN, PN+1q0 = q0PNTN.

Let us now consider a state |ψ〉 for a chain of N sites with both definite translational be-
haviour TN |ψ〉 = tN |ψ〉 and definite parity PN |ψ〉 = pN |ψ〉, pN = ±1. The parity operation
reverses momentum, as can be seen from the relation PNTNPN = T −1

N . This implies that the
translation eigenvalue tN must be solution to t2

N = 1. Obviously, this is compatible with
tN = (−1)N+1. Applying our rules, we find
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Fig. 2 The vertex configurations of the eight-vertex model (the bold edges have spin down). The associated
weights a, b, c, d are invariant under spin reversal in the zero field case

PN+1QN |ψ〉 = (−1)N+1p

(
N∑

j=1

qj + (−1)N+1tN q0

)
|ψ〉

= (−1)N+1pNQN |ψ〉.
Thus, we find that (1) for N odd, tN = 1 the action of QN preserves parity and (2) for N

even, tN = −1 the action of QN reverses parity.
We studied the parity sectors by means of exact diagonalisation of the Hamiltonian up to

N = 11 sites. For odd N we observed that the spectrum of the parity odd sector is contained
in the parity even sector. Thus, we arrive at the following

Conjecture 2 For odd N and zero momentum, the spectrum in the odd parity sector pN =
−1 is contained in the spectrum of the even parity sector pN = +1.

3 Supersymmetry and the Transfer Matrix of the Eight-Vertex Model

In this section, we consider the transfer matrix of the zero-field eight-vertex model. The
main tool here is the Bethe ansatz for the transfer matrix established by Baxter [2–4]. We
provide a derivation of the supersymmetry from this point of view, generalising the result of
[31] from the critical point to the entire supersymmetric line.

After some basic definitions in Sect. 3.1, we provide a brief review of the Bethe ansatz
for the eight-vertex model in the root-of-unity case in Sect. 3.2, in particular recalling the
necessary change of basis of the Hilbert space. In Sect. 3.3 we establish the supersymmetry
in the new basis. To make contact with the supercharges defined in our previous discussion,
we have to transform back to the canonical spin basis what is discussed in Sect. 3.4. This
leads to some new conjectures on the nature of the zero-energy ground states of the XYZ
chain of odd length.

3.1 Basic Definitions

We start by recalling elementary facts about the eight-vertex model on the square lattice
[5]. Each edge carries a classical Z2 “spin” variable ±, corresponding to occupied/empty
or spin up/down. The configurations are restricted in such a way that each vertex has an
even number of spins down: the eight allowed vertex configurations are shown in Fig. 2. We
associate a Boltzmann weight to each vertex, and the weight of a given lattice configuration
is then simply the product over all the vertex weights. In the “zero-field” case, the weights
are invariant under simultaneous reversal of all spins around a vertex. Thus, as shown in
Fig. 2, there are four distinct weights, traditionally denoted by a, b, c, d . Suppose that the
square lattice has say M rows and N columns, and is wrapped around a torus (periodic
boundary conditions along the two directions). Then the model can conveniently be studied
by the row-to-row transfer matrix T N , whose matrix elements are defined as the sum over



1134 C. Hagendorf, P. Fendley

all configurations along a horizontal line, compatible with the spin values on the vertical
edges:

〈α′|T N |α〉 =
∑

μ1,...,μN =± μ1 μ2 μ3 μN μ1

α1 α2 αN

α′
1 α′

2 α′
N

.

The invariance of the vertex weights under spin reversal implies that [T N,RN ] = 0. More-
over, the vertex rule implies that the transfer matrix conserves the number of down spins
mod 2. Therefore we have [T N,SN ] = 0. Conservation of the total number of down spins is
only possible in the six-vertex limit d = 0 (or c = 0).

To proceed we parametrise of the vertex weights in terms of Jacobi theta functions, fol-
lowing the definitions of [8, 9, 43] and [58]:

a = a(u) = ρϑ4

(
2η,q2

)
ϑ4

(
u − η,q2

)
ϑ1

(
u + η,q2

)
,

b = b(u) = ρϑ4

(
2η,q2

)
ϑ1

(
u − η,q2

)
ϑ4

(
u + η,q2

)
,

c = c(u) = ρϑ1
(
2η,q2

)
ϑ4

(
u − η,q2

)
ϑ4

(
u + η,q2

)
,

d = d(u) = ρϑ1
(
2η,q2

)
ϑ1

(
u − η,q2

)
ϑ1

(
u + η,q2

)
.

Here u denotes the spectral parameter, η the so-called crossing parameter, and q the ellip-
tic nome. Moreover, we choose the overall normalisation as ρ = 2/ϑ2(0, q)ϑ4(0, q2). This
choice ensures that

h(u) = a(u) + b(u) = ϑ1(u, q), (17)

a function which we shall use quite often (the right-hand side follows from standard iden-
tities for Jacobi theta functions [58]). With this parametrisation two transfer matrices with
different spectral parameters u,u′ commute:

[
T N(u),T N

(
u′)] = 0. (18)

This implies that the series expansion of the transfer matrix in the spectral parameter around
any point yields a family of commuting operators. The most simple ones are the translation
operator TN and the XYZ-Hamiltonian

TN = h(2η)−NT N(η), HN = a(η)/b′(η)T N(u)−1T ′
N(u)|u=η.

The Hamiltonian reduces exactly to our problem (1) if the crossing parameter is set to η =
π/3. In this case, the variable ζ used to parametrise the supersymmetric line is related to the
elliptic nome through

ζ =
(

ϑ1(2π/3, q2)

ϑ4(2π/3, q2)

)2

. (19)

We are interested in using supersymmetry to study the eigenvalues and eigenvectors of
the eight-vertex model transfer matrix. Because of (18) the eigenvectors do not depend on
the spectral parameter, and so coincide with those of the XYZ Hamiltonian HN , up to possi-
ble degeneracies. Such degeneracies do not seem to appear at generic values of the crossing
parameter, but only at the special elliptic root of unity points η = (m1π + m2πτ)/L, with
m1, m2, L integers and q = eiπτ , where additional symmetries are present [18]. In our case
η = π/3 we have already shown that in the momentum sectors with tN = (−1)N+1 the
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eigenvectors organise into singlets, or quadruplets with the same value of E. Moreover, the
eigenvectors in a given quadruplet each can be labelled by a distinct quantum number; two
of them are for N − 1 and N + 1 sites, while we showed that the two at N sites have an
even and odd numbers of spins down. Both the number of sites and the number mod 2 of
spins down are preserved by the eight-vertex model transfer matrix, so barring any acci-
dental degeneracies, these correspond to distinct eigenvectors of the transfer matrix as well.
Since HN is obtained from the logarithmic derivative of T N(u), the fact that their eigenvec-
tors coincide makes it natural to hope that analogous structure occurs in the spectrum of the
transfer matrix. We here show how at η = π/3 the supersymmetries described above indeed
extend to the transfer matrix, and so give relations among the eigenvalues.

As an indication of the special properties occurring at η = π/3, we note that the zero-
energy states |Ψ ±〉 of HN for odd N , i.e. the supersymmetry singlets, have very simple
transfer-matrix eigenvalues T N(u)|Ψ ±〉 = TN(u)|Ψ ±〉. They are given by [54, 55]

TN(u) = h(u)N = ϑ1(u, q)N .

The simplicity of this expression stresses the special nature of the two eigenstates. In the
sequel we will see that the study of the transfer matrix eigenvalues leads naturally to a
distinction of these states from the other eigenvectors.

3.2 Review of Baxter’s Bethe Ansatz

Here we summarise the aspects of the coordinate-type Bethe ansatz [2–4] relevant to our
derivation of the supersymmetry in the eight-vertex model at η = π/3.

Path Basis The transfer matrix of the eight-vertex model has no obvious particle-number
conservation (such as conservation of the number of down-spins). This is a central difficulty
when compared to the six-vertex model. In [3] Baxter developed a way to overcome this
problem through the introduction of a basis upon which the transfer matrix acts in a way
that resembles the six-vertex case.

For N sites the new basis vectors are labelled by a sequence of integers �1, �2, . . . , �N ,

�N+1 such that |�j+1 − �j | = 1, j = 1, . . . ,N . It is useful to think of a path starting at some
height �1 = � with the restriction that consecutive heights differ by ±1. In the following,
we will therefore frequently call the corresponding set of vectors in HN the “path basis”.
A down step or particle occurs at site j if �j+1 − �j = −1, and an up step occurs otherwise.
The path is completely characterised by � and the positions x1, . . . , xm of its m down steps.
Hence for xk < j < xk+1 the local heights are given by

�j = � + j − (2k + 1). (20)

The basis vectors are given as an N -fold tensor product of local vectors |Φ�,�′ 〉 in C
2:

|�;x1, . . . , xm〉N =
N⊗

j=1

|Φ�j ,�j+1〉.

The factors are constructed from the local heights via

|Φ�,�+1〉 = ϑ1

(
s + (2� + 1)η, q2

)|+〉 + ϑ4

(
s + (2� + 1)η, q2

)|−〉,
|Φ�+1,�〉 = ϑ1

(
t + (2� + 1)η, q2

)|+〉 + ϑ4

(
t + (2� + 1)η, q2

)|−〉, (21)

where |±〉 are the local spin-1/2 basis vectors, and s and t arbitrary parameters such that
the two vectors are linearly independent.
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Fig. 3 A typical path for L = 3,
two particles and p = 1

The transfer matrix maps these states onto themselves and conserves the number of par-
ticles, provided that the following condition is met [3]: for generic values of the crossing
parameter η the initial and final height are identical �1 = �N+1, and therefore N = 2m. In
the special case of elliptic roots of unity η = (m1π + m2πτ)/L however, this constraint can
be relaxed to

N − 2m = Lp, for some p ∈ Z (22)

because of the periodicity of the Jacobi theta functions involved in the construction of the
vectors. The height difference between starting point and endpoint of the path is thus Lp as
shown in Fig. 3. Moreover, because of the periodicity of the theta functions it is sufficient to
restrict the initial height to �1 = 0,1, . . . ,L − 1 in this case.

It is instructive to compute the maximal dimension dN of the subspace spanned by these
vectors in the root-of unity-case by simple counting of the paths. There are

(
N

m

)
arrangements

of m particles, provided that (22) holds. Let us introduce an indicator function δL(n) which
is 1 if n = 0 mod L, and 0 otherwise. We have the convenient representation

δL(n) = 1

L

L−1∑

j=0

e2π ijn/L.

We weight this by the number of arrangements and an additional factor L which takes into
account the different choices for � = 0,1, . . . ,L − 1. Summation over m yields

dN = L

N∑

m=0

δL(N − 2m)

(
N

m

)
= 2N

L−1∑

j=0

(
cos

(
2πj

L

))N

.

For the case of interest L = 3, we find

dN = 2N + 2(−1)N .

We know that the dimension of the full Hilbert space HN is 2N . If we assume that all the
vectors associated to paths are linearly independent then we conclude that for even N the
path basis is redundant. For odd N however at least two vectors are missing, and thus the
path basis does not span the entire Hilbert space. For small finite-size systems, it seems that
exactly two vectors are missing, i.e. the existing 2N − 2 vectors are linearly independent.
We shall assume the linear independence in the following, and will conjecture later that the
two-dimensional complement of the path basis at N odd is spanned by the ground states of
the XYZ Hamiltonian.

Eigenvectors and Bethe Equations The next step consists of decomposing the eigenvectors
of the transfer matrix in terms of vectors in the path basis:

|ψ〉 =
L∑

�=1

ω�
∑

{xj }
ψ(�;x1, . . . , xm)|�;x1, . . . , xm〉. (23)
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The summation over the positions of the particles is carried out in an ordered way 1 ≤
x1 < x2 < · · · < xm ≤ N . Moreover ω is an L-th root of unity: ωL = 1. The wave functions
ψ(�;x1, . . . , xm) are obtained through a Bethe-type ansatz. In order to describe it we need
Baxter’s “single particle” functions and “wave vectors” defined through

gj (�, x) = eikj x h(w�+x−1 − η − uj )

h(w�+x−2)h(w�+x−1)
, eikj = h(uj + η)

h(uj − η)
. (24)

Here we used the function

w� = (s + t)/2 − π/2 + 2�η (25)

which is linear in �, and contains the free parameters. The numbers u1, . . . , um are the Bethe
roots to be determined. With this notation the wave function is given in typical Bethe-ansatz
form by

ψ(�|x1, . . . , xm)

=
∑

π

Aπgπ(1)(�, x1)gπ(2)(� − 2, x2) · · ·gπ(m)

(
� − 2(m − 1), xm

)
. (26)

Here the sum runs over all permutations π of m objects. The m! coefficients Aπ satisfy
the following relation: if τ is a transposition exchanging j and j + 1, then we have for the
permutation π ′ = π ◦ τ the relation

Aπ ′

Aπ

= −h(uπ(j+1) − uπ(j) + 2η)

h(uπ(j) − uπ(j+1) − 2η)
. (27)

The left-hand side is commonly interpreted as the (bare) scattering matrix between two par-
ticles with “rapidities” uπ(j) and uπ(j+1). If they coincide then we find Aπ ′ = −Aπ , implying
that the Bethe wave function vanishes.2 This will be very important in our analysis.

The Bethe roots u1, . . . , um remain to be determined. Baxter showed in [4] that if they
solve the Bethe equations

(
h(uj + η)

h(uj − η)

)N

= −ω2
m∏

k=1

h(uj − uk + 2η)

h(uj − uk − 2η)
, (28)

then (23) is an eigenvector of the transfer matrix T N(u)|ψN 〉 = TN(u)|ψN 〉. The corre-
sponding eigenvalue can be obtained from the so-called T Q-equation

TN(u)QN(u) = ωφN(u − η)QN(u + 2η) + ω−1φN(u + η)QN(u − 2η), (29)

2Let us suppose that two Bethe roots have the same value, say um−1 = um. Now we modify the sum over
permutations in (26) according to

∑
π fπ = ∑

π fτ◦π for some function f on the symmetric group Sm,
where τ is an arbitrary permutation of m objects. We choose τ to be the transposition of m − 1 and m. For
any π define pre-images n1, n2 according to π(n1) = m − 1 and π(n2) = m, then we find

ψ(�|x1, . . . , xm) =
∑

π

Aπ ′
∏

j =n1,n2

gπ(j)

(
� − 2(j − 1), xj

)

× gπ(n2)

(
� − 2(n1 − 1), xn1

)
gπ(n1)

(
� − 2(n2 − 1), xn2

)
.

According to our assumption we have Aπ ′ = −Aπ . Moreover, from um−1 = um and (24), it is not difficult
to see that gm−1(�, x) = gm(�, x). Therefore we may write gπ(n2)(� − 2(n1 − 1), xn1 )gπ(n1)(� − 2(n2 −
1), xn2 ) = gπ(n1)(� − 2(n1 − 1), xn1 )gπ(n2)(� − 2(n2 − 1), xn2 ). Using these facts, we see that

ψ(�|x1, . . . , xm) = −ψ(�|x1, . . . , xm),

and therefore the wave function vanishes.
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where φN(u) = h(u)N = ϑ1(u, q)N , and

QN(u) =
m∏

j=1

h(u − uj )

is an elliptic polynomial with zeroes at the Bethe roots. In particular, setting u = η we find
that the eigenvalue tN of the translation operator TN is given in terms of the Q-function as

tN = ω−1 QN(−η)

QN(η)
= ω−1

m∏

j=1

h(uj + η)

h(uj − η)
= ω−1

m∏

j=1

eikj , (30)

where in the last step we used (24).

3.3 Derivation of the Supersymmetry from the Bethe Ansatz

We now use the Bethe ansatz to establish for the case η = π/3 the supersymmetry connect-
ing systems with different numbers of sites N and N ± 1.

We start by noting that from (22), the number of particles m in the path when L = 3 must
obey

N − 2m = 3p

for some integer p. This relation is compatible with the simultaneous replacement N →
N ′ = N − j , m → m′ = m+ j and p → p′ = p − j for some integer j . The supersymmetry
charge QN studied in Sect. 2 increases the number of sites by one. However, in the context
of the Bethe ansatz it turns out particularly convenient to consider an action like that of
Q

†
N−1: we choose j = 1 and therefore decrease the length of the chain by one while adding

a particle to the system. We discuss the relation with the supercharges studied previously in
the next section.

Our strategy is to construct from a given solution u1, . . . , um of Bethe’s equations at N

sites a new solution ũ1, . . . , ũm, ũm+1 at N − 1 sites. We shall verify that a solution to this
problem is simply given by ũj = uj for j < m + 1 and um+1 = π . Indeed, for the smaller
system the first m Bethe equations with this choice become

(
h(uj + η)

h(uj − η)

)N−1

= −ω2
m∏

k=1

h(uj − uk + 2η)

h(uj − uk − 2η)
× h(uj − π + 2η)

h(uj − π − 2η)
.

Using (28) and the antiperiodicity h(u + π) = −h(u), this equation reduces to

h(uj − η)

h(uj + η)
= h(uj − π + 2η)

h(uj + π − 2η)
.

It holds for generic uj if η = π − 2η mod π , and thus in particular for the value η = π/3 we
are interested in. However, we still have to check the (m + 1)-th Bethe equation. We find

(−1)N+1 = ω2
m∏

j=1

h(uj + η)

h(uj − η)
.

On the right-hand side we recognise the eigenvalue of the translation operator for the system
with N sites (30). We conclude that the operation is possible only if tN = (−1)N+1ω3. But
recall from the last section that for η = πm/L the number ω is an L-th root of unity, in our
case thus ω3 = 1, and therefore we find the symmetry in the momentum sector with

tN = (−1)N+1. (31)
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Consistency thus requires a restriction to the momentum sectors studied in Sect. 2.
As a side comment, let us notice that we could have started from the T Q-equation with

arbitrary ω, deduced the Bethe equations from the requirement that TN(u) is an entire func-
tion and imposed the lattice supersymmetry. Asking for consistency would have led us to
ω3 = 1. In the six-vertex limit where the working is completely analogous, write ω = eiφ so
that φ has the interpretation of a twist angle. We conclude that the twists leading to the sym-
metry here are φ = 0,±2π/3, as follows from the observations of [31]. These are precisely
the values for which special simple eigenvalues of the transfer matrix, as well as relations to
problems of enumerative combinatorics appear [17, 45, 46].

As a next step, we determine the relation between the corresponding eigenvalues of the
transfer matrix from (29). For the Q-function we find

QN−1(u) =
m∏

k=1

h(u − uj ) × h(u − π) = −h(u)QN(u).

Using this relation, we deduce that

TN(u) + h(u)TN−1(u) = 0. (32)

Setting u = η we obtain a relation between the eigenvalues of the translation operators for
both systems tN−1 = −tN = (−1)N . This is consistent with (31). For odd N we obtain thus
the zero-momentum sector (invariant under translation), whereas for even N it is the π -
momentum sector. This fits well the picture suggested by (24): the (m + 1)-th particle with
um+1 = π has momentum km+1 = π , and therefore the eigenvalue of the translation operator
is changed by a sign.

Relation Between Eigenvectors The preceding operation should manifest itself as an oper-
ation on the Hilbert space (or at least the special momentum sectors). In fact, we would like
to introduce an operator Q̂N : HN → HN+1 (not to be confused with Baxter’s Q-matrix)
such that the eigenvectors of the transfer matrix that can be obtained from the Bethe ansatz
are related according to

|ψN−1〉 = Q̂
†
N−1|ψN 〉.

Twofold application of Q̂
†
N would lead to the injection of two particles with momentum π .

However, in this case the Bethe wave function vanishes. Hence we can write on the subspace
spanned by the path basis

Q̂
†
N−1Q̂

†
N = 0, or Q̂NQ̂N−1 = 0.

We will now derive the explicit form of these operators, starting from the definition of the
wave functions (26). To manipulate them, we need an explicit expression for the amplitudes
Aπ . In fact, their defining equation (27) can be solved up to a factor:

Aπ = sgnπ
∏

1≤i<j≤m

h(uπ(i) − uπ(j) + 2η). (33)

Let us consider the wave function (26) for m + 1 particles, one of them having momentum
um+1 = π . It is a sum over permutations π of {1,2, . . . ,m + 1}. For a start, let us consider
in this sum only the permutations with π(r) = m + 1 for some fixed r = 1, . . . ,m + 1. Any
such permutation can be decomposed according to π = π ′ ◦ π ′′ where π ′(m + 1) = m + 1
and

π ′′(j) =
{

j, j < r

m + 1, j = r

j − 1, j > r

.
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We have the signature sgnπ ′′ = (−1)m+1−r and thus sgnπ = (−1)m+1−r sgnπ ′. We use this
in order to evaluate the Bethe amplitude (33) in terms of the permutation π ′. After some
algebra one finds

Aπ = sgnπ ′ ∏

1≤i<j≤m

h(uπ ′(i) − uπ ′(j) + 2η)

m∏

i=1

h(ui − η)

m+1∏

j=r+1

eikπ(j) .

We see that the only r-dependent term is the last product: a string of wave-vectors. Thus,
we must understand how this affects the corresponding single-particle functions. For j > r

we notice the identity

eikπ(j)gπ(j)(� − 2j + 2, xj ) = gπ ′(j−1)

(
� − 2(j − 1) + 2, xj + 1

)
,

which holds only because of η = π/3. This is already enough to simplify the wave function.
As π ′ leaves m + 1 unchanged, we can think of it as a permutation of only m objects. This
can of course be done for any value of r separately. Collecting the different contributions,
we find after some algebra a recursion relation for the wave functions

ψ(�;x1, . . . , xm+1) =
m∏

i=1

h(ui − η)

m+1∑

r=1

gm+1

(
� − 2(r − 1), xr

)

× ψ(�;x1, . . . , xr−1, xr+1 + 1, . . . , xm+1 + 1).

The wave functions on the right hand side are the ones involving only the Bethe roots
u1, . . . , um, thus precisely the ones for the problem at N sites. However, notice that the
positions of the particles are not arbitrary: for the r-th term we have xr+1 + 1 − xr−1 ≥ 2.
The picture becomes a little more transparent if we consider the induced operation on the
basis states:3

Q̂
†
N−1|�;x1, . . . , xm〉N = C

m+1∑

r=1

xr−2∑

x=xr−1+1

gm+1
(
� − 2(r − 1), x

)

× |�;x1, . . . , xr−1, x, xr+1 − 1, . . . , xm − 1〉N−1 (34)

where we set x0 = 0; C is a normalisation constant which can be chosen arbitrarily. We see
that Q̂

†
N−1 inserts a new particle at position x between existing ones at xr−1 and xr , provided

that they are at least two sites apart (in order to guarantee xr−1 < x < xr −1). More precisely
the operation Q̂

†
N−1 transforms locally two consecutive up-steps at (x, x + 1) to a single

down-step at x, while shifting all particles on its right by one step to the left as illustrated in
Fig. 4.

This is weighted by Cgm+1(� − 2r + 2, xr = x). Notice that the local height at x + 1 is
given by �x+1 = � + x − 2(r − 1). Combining this with the definition of the single-particle
wave function (24), we conclude that apart from the string the weight can be expressed in
terms of the local height between the two up-segments alone (to see this recall that h(u)

is 2π -periodic and wx+3 = wx + 2π ). More explicitly, we make the convenient choice C =∏3
�=1 h(w�) and find the local weight

Cgm+1(� − 2r + 2, xr = x) = (−1)xh(w�x+1)
2. (35)

3Strictly speaking, Q̂
†
N−1 only acts on momentum states with tN = (−1)N+1. Clearly, these can be written

as a superposition of path states. Thus, for simplicity, we present the action of the supercharge on the vectors
in this decomposition.
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Fig. 4 Local action of Q̂
†
N−1:

two steps up are transformed to a
step down

This completes the definition of the supercharges acting on the path basis. From (32), we
conclude that they act as intertwiners for the transfer matrices:

T N(u)Q̂N−1 + h(u)Q̂N−1T N−1(u) = 0, (36)

on the momentum sectors with tN = (−1)N+1. Of course, this relation only holds on the
subspace spanned by the path basis.

We finish this section by pointing out that—as in the case of the XYZ chain—the notion
of “particle” is somewhat arbitrary. One could as well have chosen the steps up as particles.
From the local vectors (21) we see that this corresponds essentially to exchanging the pa-
rameters s and t . This would lead to a second supersymmetry operation with the same local
weights (35), which transforms locally two consecutive steps down to a single step up, and
thus resembling strongly the case studied in Sect. 2. We will discuss their connections in the
next section.

3.4 Supercharges in the Spin Representation and the XYZ Ground States

Having found an operator Q̂
†
N (and thus Q̂N ) defined through its action on states of the path

basis it seems natural to ask how it acts on simple spin states, i.e. momentum states built
from a spin configuration. Generically, the path states are rather complicated superpositions
thereof, and hence we have to find the transformation relating the two bases. In order to
work it out, we must address the question of incompleteness of the path basis for chains of
odd length, pointed out in Sect. 3.2. In fact, for odd N we have to define the action of Q̂

†
N−1

on the missing two states which we denote by |Ψ±〉.
Let us first state a simple observation: as the |Ψ±〉 are not in the path basis, they cannot be

obtained through the action of Q̂
†
N on any state in the Hilbert space HN+1 for the chain with

N +1 sites. Second, we extend the definition of Q̂
†
N−1 in the most natural way: Q̂

†
N−1|Ψ±〉 =

0. Of course, the same reasoning applies to the operator Q̂N itself, and thus we have

Q̂N |Ψ±〉 = 0, and |Ψ±〉 = Q̂N−1|φ〉 for all |φ〉 ∈ HN−1. (37)

Notice that this provides a consistent extension of the nilpotency property Q̂N+1Q̂N = 0. In
a more mathematical parlance, we extend thus the definition of Q̂N in such a way that the
missing states are closed, but not exact with respect to the operators Q̂N .

Given this extension, the next steps are to construct the relation between the path basis
and the spin basis, and to understand the action of the operator Q̂N on simple spin states.
We have not found a systematic construction for generic N . It seems that this is related to
quite non-trivial identities between Jacobi theta functions, as suggested by the most simple
example Q̂2. We work out this special case in Appendix B. It suggests the following
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Conjecture 3 For any N the operator Q̂N is a linear combination of the supercharges QN

and Q̃N , defined in Sect. 2, with coefficients depending on the free parameters s and t . The
latter can be fine-tuned in order to make one of the coefficients vanish. As a generalisation
of (36) we have the intertwining relation

T N(u)QN−1 + h(u)QN−1T N−1(u) = 0

(and a similar relation for Q̃N ) on the momentum sectors with tN = (−1)N+1.

It is easy to check that this equation is compatible with the commutation relations be-
tween the supercharges and the XYZ Hamiltonian (12). More importantly however, this
conjecture—if true—has some interesting consequences for the ground states of the XYZ
spin chain along the supersymmetric line. In fact, combining it with (37) we conclude that
the two missing states |Ψ±〉 correspond to non-trivial elements in the cohomology of the
supercharge QN (or Q̃N ), discussed previously. Therefore they are perfect candidates for
the ground states of the XYZ Hamiltonian for chain with odd N . Indeed, we verified this
conjecture up to N = 9 sites by checking that the ground states obtained through exact diag-
onalisation of the Hamiltonian are indeed orthogonal to all states in the path basis provided
that we impose the relation between ζ and the elliptic nome q given in (19). Thus we are
led to

Conjecture 4 For odd N the subspace of vectors that are orthogonal to the path ba-
sis is two-dimensional. It is spanned by the two zero-energy ground states of the XYZ-
Hamiltonian (1) which are invariant under translation.

This is perhaps the most surprising outcome of our analysis because it suggests that
for η = π/3 the ground states at odd N cannot directly be obtained from Baxter’s Bethe
ansatz. Notice that this observation is different from the widely discussed question of the
completeness of the Bethe ansatz (see e.g. [7]) as here the Bethe ansatz (as it stands) does
not apply to the missing states.

These two states are thus eigenstates of the eight-vertex transfer matrix with eigenvalue
TN(u) = ϑ1(u, q)N as was conjectured by Stroganov [54, 55]. The conjecture was extended
to the inhomogeneous eight-vertex model, defined by allowing on any site j a shift of the
spectral parameter u → u − uj . The conjectured eigenvalue is [48]

TN(u) = ϑ1(u − u1, q)ϑ1(u − u2, q) · · ·ϑ1(u − uN,q). (38)

The simple product structure of this eigenvalue suggests that there is a local mechanism
leading to its existence. Here we seek to extend our Conjecture 4 to the inhomogeneous
setting. The construction of the path basis parallels the homogeneous case, with a slight
modification of the local vectors (21). For site j they become

|Φ(j)

�,�+1〉 = ϑ1
(
s + (2� + 1)η + uj , q

2
)|+〉 + ϑ4

(
s + (2� + 1)η + uj , q

2
)|−〉,

|Φ(j)

�+1,�〉 = ϑ1
(
t + (2� + 1)η − uj , q

2
)|+〉 + ϑ4

(
t + (2� + 1)η − uj , q

2
)|−〉,

where |±〉 are the local spin-1/2 basis vectors. Using this, we checked numerically for
N = 3, 5 and 7 sites, and random choices for the spectral parameters uj the following

Conjecture 5 For odd N the subspace of vectors that are orthogonal to the inhomogeneous
path basis is two-dimensional. It is spanned by the two eigenstates of the inhomogeneous
transfer matrix with eigenvalue (38).
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4 Relation to Lattice Fermions with Hard-Core Exclusion

In this section, we present new observations about the connection between the XYZ model
along the supersymmetric line and the staggered supersymmetric fermion chains with
nearest-neighbour exclusion considered in [29, 30] (see also [38]). We provide a first step
to construct a mapping between the models, based on the path description of the states in
Baxter’s Bethe ansatz for the eight-vertex model. Such a mapping was relatively straightfor-
ward to obtain for the XXZ case [31, 61], because in both cases there is a conserved U(1)

symmetry, and have closely related Bethe equations. Here there remains a U(1) symmetry in
the fermion model, but there is no such manifest symmetry in the XYZ chain. Nevertheless,
there appears to be a close relation between the spectra in the two cases. Moreover, we ex-
plain how there is evidence of the hard-fermion structure in the path basis of the eight-vertex
model by exploiting the mod 3-periodicity of the heights in the path description.

4.1 Conjectures Relating the Spectra

Let us recall the model of [31, 32], describing spinless fermions on a periodic one-
dimensional lattice with N(f ) sites. The fermions are subject to the constraint that no two ad-
jacent sites are both occupied. Defining the ordinary fermion creation and annihilation oper-
ators to be c

†
j and cj with {ci, cj } = {c†

i , c
†
j } = 0 and {ci, c

†
j } = δij , the constraint amounts to

restricting the usual fermionic Hilbert space to states annihilated by njnj+1, where nj = c
†
j cj

is the fermion number operator. Fermions respecting this constraint are annihilated and cre-
ated by the operators dj = (1 − nj−1)cj (1 − nj+1) and d

†
j = (1 − nj−1)c

†
j (1 − nj+1). The

model has explicit N = 2 supersymmetry: it is built from a supercharge

Q(f ) =
N(f )∑

j=1

λjd
†
j ,

where the λj are non-zero real coupling constants (possible phases may be removed
by simple gauge transformations). The Hamiltonian is given as anticommutator H(f ) =
{Q(f ),Q

†
(f )}. For periodic boundary conditions dj = dj+N(f )

on the fermions (known as
Ramond boundary conditions), the Hamiltonian is

H(f ) =
N(f )∑

j=1

λjλj+1

(
d

†
j+1dj + d

†
j dj+1

) +
N(f )∑

j=1

λ2
j (1 − nj−1)(1 − nj+1).

This thus includes a hopping term, a chemical potential, and a next-to-nearest neighbour
repulsion. Notice that unlike in the XYZ chain where the magnetisation is not conserved,
this Hamiltonian conserves fermion number for any values of the λj .

Following [29, 30] we now consider the case where length of the fermion chain is a mul-
tiple of three, and the coupling constants are staggered with period three. Then the problem
is invariant under translation by three sites: if T(f ) is the translation operator on the fermion
chain then we have [H(f ), T

3
(f )] = 0. In this case, one can show that for N(f ) = 3m the model

has exactly two zero-energy ground states with m fermions in the “momentum sector” where
T 3

(f ) ≡ (−1)m+1. The precise form of these ground states depends on the values of λ1, λ2,
λ3. The most general case is analysed in [14]. Here we describe the choice λ1 = y, λ2 = 1,
λ3 = y for some real y. This was the case studied in [30], where we conjectured that after
the change of variable

ζ 2 = 1 + 8y2 (39)
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the two zero-energy ground states of the fermion chain at N(f ) = 3m, and the two zero-
energy ground states of the XYZ spin chain with N = 2m + 1 sites share some components
which are polynomials in ζ and are related to a tau-function hierarchy associated with the
Painlevé VI equation [8, 9, 43].

It is natural to ask if the relation between the two models is deeper. Indeed, if we rewrite
the spectrum of the fermion chain in terms of the variable ζ by using (39) then a number of
eigenvalues in the spectra of the XYZ Hamiltonian at N = 2m and N = 2m + 1 coincide
exactly with eigenvalues of the fermion chain Hamiltonian 4H(f ) (the factor 4 is just an
issue of normalisation). This statement can be sharpened by analysing different momentum
sectors. As an example, we provide the characteristic polynomial det(E −HN) for the XYZ
Hamiltonian with N = 4 sites in the subsector with momentum k = π :

(
E−(

ζ 2 + 3
))(

E−(
ζ 2 + 2ζ + 5

))(
E−(

ζ 2 − 2ζ + 5
))(

E−2
(
ζ 2 + 1

))
. (40)

The characteristic polynomial det(ε − H(f )) for the fermion model at N(f ) = 6 sites in the
subsector with m = 2 particles and T 3

(f ) = −1 is given by:

ε2
(
ε−(

1 + 4y2
))(

ε−(
1 + 2y2

))(
ε2−(

3 + 4y2
)
ε+2

(
1 + 2y2 + 2y4

))
. (41)

If we set ε = E/4 and use the change of variables (39), then (41) coincides with (40) up
to the factor E2 and an unimportant global numerical factor. Hence we see that upon the
change of variables, the spectra coincide with the exception that the zero-energy states are
absent in the XYZ spectrum. This coincidence of the XYZ spectrum at N = 2m on the sector
with momentum π , and the fermion model at N(f ) = 3m on the sectors with T 3

(f ) = (−1)m+1

appears to be systematic for small m, but different multiplicities of various eigenvalues occur
for m ≥ 4. Studying the spectra up to m = 6, we are led to the following conjecture:

Conjecture 6 The spectrum of the XYZ Hamiltonian HN for N = 2m sites in the sector
with momentum π coincides with the spectrum of the staggered fermion chain 4H(f ) with
N(f ) = 3m sites in the sector where T 3

(f ) = (−1)m+1 if variables are changed according
to (39), with two exceptions: (i) the eigenvalue E = 0 is missing in the XYZ spectrum and
(ii) the two models lead to different multiplicities of the eigenvalues.

This conjecture identifies sectors of the two models where their supersymmetries are ex-
actly realised. Yet, it appears that the connection is even deeper. We analysed the relations
between the models for antiperiodic or Neveu-Schwarz boundary conditions dj+N(f )

= −dj

on the fermions. In this case, the supersymmetry of the fermion model is broken. The
spectrum needs no longer be positive, and indeed the ground state has negative energy.
These boundary conditions are equivalent to a twist in the Hamiltonian, leading to the term
−λN(f )

λ1(d
†
1 dN(f )

+ d
†
N(f )

d1). This sector is unlikely to share properties with the momentum
sectors discussed so far in this paper because they have explicit unbroken supersymmetry.
We found however coincidence with the spectrum of the XYZ chain of even length N = 2m

and zero momentum. We illustrate it once again by showing the explicit characteristic poly-
nomials for m = 2. The XYZ Hamiltonian for N = 4 sites, and momentum k = 0 has the
characteristic polynomial

(E − 4)
(
E − (ζ − 1)2

)(
E − (ζ + 1)2

)

× (
E3 − 3E2

(
ζ 2 + 1

) + 2E
(
ζ 2 + 3

)2 + 8
(
ζ 2 − 1

)2)
.

The characteristic polynomial of the fermion model at N(f ) = 6 with Neveu-Schwarz bound-
ary conditions restricted to the sector T 3

(f ) = 1 is given by

(ε − 1)
(
ε3 − 3ε2

(
2y2 + 1

) + 2ε
(
2y2 + 1

)2 + 8y4
)(

ε2 − ε
(
4y2 + 1

) + 4y4
)
.
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Again, if we set ε = E/4 and perform the change of variables (39) we find that the two
polynomials coincide up to some unimportant numerical factor. Studying small systems up
to m = 6 we are led to the

Conjecture 7 The spectrum of the XYZ Hamiltonian for N = 2m sites in the sector with
zero momentum coincides with the spectrum of 4H(f ) for the twisted staggered fermion chain
with N(f ) = 3m sites in the sector where T 3

(f ) = (−1)m after changing variables according
to (39). The multiplicities of the eigenvalues in the two models are different.

4.2 A Mapping to Hard-Particle Configurations

Conjectures 6 and 7, relating the spectra of the XYZ chain and the staggered fermion model,
raise naturally the question if there is a mapping between the models, at least in some sub-
sectors. At the XXZ point ζ = 0 such a mapping was discussed in [31]: the fermion chain
with N(f ) sites and m fermions is equivalent to the twisted spin chain with N = N(f ) − m

sites and m spins down, the twist being the eigenvalue of the translation operator in the
fermion model. If we represent an occupied site on the fermion chain by • and an empty site
by ◦ then the correspondence between fermions and spins is given by

↔ − and ↔ +

This mapping has no direct generalisation to the off-critical case. The reason is the ab-
sence of conservation of the number of down spins in the general XYZ chain as opposed
to the particle conservation in the staggered fermion chain. However, the path basis was de-
signed to implement particle conservation (the number of down steps). Thus, we focus on
the path states, and try to conceive a mapping between them and the fermion model.

Let us consider a typical path starting at height �1 = � and terminating at some �N+1 =
� + 3p for fixed integer p. As before, let m be the number of decreasing steps. Recall that
adjacent heights obey �j+1 − �j = ±1. However, notice that at η = π/3 we may shift any
local height variable by a multiple of three without changing the corresponding state, as
can be seen from the vectors (21). Thus, instead of a decreasing step �j+1 = �j − 1 we can
modify the path locally according to �j+1 = �j + 2 as shown in Fig. 5(a). This motivates
the following construction: given a path we replace each decreasing step by a step of two
units up, and then continue with usual, appropriately shifted steps up. This procedure yields
a new, monotone increasing path from height � to height � + N + m + 1 as illustrated
in Fig. 6(a). Next, we associate to the each of the two types of steps particle configurations
along the vertical axis according to the rules display in Fig. 5(b). This is quite reminiscent of
the correspondence in the critical case. Thus, we obtain from a path a particle configuration
with N(f ) = N + m sites and m particles (see Fig. 6(a) for illustration), with the hard-core
rule that particles cannot be adjacent to each other, just like in the fermionic case. Notice
in particular that because of the condition N = 2m + 3p, the length of the particle chain
N(f ) = 3(m + p) is always a multiple of three.

For fixed �, the position of the particles • on the vertical axis are given as

yj = xj + � + j, j = 1, . . . ,m.

We fix the origin at � = y = 0, and consider periodic boundary conditions, so the yj ’s are
considered mod N(f ).

The mapping between paths and particle configurations is not one-to-one. We illustrate
this by analysing the effect of a translation on the path configuration by one step to the



1146 C. Hagendorf, P. Fendley

Fig. 5 (a) Local modification of the path. (b) Correspondence between path steps and particle configurations

Fig. 6 (a) Mapping from path configuration to a particle configuration with hard-core exclusion. (b) Insertion
of a particle through local operation of the supercharges for the XYZ chain

right. The last step of the path is simply removed, and glued to the first one. However, we
would like to respect the rule that the initial height of the new path is 0, 1 or 2. Thus, a
vertical shift of all heights by ±3 units might be necessary, and lead to a different particle
configuration. There are multiple cases. (i) If the last step of the given path goes up, and
� = 1,2 the translation has no effect on the configuration of hard-particles. (ii) However, if
� = 0 the path has to be shifted by three units, and thus the particle positions are cyclically
translated by 3: yj → yj + 3 mod N(f ). (iii) If the last step of the initial path is decreasing,
then a translation of the path leaves the particle configuration unchanged if � = 2. (iv) For
� = 0,1 however, the positions in the particle configuration constructed from the translated
path are shifted according to yj → yj + 3 mod N(f ). For given N and paths with m steps
down, the number of hard-particle configurations obtained through the mapping is obtained
by counting the paths corresponding to cases (ii) and (iv). This yields

(
N − 1

m

)
+ 2

(
N − 1

m − 1

)
= N(f )

N(f ) − m

(
N(f ) − m

m

)
,

where we used N(f ) = N +m. A little combinatorics shows that this is the number of possi-
ble hard-particle configurations for N(f ) sites and m particles. Also, we see that translation
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of the path configurations is related to translation of the hard-particle configurations along
the vertical axis by three steps.

Next, we would like to understand the nature of these particles by examining the local
action of the XYZ supercharges, explained in Sect. 3.3, on the particle configurations. Recall
that the action on the path states corresponds locally to transforming two up steps into a sin-
gle down step. Given our rules identifying paths with particle configurations, it is not difficult
to see that this corresponds to insertion of a particle while respecting the nearest-neighbour
exclusion rule (see Fig. 6(b)). Recall that this comes with a weight (−1)xh(w�x+1)

2 in terms
of the positions for the path. The corresponding position of insertion in the hard-particle
state is y = x + � + j where j is the number of particles on sites 0,1, . . . , y − 2. Hence, the
weight becomes (−1)j+y−�h(wy)

2 as follows from (25) and the periodicity of h(u). The fac-
tor (−1)j in the string suggests that the hard particles are indeed fermions. Furthermore it is
tempting to use this in order to identify the coupling constants λy . This requires taking into
account a systematic identification of the hard-particle states in terms of the path states (what
is delicate as the proposed mapping is not one-to-one), changes of normalisations through
the supersymmetry operation, and finally the restriction to the special momentum spaces for
both models. While we are not in a position to carry out this program, we nevertheless put
forward the following

Conjecture 8 The coupling constants of the corresponding fermion model are given by

λy = ∣∣ϑ1(wy, q)
∣∣3/2

,

where wy is the linear function defined in (25).

We see that these coupling constants depend only on the combination s + t . The evidence
for this conjecture is that this parametrisation of the coupling constants uniformises a family
of elliptic curves appearing in the coordinate direct coordinate Bethe ansatz for the fermion
chain [14]. In particular, it implies that upon appropriate rescaling the eigenvalues of the
fermion chain do not depend on s + t .

5 Conclusion

We have studied the XYZ chain and the eight-vertex model along the supersymmetric line,
and showed that it possesses an N = (2,2) supersymmetry on the lattice. A consequence
is that chains of different length have common positive energy levels in certain momentum
sectors, which are organised into supersymmetry quadruplets. Moreover, we presented a
derivation of the supersymmetry by means of the Bethe ansatz for the eight-vertex model,
and showed that the supercharges perform simple local operations on the path basis. This
analysis led us to a novel characterisation for the ground states of the XYZ chain with odd
length. Finally, we reported some observations that the XYZ chain along the supersymmetric
line and the staggered supersymmetric fermion chains with nearest-neighbour exclusion
have exact common eigenvalues in certain subsectors.

There are many open questions and extensions. To us, it seems most interesting to clar-
ify further the nature of the ground states for the chains of odd length. We hope that the
supersymmetry will be helpful, for instance to prove that there are exactly two zero-energy
ground states. A central tool in supersymmetric theories is the Witten index tr(−1)F [59]:
it provides a lower bound on the number of zero-energy states. Indeed, it would be interest-
ing to define this quantity or find at least a suitable analogue for the present theory. As the
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fermion number coincides with the number of sites, the formal generalisation leads to a trace
which runs over an infinite collection of Hilbert spaces, what one would have to make sense
of. Similar considerations apply to the index tr((−1)F Fe−βH ) defined in [16]. A possible
way to resolve these problems might be to establish a more complete mapping between the
XYZ chain and the staggered fermion chain. For the latter, there exists a standard procedure
to find the Witten index, and determine the exact number of ground states using cohomology
arguments (see e.g. [39]). Further insights into the structural properties of the ground states
will certainly be obtained by considering the inhomogeneous eight-vertex model, as was the
case in the trigonometric limit [20–23]. Almost all developments in this work considered
the homogeneous version, and the supersymmetry appears to be intimately related to trans-
lation invariance. It would be interesting to see if (and how) this symmetry persists in the
inhomogeneous case.

Finally, let us point out that the supersymmetry presented in this article is a particular
feature of the η = π/3 model. It is natural to ask for an extension to general roots-of-unity
points such as η = π/(k + 2) with k = 1,2,3, . . . . The case k = 2 was already addressed
in [31] from the point of view of fermions with generalised exclusion rules. This allowed
the identification of a supersymmetric point for the Fateev-Zamolodchikov integrable spin-1
chain. For more general trigonometric models, the points η = π/(k + 2) were identified as
the combinatorial points for fused spin-k/2 models [62], as anticipated in [24] (see also
[51]). Indeed, using the works [40, 57] we can show that these coincide precisely with the
cases where a lattice supersymmetry is present. This generalisation will be addressed in a
forthcoming publication [34].
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Appendix A: Properties of the Supercharges

In this appendix we present some technical details about the properties of the supercharges
introduced in Sect. 2. In the first part, we prove the nilpotency property, and in the second
part, we show that their anticommutator generates the XYZ Hamiltonian.

A.1 Nilpotency

Let us prove that the operators QN “have square zero” in the sense that

QN+1QN = 0.

To this end, we need a set of anticommutation rules for the local operators qj defined in the
main text (7). We have the rule

qiqj + qj+1qi = 0, 1 ≤ i < j ≤ N. (42)

This can be shown along the lines of [61], and therefore we only sketch the proof for another
relation involving q0. Let us first consider q0qj . We find that its action non-zero only on
states having spins − at position j and N . We find
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q0qj | · · ·−
j

· · ·−
N

〉 = (−1)j
(| + · · · +

j+1
+· · · +

N+2
+〉 − ζ | + · · · −

j+1
−· · · +

N+2
〉

− ζ | − · · · +
j+1

+· · ·−
N

〉 + ζ 2| − · · · −
j+1

−· · ·−
N

〉).

Reversing the order of the q’s, we have to take into account the shift and therefore consider
qj+1q0. Its action yields

qj+1q0| · · ·−
j

· · ·−
N

〉 = (−1)j+1
(| + · · · +

j+1
+· · ·+

N
〉 − ζ | + · · · −

j+1
−· · ·+

N
〉

− ζ |1 · · · +
j+1

+· · ·−
N

〉 + ζ 2| − · · · −
j+1

−· · ·−
N

〉).

We see that this result coincides with the previous one, except for a minus sign. Combining
these two equations, we find therefore

q0qj + qj+1q0 = 0, j = 1, . . . ,N − 1 (43)

when acting on HN .
These relations are useful in order to prove that the supercharges are nilpotent in the

sense stated above. In a first step, we observe that the (42) and (43) can be used to reduce
the product of the supercharges to

QN+1QN =
(

N

N + 2

)1/2
(

N∑

j=0

(
qj+1qj + q2

j

) + q0qN + qN+1q0

)
.

Let us examine the different terms in this sum. The individual terms are non-vanishing only
if they act on the following states in HN :

(
qj+1qj + q2

j

)| · · ·−
j

· · ·〉 = ζ
(| · · ·−

j
+ +

j+2
· · ·〉 − | · · ·+

j
+ −

j+2
· · ·〉), j = 1, . . . ,N,

(
q1q0 + q2

0

)| · · ·−
N

〉 = ζ
(|+

1
+· · · −

N+2
〉 − |+

1
−· · · +

N+2
〉),

(q0qN + qN+1q0)| · · ·−
N

〉 = (−1)N+1ζ
(|+

1
· · · −

N+1
+〉 − |−

1
· · · +

N+1
+〉).

(44)

As all the expressions are proportional to ζ we see that in the XXZ limit ζ = 0 the relation
QN+1QN = 0 is immediate. Actually, it would not even be necessary to impose the restric-
tion to certain momentum spaces in this case. However, for general ζ = 0 the relation only
survives on the special momentum sectors. Intuitively, this can be seen as follows: we see
that the operations defined in (44) insert pairs ++ to left and right of a spin −, thus we
expect that the summation of these on a periodic chain will lead to telescopic cancellations.
This will however only work in a momentum sector compatible with the sign in the third
expression in (44) which coincides with the eigenvalue of the translation operator. More
concretely, let us consider the case of QN+1QN on a momentum state |ψα〉 built from spin
configuration α = α1α2 · · ·αN , that is

|ψα〉 =
N∑

j=0

t
j

NT
−j

N |α〉, tN = (−1)N+1.

We leave aside the issue of normalisation. Let us suppose that α has m spins − and denote
their positions by x1, . . . , xm. Using the rules defined in (44) we can write

Cζ−1QN+1QN |ψα〉 =
N−1∑

j=0

t
j

N

(
T

−j

N |α〉 ⊗ |++〉 − |++〉 ⊗ T
−j

N |α〉)
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+ (−1)N+1
m∑

�=1

t
x�

N

(|+〉 ⊗ T
−x�

N |α〉 ⊗ |+〉 − T
1−x�

N |α〉 ⊗ |++〉)

+
m∑

�=1

t
x�

N

(|++〉 ⊗ T
−x�

N |α〉 − |+〉 ⊗ T
1−x�

N |α〉 ⊗ |+〉),

where C = √
(N + 2)/N . Because of tN = (−1)N+1 this can be written in terms of the

positions y1, . . . , yN−m of the individual spins + in α. We find a simplified expression:

Cζ−1QN+1QN |ψα〉 = (−1)N

N−m∑

�=1

t
y�

N

(|+〉 ⊗ T
−y�

N |α〉 ⊗ |+〉 − T
1−y�

N |α〉 ⊗ |++〉)

−
N−m∑

�=1

t
y�

N

(|++〉 ⊗ T
−y�

N |α〉 − |+〉 ⊗ T
1−y�

N |α〉 ⊗ |+〉).

Now observe that if the configuration α has a spin + at position yi we can write

|+〉 ⊗ T
−yi

N |α〉 = T
1−yi

N |α〉 ⊗ |+〉.
Using this in the preceding formula we conclude that all terms cancel mutually. This proves
the statement QN+1QN = 0.

A.2 The Hamiltonian as an Anticommutator

In this appendix we show in detail that if we restrict the Hamiltonian to subsectors where
the eigenvalue of the translation operator is tN = (−1)N+1 then it can be written as “anti-
commutator”

HN = Q
†
NQN + QN−1Q

†
N−1. (45)

First, it is useful to introduce the projector on the momentum spaces that we are interested
in. It is given by

ΠN = 1

N

N−1∑

j=0

t
j

NT
−j

N = 1

N

N−1∑

j=0

(−1)(N+1)j T
−j

N .

From the definition of the supercharges (7) and the translation properties established in (8),
we conclude that QNΠN = ΠN+1QN = QN . Using this, we conclude that

Q
†
NQN = N(N + 1)ΠNq

†
1ΠN+1q1ΠN,

QN−1Q
†
N−1 = N(N − 1)ΠNq1ΠN−1q

†
1ΠN.

Second, using the definition of the projector, and again the rules (8), we find that

(N + 1)ΠNq
†
1ΠN+1q1ΠN = ΠN

(
N∑

j=0

q
†
j q1

)
ΠN,

(N − 1)ΠNq1ΠN−1q
†
1ΠN = ΠN

(
N−1∑

j=1

q1q
†
j

)
ΠN.

We reduce in a third step the sum of these expressions through an application of the follow-
ing anticommutation relations
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qiq
†
j + q

†
j+1qi = 0, 1 ≤ i < j − 1 ≤ N − 1,

q0q
†
j + q

†
j+1q0 = 0, 2 ≤ i ≤ N − 1.

These can be derived in a similar way as the relations (42) and (43). After some algebra, we
are left with

ΠNHNΠ−1
N = NΠN

(
q

†
1q1 + q1q

†
1 + q

†
2q1 + q

†
0q1

)
Π−1

N .

The remaining quadratic terms can be expressed through simple spin operators. We find

qjq
†
j = 1

4

((
1 + σ z

j

)(
1 + σ z

j+1

) + ζ 2
(
1 − σ z

j

)(
1 − σ z

j+1

)) − ζ
(
σ+

j σ+
j+1 + σ−

j σ−
j+1

)
,

q
†
j qj = 1

2

(
1 + ζ 2

)(
1 − σ z

j

)
,

q
†
j+1qj = −ζ 2

4

(
1 − σ z

j

)(
1 − σ z

j+1

) − σ+
j σ−

j+1,

and q
†
0q1 = T −1

N q
†
1q2TN . Using these relations and again translation invariance, we conclude

that

ΠNHNΠ−1
N = −NΠN

(
σ+

1 σ−
2 + σ−

1 σ+
2 + ζ

(
σ+

1 σ+
2 + σ−

1 σ−
2

))
ΠN

− NΠN

((
ζ 2 − 1

4

)
σ z

1 σ z
2 − 3 + ζ 2

4

)
ΠN.

The expression on the right-hand side is nothing but the restriction of the XYZ-Hamiltonian
(1), (2) to the momentum sectors with tN = (−1)N+1, what proves the statement.

Appendix B: Reduction from N = 3 to N = 2 Sites

In this appendix we show that the supercharge in the path basis can be written as linear
superposition of the supercharges defined in Sect. 2.2 for the most simple case of three and
two sites.

There is a single π -momentum state for N = 2 sites. In the canonical basis it is given by
(we do not normalise the states):

|φ〉 = |+−〉 − |−+〉.
For N = 3 sites, there are four possible states which are invariant under translation

|ψ1〉 = |+++〉, |ψ2〉 = |−++〉 + |+−+〉 + |++−〉,
|ψ3〉 = |+−−〉 + |−+−〉 + |−−+〉, |ψ4〉 = |−−−〉.

Let us now turn to the path basis. For even N it is redundant. Indeed, for N = 2 there
are ν(2) = 6 admissible paths but the Hilbert space has dimension d = 2N = 4. Indeed, one
verifies that the different states are related through the identity

h(w�+1)

⎛

⎜⎝
� �

� + 1

−
� + 1 � + 1

�

⎞

⎟⎠ = h(w�−1)

⎛

⎜⎜⎝
� − 1 � − 1

� − � �

� − 1

⎞

⎟⎟⎠ .
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In some sense, the relation is trivial here because the difference of the path states on both
sides is proportional to the singlet state |φ〉, and equality of the proportionality factors on
both sides is readily verified.

For N = 3 there are two states in the path basis which are invariant under translation. Up
to factors, they are given by

|χ1〉 =
2∑

�=0

�

� + 3

, |χ2〉 =
2∑

�=0

�

� − 3

.

As mentioned before, the path basis for odd N is incomplete. In this concrete example, we
see that the two states that are missing have to be invariant under translation. The require-
ment that they are orthogonal to all path states determines them up to linear combinations
and normalisations. We find it convenient to choose

|χ3〉 = ζ |ψ1〉 + |ψ3〉, |χ4〉 = ζ |ψ4〉 + |ψ2〉, (46)

where we used the coordinate basis.
In order to find the action on Q̂

†
2 on the vectors |ψj 〉 we write simply decompose the

path basis and the two missing states for three sites in terms of the spin basis according to
|χi〉 = ∑4

j=1 Aij |ψj 〉. Hence

Q̂
†
2|χi〉 =

4∑

j=1

Aij Q̂
†
2|ψj 〉 = bi |φ〉,

where the bi are constants (in this example the map is necessarily of rank 1). Hence

Q̂
†
2|ψi〉 =

4∑

j=1

(
A−1

)
ij
bj |φ〉. (47)

Thus we have to determine the matrix A involved in the change of basis and the vector b.
For the former it is convenient to abbreviate fj (x) = ∏2

k=0 ϑj (x +2πk/3, q2). Then we find
that

A =

⎛

⎜⎜⎜⎝

3f1(s) −ζf4(s) −ζf1(s) 3f4(s)

3f1(t) −ζf4(t) −ζf1(t) 3f4(t)

ζ 0 1 0

0 1 0 ζ

⎞

⎟⎟⎟⎠ ,

where we used the theta function identity

ϑ1
(
u,q2

)(
ϑ4

(
u − π

3
, q2

)
ϑ4

(
u + π

3
, q2

)
+ ζϑ1

(
u − π

3
, q2

)
ϑ1

(
u + π

3
, q2

))

= ϑ4

(
u,q2

)(
ϑ4

(
u − π

3
, q2

)
ϑ1

(
u + π

3
, q2

)
+ ϑ1

(
u − π

3
, q2

)
ϑ4

(
u + π

3
, q2

))

(notice that using the definition of ζ this turns out to be an identity involving products of
five theta functions and therefore does not simply follow from Riemann’s identity).
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Next, let us determine the bj . The only path state which is not annihilated by Q̂
†
2 is |χ1〉.

The application of the local transformation rules defined in (34) and (35) leads to

Q̂
†
2

⎛

⎜⎜⎜⎜⎜⎜⎝
�

� + 3
⎞

⎟⎟⎟⎟⎟⎟⎠
= −h(w�+1)

2 � �

� − 1

+ h(w�−1)
2

� �

� + 1

.

Finally the summation over � = 0,1,2 then yields b1 = h((s − t)/2)
∑2

�=0 h(w�)
3. From the

rules for the action of Q̂
†
2 it is evident that b2 = 0. Not evident however are the values of b3

and b4. We follow the proposal made in the main text: the supercharges annihilate the two
missing states at odd length. Hence we set b3 = b4 = 0. Then it is a simple matter to find
the action of Q̂

†
2 on the spin states. After having computed the inverse A−1 of the coordinate

transformation we find from (47)

Q̂
†
2 = const. × (

f4(t)Q
†
2 + f1(t)Q̃

†
2

)
,

with the functions fj (t) defined above. The overall factor is a function of s, t and q . The
action of the operators Q

†
2 and Q̃

†
2 on the spin states is

Q
†
2|ψ1〉 = −

√
3

2
|φ〉, Q

†
2|ψ2〉 = 0, Q

†
2|ψ3〉 = ζ

√
3

2
|φ〉, Q

†
2|ψ4〉 = 0,

Q̃
†
2|ψ1〉 = 0, Q̃

†
2|ψ2〉 = −ζ

√
3

2
|φ〉, Q̃

†
2|ψ3〉 = 0, Q̃

†
2|ψ4〉 =

√
3

2
|φ〉.

Thus, we see that Q̃
†
2 = R2Q

†
2R3 where RN is the spin-reversal operator introduced in

Sect. 2.1. Find with thus the Hermitian conjugates of the supercharges constructed in
Sect. 2.
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